Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fate mapping of IL-17-producing T cells in inflammatory responses

Abstract

Here we describe a reporter mouse strain designed to map the fate of cells that have activated interleukin 17A (IL-17A). We found that IL-17-producing helper T cells (TH17 cells) had distinct plasticity in different inflammatory settings. Chronic inflammatory conditions in experimental autoimmune encephalomyelitis (EAE) caused a switch to alternative cytokines in TH17 cells, whereas acute cutaneous infection with Candida albicans did not result in the deviation of TH17 cells to the production of alternative cytokines, although IL-17A production was shut off in the course of the infection. During the development of EAE, interferon-γ (IFN-γ) and other proinflammatory cytokines in the spinal cord were produced almost exclusively by cells that had produced IL-17 before their conversion by IL-23 ('ex-TH17 cells'). Thus, this model allows the actual functional fate of effector T cells to be related to TH17 developmental origin regardless of IL-17 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of fate-reporter eYFP+ cells among IL-17-producing cells.
Figure 2: Kinetics of eYFP and IL-17A expression during EAE induction.
Figure 3: IFN-γ expression and antigen specificity in eYFP+ and eYFP CD4+ T cells.
Figure 4: Cytokine expression in eYFP+ and eYFP CD4+ T cells in draining lymph nodes and spinal cord.
Figure 5: Transcriptional changes in eYFP+ CD4+ T cells.
Figure 6: IL-23 signaling is required for acquisition of the eYFP+ IFN-γ+ profile.
Figure 7: T-bet expression is curtailed in the absence of IL-23.
Figure 8: Cutaneous infection with C. albicans.

Similar content being viewed by others

References

  1. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  2. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  3. Veldhoen, M. et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  4. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  5. Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  CAS  Google Scholar 

  6. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  Google Scholar 

  7. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    Article  CAS  Google Scholar 

  8. Lee, Y.K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  Google Scholar 

  9. Martin-Orozco, N. et al. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    Article  CAS  Google Scholar 

  10. Shi, G. et al. Phenotype switching by inflammation-inducing polarized Th17 cells, but not by Th1 cells. J. Immunol. 181, 7205–7213 (2008).

    Article  CAS  Google Scholar 

  11. Bettelli, E. & Kuchroo, V.K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med. 201, 169–171 (2005).

    Article  CAS  Google Scholar 

  12. Lexberg, M.H. et al. Th memory for interleukin-17 expression is stable in vivo. Eur. J. Immunol. 38, 2654–2664 (2008).

    Article  CAS  Google Scholar 

  13. Hirota, K., Martin, B. & Veldhoen, M. Development, regulation and functional capacities of Th17 cells. Semin. Immunopathol. 32, 3–16 (2010).

    Article  CAS  Google Scholar 

  14. Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  15. Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205, 799–810 (2008).

    Article  CAS  Google Scholar 

  16. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    Article  CAS  Google Scholar 

  17. McGeachy, M.J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    Article  CAS  Google Scholar 

  18. Zhou, L., Chong, M.M. & Littman, D.R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  Google Scholar 

  19. de Beaucoudrey, L. et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205, 1543–1550 (2008).

    Article  CAS  Google Scholar 

  20. Milner, J.D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  Google Scholar 

  21. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  Google Scholar 

  22. O′Shea, J.J. & Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  Google Scholar 

  23. Murphy, K.M. & Stockinger, B. Effector T cell plasticity: flexibility in the fact of changing circumstances. Nat. Immunol. 11, 674–680 (2010).

    Article  CAS  Google Scholar 

  24. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    Article  CAS  Google Scholar 

  25. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  Google Scholar 

  26. Croxford, A.L., Kurschus, F.C. & Waisman, A. Cutting edge: an IL-17F-CreEYFP reporter mouse allows fate mapping of Th17 cells. J. Immunol. 182, 1237–1241 (2009).

    Article  CAS  Google Scholar 

  27. Chang, S.H. & Dong, C. IL-17F: regulation, signaling and function in inflammation. Cytokine 46, 7–11 (2009).

    Article  CAS  Google Scholar 

  28. Ahern, P.P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).

    Article  CAS  Google Scholar 

  29. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  30. Ponomarev, E.D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178, 39–48 (2007).

    Article  CAS  Google Scholar 

  31. McQualter, J.L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882 (2001).

    Article  CAS  Google Scholar 

  32. Boniface, K. et al. Human Th17 cells comprise heterogeneous subsets including IFN-γ-producing cells with distinct properties from the Th1 lineage. J. Immunol. 185, 679–687 (2010).

    Article  CAS  Google Scholar 

  33. Stevens, E.A., Mezrich, J.D. & Bradfield, C.A. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127, 299–311 (2009).

    Article  CAS  Google Scholar 

  34. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  Google Scholar 

  35. Hegazy, A.N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    Article  CAS  Google Scholar 

  36. Bailey-Bucktrout, S.L. et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol. 180, 6457–6461 (2008).

    Article  CAS  Google Scholar 

  37. Isaksson, M. et al. Plasmacytoid DC promote priming of autoimmune Th17 cells and EAE. Eur. J. Immunol. 39, 2925–2935 (2009).

    Article  CAS  Google Scholar 

  38. Shinohara, M.L., Kim, J.H., Garcia, V.A. & Cantor, H. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29, 68–78 (2008).

    Article  CAS  Google Scholar 

  39. Axtell, R.C. et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).

    Article  CAS  Google Scholar 

  40. Stromnes, I.M. et al. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).

    Article  CAS  Google Scholar 

  41. Lees, J.R. et al. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med. 205, 2633–2642 (2008).

    Article  CAS  Google Scholar 

  42. Steinman, L. A rush to judgment on Th17. J. Exp. Med. 205, 1517–1522 (2008).

    Article  CAS  Google Scholar 

  43. O'Connor, R.A. et al. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 181, 3750–3754 (2008).

    Article  CAS  Google Scholar 

  44. McGeachy, M.J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  45. Suryani, S. & Sutton, I. An interferon-γ-producing Th1 subset is the major source of IL-17 in experimental autoimmune encephalitis. J. Neuroimmunol. 183, 96–103 (2007).

    Article  CAS  Google Scholar 

  46. McGeachy, M.J. & Cua, D.J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  Google Scholar 

  47. Michel, M.L. et al. Identification of an IL-17-producing NK1.1 iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  Google Scholar 

  48. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-beta signalling. Nature 467, 967–971 (2010).

    Article  CAS  Google Scholar 

  49. Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11, 83–89 (2010).

    Article  CAS  Google Scholar 

  50. Sutton, C. et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  Google Scholar 

  51. Shimshek, D.R. et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19–26 (2002).

    Article  CAS  Google Scholar 

  52. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-C. Renauld (Ludwig Institute for Cancer Research) for monoclonal antibody AM22.3; the Large Scale Facility of the Medical Research Council National Institute for Medical Research for growing C. albicans; G. Preece for cell sorting; and Biological Services (Medical Research Council National Institute for Medical Research) for breeding and maintenance of our mouse strains. Supported by the Medical Research Council UK (U117512792 to B.S. and U117563359 to A.J.P.) and the European Research Council (ref. 232782).

Author information

Authors and Affiliations

Authors

Contributions

K.H., J.H.D., H.A. and C.W. designed and did experiments; M.V., E.H., Y.L., M.T., U.M. and A.G. were involved in generating the construct, targeting embryonic stem cells and injections; D.J.C. provided IL-23p19-deficient mice; and A.J.P. and B.S. designed experiments and wrote the paper.

Corresponding authors

Correspondence to Alexandre J Potocnik or Brigitta Stockinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–2 and Supplementary Methods (PDF 2092 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirota, K., Duarte, J., Veldhoen, M. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12, 255–263 (2011). https://doi.org/10.1038/ni.1993

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing