Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD

Abstract

Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant α1-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lectins OS-9 and XTP3-B are ER-resident proteins.
Figure 2: The lumenal domain of SEL1L scaffolds Hrd1, OS-9 and XTP3-B.
Figure 3: OS-9 and XTP3-B are required for ERAD.
Figure 4: OS-9/XTP3-B interaction with Hrd1 is mediated through SEL1L.
Figure 5: XTP3-B and OS-9 interact with ER quality-control components.
Figure 6: Dependence of N-glycan recognition for XTP3-B–OS-9 interaction with ERAD components and substrate.
Figure 7: Model for coordinating lumenal surveillance with ubiquitination in mammalian ERAD.

Similar content being viewed by others

References

  1. Hammond, C. & Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7, 523–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, H. & Kopito, R. R. The role of multiubiquitination in dislocation and degradation of the α subunit of the T cell antigen receptor. J. Biol. Chem. 274, 36852–36858 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Shamu, C. E., Flierman, D., Ploegh, H. L., Rapoport, T. A. & Chau, V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol. Biol. Cell 12, 2546–2555. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Denic, V., Quan, E. M. & Weissman, J. S. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126, 349–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nature Cell Biol. 7, 999–1006 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nature Cell Biol. 7, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lilley, B. N. & Ploegh, H. L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 102, 14296–14301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schulze, A. et al. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol. 354, 1021–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hebert, D. N., Garman, S. C. & Molinari, M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Molinari, M., Calanca, V., Galli, C., Lucca, P. & Paganetti, P. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science. 299, 1397–1400 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Oda, Y., Hosokawa, N., Wada, I. & Nagata, K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science. 299, 1394–1397 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, W., Spear, E. D. & Ng, D. T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Buschhorn, B. A., Kostova, Z., Medicherla, B. & Wolf, D. H. A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett. 577, 422–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gauss, R., Jarosch, E., Sommer, T. & Hirsch, C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nature Cell Biol. 8, 849–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Cruciat, C. M., Hassler, C. & Niehrs, C. The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. J. Biol. Chem. 281, 12986–12993 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Su, Y. A., Hutter, C. M., Trent, J. M. & Meltzer, P. S. Complete sequence analysis of a gene (OS-9) ubiquitously expressed in human tissues and amplified in sarcomas. Mol. Carcinog. 15, 270–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Kimura, Y., Nakazawa, M. & Yamada, M. Cloning and characterization of three isoforms of OS-9 cDNA and expression of the OS-9 gene in various human tumor cell lines. J. Biochem. (Tokyo) 123, 876–882 (1998).

    Article  CAS  Google Scholar 

  25. Nakayama, T., Yaoi, T., Kuwajima, G., Yoshie, O. & Sakata, T. Ca2+-dependent interaction of N-copine, a member of the two C2 domain protein family, with OS-9, the product of a gene frequently amplified in osteosarcoma. FEBS Lett. 453, 77–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Litovchick, L., Friedmann, E. & Shaltiel, S. A selective interaction between OS-9 and the carboxyl-terminal tail of meprin beta. J. Biol. Chem. 277, 34413–34423 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Baek, J. H. et al. OS-9 interacts with hypoxia-inducible factor 1α and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1α. Mol. Cell 17, 503–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Mueller, B., Lilley, B. N. & Ploegh, H. L. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J. Cell Biol. 175, 261–270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grant, B. & Greenwald, I. The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics 143, 237–247 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirao, K. et al. EDEM3, a soluble EDEM homolog, enhances glycoprotein ERAD and mannose trimming. J. Biol. Chem. 281, 9650–9658 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Oda, Y. et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 172, 383–393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Virgilio, M., Weninger, H. & Ivessa, N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem. 273, 9734–9743 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, H., Kaung, G., Kobayashi, S. & Kopito, R. R. Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J. Biol. Chem. 272, 20800–20804 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Huppa, J. B. & Ploegh, H. L. The α chain of the T cell antigen receptor is degraded in the cytosol. Immunity 7, 113–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, S. M. et al. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc. Chem. Res. 38, 911–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Sekijima, Y. et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 121, 73–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154, 267–273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Y. et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26, 215–226 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Randow, F. & Seed, B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nature Cell Biol. 3, 891–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Pearl, L. H. & Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Gardner, R.G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kislinger, T. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Yuan, B., Latek, R., Hossbach, M., Tuschl, T. & Lewitter, F. siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 32, W130–W134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. DeLaBarre, B., Christianson, J. C., Kopito, R. R. & Brunger, A. T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Christianson, J. C. & Green, W. N. Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J. 23, 4156–4165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ward, C. L. & Kopito, R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25710–25718 (1994).

    CAS  PubMed  Google Scholar 

  48. Stephens, S., Dodd, R., Lerner, R., Pyhtila, B. & Nicchitta, C. Analysis of mRNA Partitioning Between the Cytosol and Endoplasmic Reticulum Compartments of Mammalian Cells. in Post-transcriptional gene regulation. Methods in Molecular Biology, Vol. 419. (ed. J. Wilusz), 197–214 (Humana Press, Totowa, NJ, 2007).

    Google Scholar 

  49. Hosokawa, N., You, Z., Tremblay, L. O., Nagata, K. & Herscovics, A. Stimulation of ERAD of misfolded null Hong Kong α1-antitrypsin by Golgi α2-mannosidases. Biochem. Biophys. Res. Commun. 362, 626–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, Y., Choudhury, P., Cabral, C. M. & Sifers, R. N. Oligosaccharide modifications in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteosome. J. Biol. Chem. 274, 5861–5867 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Weissman, I. Biunno, V. Chau, C. Nicchitta, H. Ploegh, G. Semenza, J. Kelly and E. Wiertz for reagents and technical advice, members of the Kopito lab for helpful discussion, and S. Duttler and J. Olzmann for critical reading of the manuscript. This work was supported by grants from NIDDK, NIGMS, and the Cystic Fibrosis Foundation. JCC was supported by a postdoctoral fellowship from Cystic Fibrosis Research, Inc.

Author information

Authors and Affiliations

Authors

Contributions

J. C. C. performed all experiments and data analysis, with the exception of Table 1 and Supplementary Information, Fig. 4, which were carried out by T. A. S. and R. E. M.; J. C. C. and R. R. K. wrote the manuscript.

Corresponding author

Correspondence to Ron R. Kopito.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and table S1 (PDF 606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christianson, J., Shaler, T., Tyler, R. et al. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10, 272–282 (2008). https://doi.org/10.1038/ncb1689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing