Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes

Abstract

To study the evolution of drug resistance, we genetically and biochemically characterized Mycobacterium tuberculosis strains selected in vitro for ethambutol resistance. Mutations in decaprenylphosphoryl-β-D-arabinose (DPA) biosynthetic and utilization pathway genes Rv3806c, Rv3792, embB and embC accumulated to produce a wide range of ethambutol minimal inhibitory concentrations (MICs) that depended on mutation type and number. Rv3806c mutations increased DPA synthesis, causing MICs to double from 2 to 4 μg/ml in a wild-type background and to increase from 16 to 32 μg/ml in an embB codon 306 mutant background. Synonymous mutations in Rv3792 increased the expression of downstream embC, an ethambutol target, resulting in MICs of 8 μg/ml. Multistep selection was required for high-level resistance. Mutations in embC or very high embC expression were observed at the highest resistance level. In clinical isolates, Rv3806c mutations were associated with high-level resistance and had multiplicative effects with embB mutations on MICs. Ethambutol resistance is acquired through the acquisition of mutations that interact in complex ways to produce a range of MICs, from those falling below breakpoint values to ones representing high-level resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequencies of spontaneous resistance to ethambutol.
Figure 2: Mutant strains and MICs generated during stepwise selection for ethambutol resistance.
Figure 3: Relative competitive reductions in fitness for isogenic embB, Rv3806c and/or Rv3792 mutants and strain 4C31-16C1-24C1.
Figure 4: Role of Rv3806c in ethambutol resistance.
Figure 5: Effect of Rv3792 synonymous mutations on Rv3792 and embC mRNA levels.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Zignol, M. et al. Global incidence of multidrug-resistant tuberculosis. J. Infect. Dis. 194, 479–485 (2006).

    Article  Google Scholar 

  2. Sharma, S.K. & Mohan, A. Multidrug-resistant tuberculosis: a menace that threatens to destabilize tuberculosis control. Chest 130, 261–272 (2006).

    Article  CAS  Google Scholar 

  3. Ramaswamy, S. & Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis. 79, 3–29 (1998).

    Article  CAS  Google Scholar 

  4. Riska, P.F., Jacobs, W.R. & Alland, D. Molecular determinants of drug resistance in tuberculosis. Int. J. Tuberc. Lung Dis. 4, S4–S10 (2000).

    CAS  PubMed  Google Scholar 

  5. Telenti, A. et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3, 567–570 (1997).

    Article  CAS  Google Scholar 

  6. Takiff, H.E. et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother. 38, 773–780 (1994).

    Article  CAS  Google Scholar 

  7. Safi, H., Sayers, B., Hazbon, M.H. & Alland, D. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob. Agents Chemother. 52, 2027–2034 (2008).

    Article  CAS  Google Scholar 

  8. Safi, H. et al. Allelic exchange and mutant selection demonstrate that common clinical embCAB gene mutations only modestly increase resistance to ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 54, 103–108 (2010).

    Article  CAS  Google Scholar 

  9. Ramaswamy, S.V. et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44, 326–336 (2000).

    Article  CAS  Google Scholar 

  10. Plinke, C. et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother. 65, 1359–1367 (2010).

    Article  CAS  Google Scholar 

  11. Alderwick, L.J., Seidel, M., Sahm, H., Besra, G.S. & Eggeling, L. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 281, 15653–15661 (2006).

    Article  CAS  Google Scholar 

  12. Alderwick, L.J. et al. The C-terminal domain of the arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. PLoS Pathog. 7, e1001299 (2011).

    Article  CAS  Google Scholar 

  13. Mikusová, K. et al. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol. 187, 8020–8025 (2005).

    Article  Google Scholar 

  14. Mokrousov, I., Otten, T., Vyshnevskiy, B. & Narvskaya, O. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from northwestern Russia: implications for genotypic resistance testing. J. Clin. Microbiol. 40, 3810–3813 (2002).

    Article  CAS  Google Scholar 

  15. Huang, H. et al. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-α-D-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-D-arabinose synthesis. J. Biol. Chem. 280, 24539–24543 (2005).

    Article  CAS  Google Scholar 

  16. Huang, H. et al. Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis. Microbiology 154, 736–743 (2008).

    Article  CAS  Google Scholar 

  17. Vincent, V. et al. The TDR Tuberculosis Strain Bank: a resource for basic science, tool development and diagnostic services. Int. J. Tuberc. Lung Dis. 16, 24–31 (2012).

    Article  CAS  Google Scholar 

  18. Starks, A.M., Gumusboga, A., Plikaytis, B.B., Shinnick, T.M. & Posey, J.E. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 53, 1061–1066 (2009).

    Article  CAS  Google Scholar 

  19. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2012).

    Article  CAS  Google Scholar 

  20. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  CAS  Google Scholar 

  21. Lee, R.E., Mikusova, K., Brennan, P.J. & Besra, G.S. Synthesis of the arabinose donor. β-D-arabinofuranosyl-1-monophosphoryldecaprenol, development of a basic arabinosyl-transferase assay, and identification of ethambutol as an arabinosyl transferase inhibitor. J. Am. Chem. Soc. 117, 11829–11832 (1995).

    Article  CAS  Google Scholar 

  22. Goude, R., Amin, A.G., Chatterjee, D. & Parish, T. The Arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 53, 4138–4146 (2009).

    Article  CAS  Google Scholar 

  23. Wolucka, B.A., McNeil, M.R., de Hoffmann, E., Chojnacki, T. & Brennan, P.J. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269, 23328–23335 (1994).

    CAS  PubMed  Google Scholar 

  24. Wolucka, B.A. Biosynthesis of D-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J. 275, 2691–2711 (2008).

    Article  CAS  Google Scholar 

  25. dos Reis, M., Wernisch, L. & Savva, R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res. 31, 6976–6985 (2003).

    Article  CAS  Google Scholar 

  26. Higgs, P.G. & Ran, W. Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol. Biol. Evol. 25, 2279–2291 (2008).

    Article  CAS  Google Scholar 

  27. Kudla, G., Murray, A.W., Tollervey, D. & Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  Google Scholar 

  28. Goude, R., Amin, A.G., Chatterjee, D. & Parish, T. The critical role of embC in Mycobacterium tuberculosis. J. Bacteriol. 190, 4335–4341 (2008).

    Article  CAS  Google Scholar 

  29. Escuyer, V.E. et al. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem. 276, 48854–48862 (2001).

    Article  CAS  Google Scholar 

  30. Ohno, H., Koga, H., Kohno, S., Tashiro, T. & Hara, K. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob. Agents Chemother. 40, 1053–1056 (1996).

    Article  CAS  Google Scholar 

  31. Hwang, H.-Y. et al. Characterization of rifampicin-resistant Mycobacterium tuberculosis in Taiwan. J. Med. Microbiol. 52, 239–245 (2003).

    Article  CAS  Google Scholar 

  32. Kim, S.-Y. et al. Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea. Diagn. Microbiol. Infect. Dis. 47, 497–502 (2003).

    Article  CAS  Google Scholar 

  33. Safi, H. et al. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol. Microbiol. 52, 999–1012 (2004).

    Article  CAS  Google Scholar 

  34. van Embden, J.D. et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol. 31, 406–409 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Colangeli, R. et al. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-kike protein Lsr2 in M. tuberculosis. PLoS Pathog. 3, e87 (2007).

    Article  Google Scholar 

  36. Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet. 45, 172–179 (2013).

    Article  CAS  Google Scholar 

  37. Scherman, M.S. et al. Polyprenylphosphate-pentoses in Mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J. Biol. Chem. 271, 29652–29658 (1996).

    Article  CAS  Google Scholar 

  38. Shui, G., Bendt, A.K., Pethe, K., Dick, T. & Wenk, M.R. Sensitive profiling of chemically diverse bioactive lipids. J. Lipid Res. 48, 1976–1984 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kuppasani for performing the direct Sanger sequencing. This work was supported in part by National Institute of Allergy and Infectious Diseases, US National Institutes of Health grants AI080653, AI065663 and AI037139 and by Pathogen Functional Genomics Resource Center contract N01-AI5447.

Author information

Authors and Affiliations

Authors

Contributions

H.S., S.L., A.A., M.J., M.M., S.N.P., D.C., R.F. and D.A. designed experiments. H.S., S.L., A.A. and M.J. performed experiments. H.S., A.A., M.H., M.M., S.N.P., D.C., R.F. and D.A. performed analysis of results. S.K., D.A. and H.S. performed statistical analysis. H.S., S.K., M.M., D.C., R.F. and D.A. wrote the manuscript.

Corresponding author

Correspondence to David Alland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safi, H., Lingaraju, S., Amin, A. et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 45, 1190–1197 (2013). https://doi.org/10.1038/ng.2743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2743

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology