Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages

Abstract

Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1α and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1α by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLRs activate the maturation of XBP1 mRNA in the absence of ER stress.
Figure 2: XBP1 activation requires proximal TLR signaling.
Figure 3: XBP1 is required for optimal TLR responses.
Figure 4: IRE1α activation acts in synergy with TLRs to augment cytokine production.
Figure 5: Recruitment of XBP1 to the Il6 and Tnf promoters.
Figure 6: XBP1 deficiency impairs resistance to infection with F. tularensis LVS.

Similar content being viewed by others

References

  1. Janeway, C.A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  2. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  Google Scholar 

  3. O'Neill, L.A.J. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  4. Ravasi, T., Wells, C.A. & Hume, D.A. Systems biology of transcription control in macrophages. Bioessays 29, 1215–1226 (2007).

    Article  CAS  Google Scholar 

  5. Roach, J.C. et al. Transcription factor expression in lipopolysaccharide-activated peripheral-blood-derived mononuclear cells. Proc. Natl. Acad. Sci. USA 104, 16245–16250 (2007).

    Article  CAS  Google Scholar 

  6. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  Google Scholar 

  7. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  Google Scholar 

  8. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  Google Scholar 

  9. Sansonetti, P.J. The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol. 7, 1237–1242 (2006).

    Article  CAS  Google Scholar 

  10. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  Google Scholar 

  11. Lin, J.H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    Article  CAS  Google Scholar 

  12. Nau, G.J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  Google Scholar 

  13. Blumenthal, A. et al. Common and unique gene expression signatures of human macrophages in response to four strains of Mycobacterium avium that differ in their growth and persistence characteristics. Infect. Immun. 73, 3330–3341 (2005).

    Article  CAS  Google Scholar 

  14. Schurr, J.R. et al. Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect. Immun. 73, 532–545 (2005).

    Article  CAS  Google Scholar 

  15. Goodall, J.C., Ellis, L., Yeo, G.S.H. & Gaston, J.S.H. Does HLA-B27 influence the monocyte inflammatory response to lipopolysaccharide? Rheumatology (Oxford) 46, 232–237 (2007).

    Article  CAS  Google Scholar 

  16. Endo, M., Oyadomari, S., Suga, M., Mori, M. & Gotoh, T. The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J. Biochem. 138, 501–507 (2005).

    Article  CAS  Google Scholar 

  17. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006).

    Article  CAS  Google Scholar 

  18. Ishiai, M. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15, 1138–1146 (2008).

    Article  CAS  Google Scholar 

  19. Sha, H. et al. The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab. 9, 556–564 (2009).

    Article  CAS  Google Scholar 

  20. Matsuzawa, A. et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol. 6, 587–592 (2005).

    Article  CAS  Google Scholar 

  21. Takeshita, F. et al. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur. J. Immunol. 35, 2477–2485 (2005).

    Article  CAS  Google Scholar 

  22. Ha, Y.J. & Lee, J.R. Role of TNF receptor-associated factor 3 in the CD40 signaling by production of reactive oxygen species through association with p40phox, a cytosolic subunit of nicotinamide adenine dinucleotide phosphate oxidase. J. Immunol. 172, 231–239 (2004).

    Article  CAS  Google Scholar 

  23. Grandvaux, N., Soucy-Faulkner, A. & Fink, K. Innate host defense: Nox and Duox on phox's tail. Biochimie 89, 1113–1122 (2007).

    Article  CAS  Google Scholar 

  24. Malhotra, J.D. & Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277–2293 (2007).

    Article  CAS  Google Scholar 

  25. Lee, A.-H., Scapa, E., Cohen, D. & Glimcher, L. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492 (2008).

    Article  CAS  Google Scholar 

  26. Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol. Cell 33, 679–691 (2009).

    Article  CAS  Google Scholar 

  27. Rick Lyons, C. & Wu, T.H. Animal models of Francisella tularensis infection. Ann. NY Acad. Sci. 1105, 238–265 (2007).

    Article  CAS  Google Scholar 

  28. Cole, L.E. et al. Immunologic consequences of Francisella tularensis live vaccine strain infection: role of the innate immune response in infection and immunity. J. Immunol. 176, 6888–6899 (2006).

    Article  CAS  Google Scholar 

  29. Katz, J., Zhang, P., Martin, M., Vogel, S.N. & Michalek, S.M. Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect. Immun. 74, 2809–2816 (2006).

    Article  CAS  Google Scholar 

  30. Cole, L.E et al. TLR2-mediated signaling requirements for Francisella tularensis LVS infection of murine macrophages. Infect. Immun. 75, 4127–4137 (2007).

    Article  CAS  Google Scholar 

  31. Elkins, K.L., Cowley, S.C. & Bosio, C.M. Innate and adaptive immunity to Francisella. Ann. NY Acad. Sci. 1105, 284–324 (2007).

    Article  CAS  Google Scholar 

  32. Malik, M. et al. Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis. Infect. Immun. 74, 3657–3662 (2006).

    Article  CAS  Google Scholar 

  33. Abplanalp, A.L., Morris, I.R., Parida, B.K., Teale, J.M. & Berton, M.T. TLR-dependent control of Francisella tularensis infection and host inflammatory responses. PLoS ONE 4, e7920 (2009).

    Article  Google Scholar 

  34. Elkins, K.L., Bosio, C.M. & Rhinehart-Jones, T.R. Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect. Immun. 67, 6002–6007 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, K. & Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    Article  CAS  Google Scholar 

  36. Hu, P., Han, Z., Couvillon, A.D., Kaufman, R.J. & Exton, J.H. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    Article  CAS  Google Scholar 

  37. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  Google Scholar 

  38. Xue, X. et al. Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα. J. Biol. Chem. 280, 33917–33925 (2005).

    Article  CAS  Google Scholar 

  39. Woo, C.W. et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat. Cell Biol. 11, 1473–1480 (2009).

    Article  CAS  Google Scholar 

  40. Negishi, H. et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA 102, 15989–15994 (2005).

    Article  CAS  Google Scholar 

  41. Honma, K. et al. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc. Natl. Acad. Sci. USA 102, 16001–16006 (2005).

    Article  CAS  Google Scholar 

  42. Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat. Immunol. 10, 437–443 (2009).

    Article  CAS  Google Scholar 

  43. Smith, J.A. et al. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-β induction via X-box binding protein 1. Eur. J. Immunol. 38, 1194–1203 (2008).

    Article  CAS  Google Scholar 

  44. Bischof, L.J. et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog. 4, e1000176 (2008).

    Article  Google Scholar 

  45. Schröder, M., Clark, R., Liu, C.Y. & Kaufman, R.J. The unfolded protein response represses differentiation through the RPD3–SIN3 histone deacetylase. EMBO J. 23, 2281–2292 (2004).

    Article  Google Scholar 

  46. Delay, M.L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  Google Scholar 

  47. Lin, J.H., Walter, P. & Yen, T.S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).

    Article  CAS  Google Scholar 

  48. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    Article  CAS  Google Scholar 

  49. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  Google Scholar 

  50. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  Google Scholar 

  51. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  52. Iwakoshi, N.N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4, 321–329 (2003).

    Article  CAS  Google Scholar 

  53. Bhoj, V.G. & Chen, Z.J. Linking retroelements to autoimmunity. Cell 134, 569–571 (2008).

    Article  CAS  Google Scholar 

  54. Summerton, J.E. Endo-Porter: a novel reagent for safe, effective delivery of substances into cells. Ann. NY Acad. Sci. 1058, 62–75 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Greenblatt, M. Wein, V. Lazarevic and C.Hetz for comments on the manuscript; D. Malhotra for assistance with the experiments in Figures 3 and 4; A. Bolm for technical assistance; G. Chu for analysis of liver histology, V. Lazarevic, I. Kramnik and R. Pollack for help with the F. tularensis aerosol set-up; S. Akira (Osaka University) and D. Goldstein (Yale University) for MyD88-deficient mice; R. Medzhitov (Yale University) for TIRAP-knockout mice; K. Mori (Kyoto University) for antibody to ATF6α (anti-ATF6α); J. Tschopp (University of Lausanne) for anti-pro-IL-1β; John Patterson (MannKind) for the active recombinant IRE1α fragment; and the Broad Institute for reagents. Supported by the National Institutes of Health (AI32412 and AI56296), the Ragon Institute of MGH, MIT and Harvard (L.H.G.), the American Heart Association (A.-H.L.), the Leukemia and Lymphoma Society (X.C.) and the Human Frontier Science Program (F.M.).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and L.H.G. designed the research; F.M. and X.C. did the experiments; A.-H.L. contributed critical reagents; F.M., X.C., A.-H.L. and L.H.G. analyzed the results; F.M. and X.C. made the figures; and F.M. and L.H.G wrote the paper.

Corresponding author

Correspondence to Laurie H Glimcher.

Ethics declarations

Competing interests

L.H.G. holds equity in and is on the corporate board of directors of Bristol-Myers Squibb.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–2 (PDF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinon, F., Chen, X., Lee, AH. et al. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11, 411–418 (2010). https://doi.org/10.1038/ni.1857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing