Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells

Abstract

The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-κB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IκBα degradation and activation of the NF-κB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IκB accumulates in the cytoplasm preventing NF-κB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-κB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain-specific response to TLR ligands in polarized IECs.
Figure 2: Polarized IECs response to TLR9 ligand and surface expression of TLR9 in IECs.
Figure 3: Chloroquine treatment augments, rather than inhibits TLR9 signalling in IECs.
Figure 4: Unique TLR9 signalling in polarized IECs.
Figure 5: Distinct sets of genes are activated by apical TLR9.
Figure 6: Apical TLR9 stimulation aborts subsequent TLR signalling from the basolateral IEC domain.
Figure 7: TLR9 signalling provides protection against colonic injury.

Similar content being viewed by others

References

  1. Kazmierczak, B.I., Mostov, K. & Engel, J.N. Interaction of bacterial pathogens with polarized epithelium. Annu. Rev. Microbiol. 55, 407–435 (2001).

    Article  CAS  Google Scholar 

  2. Naidu, A.S., Bidlack, W.R. & Clemens, R.A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39, 13–126 (1999).

    Article  CAS  Google Scholar 

  3. Bantel, H., Schmitz, M.L., Raible, A., Gregor, M. & Schulze-Osthoff, K. Critical role of NF-κB and stress-activated protein kinases in steroid unresponsiveness. FASEB. J. 16, 1832–1834 (2002).

    Article  CAS  Google Scholar 

  4. Rachmilewitz, D. et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126, 520–528 (2004).

    Article  CAS  Google Scholar 

  5. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  Google Scholar 

  6. Rachmilewitz, D. et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 122, 1428–1441 (2002).

    Article  CAS  Google Scholar 

  7. Fukata, M. et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1055–G1065 (2005).

    Article  CAS  Google Scholar 

  8. Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702 (2005).

    Article  CAS  Google Scholar 

  9. Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    Article  CAS  Google Scholar 

  10. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  11. Cario, E. et al. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 160, 165–173 (2002).

    Article  CAS  Google Scholar 

  12. Ortega-Cava, C.F. et al. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J. Immunol. 170, 3977–3985 (2003).

    Article  CAS  Google Scholar 

  13. Gewirtz, A.T. Navas,T.A., Lyons, S., Godowski,P.J. & Madara, J.L. Cutting edge: bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  Google Scholar 

  14. Akhtar, M., Watson, J.L., Nazli, A. & McKay, D.M. Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-κB-independent pathway. FASEB J. 17, 1319–1321 (2003).

    Article  CAS  Google Scholar 

  15. Otte, J.M., Cario, E. & Podolsky, D.K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126, 1054–1070 (2004).

    Article  CAS  Google Scholar 

  16. Pedersen, G., Andresen, L., Matthiessen, M.W., Rask-Madsen, J. & Brynskov, J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol. 141, 298–306 (2005).

    Article  CAS  Google Scholar 

  17. Katz, K.D. et al. Intestinal permeability in patients with Crohn's disease and their healthy relatives. Gastroenterology 97, 927–931 (1989).

    Article  CAS  Google Scholar 

  18. Sandle, G.I. et al. Cellular basis for defective electrolyte transport in inflamed human colon. Gastroenterology 99, 97–105 (1990).

    Article  CAS  Google Scholar 

  19. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol. 5, 190–198 (2004).

    Article  CAS  Google Scholar 

  20. Leifer, C.A. et al. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol. 173, 1179–1183 (2004).

    Article  CAS  Google Scholar 

  21. Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    Article  CAS  Google Scholar 

  22. Cohen, S., Achbert-Weiner, H. & Ciechanover, A. Dual effects of IκB kinase β-mediated phosphorylation on p105 Fate: SCF(β-TrCP)-dependent degradation and SCF(β-TrCP)-independent processing. Mol. Cell. Biol. 24, 475–486 (2004).

    Article  CAS  Google Scholar 

  23. Beinke, S., Robinson, M.J., Hugunin, M. & Ley, S.C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol. 24, 9658–9667 (2004).

    Article  CAS  Google Scholar 

  24. Waterfield, M.R., Zhang, M., Norman, L.P. & Sun, S.C. NF-κB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol. Cell 11, 685–694 (2003).

    Article  CAS  Google Scholar 

  25. van Es, J.H. et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biol. 7, 381–386 (2005).

    Article  CAS  Google Scholar 

  26. Cooper, H.S., Murthy S.N., Shah, R.S. & Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69, 238–249 (1993).

    CAS  PubMed  Google Scholar 

  27. Marrero, J.A., Matkowskyj, K.A., Yung, K., Hecht, G. & Benya, R.V. Dextran sulfate sodium-induced murine colitis activates NF-κB and increases galanin-1 receptor expression. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G797–G804 (2000).

    Article  CAS  Google Scholar 

  28. Rhee, S.H. et al. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Nat Acad. Sci. USA 102, 13610–13615 (2005).

    Article  CAS  Google Scholar 

  29. Schmausser, B. et al. Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin. Exp. Immunol. 136, 521–526 (2004).

    Article  CAS  Google Scholar 

  30. Blitzer, J.T. & Nusse, R. A critical role for endocytosis in Wnt signaling. BMC. Cell Biol. 7, 28 (2006).

    Article  Google Scholar 

  31. Van, I.S.C., Maier, O., Van Der Wouden, J.M. & Hoekstra, D. The subapical compartment and its role in intracellular trafficking and cell polarity. J. Cell Physiol. 184, 151–160 (2000).

    Article  Google Scholar 

  32. Farquhar, M.G. & Palade, G.E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Article  CAS  Google Scholar 

  33. Beinke, S. et al. NF-κB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell Biol. 23, 4739–4752 (2003).

    Article  CAS  Google Scholar 

  34. Shang, F. et al. Lys6-modified ubiquitin inhibits ubiquitin-dependent protein degradation. J. Biol. Chem. 280, 20365–20374 (2005).

    Article  CAS  Google Scholar 

  35. Neish, A.S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκBα ubiquitination. Science 289, 1560–1563 (2000).

    Article  CAS  Google Scholar 

  36. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol. 5, 104–112 (2004).

    Article  CAS  Google Scholar 

  37. Campbell, A. Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48, 193–222 (1994).

    Article  CAS  Google Scholar 

  38. Parma, D.H. et al. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev. 6, 497–510 (1992).

    Article  CAS  Google Scholar 

  39. Bonev, M.N., Kozubek, S., Krasavin, E.A. & Amirtajev, K.G. λ-prophage induction in repair-deficient and wild type E. coli strains by γ-rays and heavy ions. Int. J. Radiat. Biol. 57, 993–1005 (1990).

    Article  CAS  Google Scholar 

  40. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA 100, 6646–6651 (2003).

    Article  CAS  Google Scholar 

  41. Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  Google Scholar 

  42. Dwinell, M.B., Eckmann, L., Leopard, J.D., Varki, N.M. & Kagnoff, M.F. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 117, 359–367 (1999).

    Article  CAS  Google Scholar 

  43. Lee, J., Mira-Arbibe, L. & Ulevitch, R.J. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J. Leukoc. Biol. 68, 909–915 (2000).

    CAS  PubMed  Google Scholar 

  44. O'Neil, D.A. et al. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163, 6718–6724 (1999).

    CAS  PubMed  Google Scholar 

  45. Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol 4, R9 (2003).

    Article  Google Scholar 

  46. Barczak, A. et al. Spotted long oligonucleotide arrays for human gene expression anasis. Genome Res 13, 1775–1785 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Lee, J. Carmen, N. Varki, L. She, C. Yoon and M. Chung for technical assistance, S. Akira for TLR-null mice, and L. Beck and H. Cottam for critical reading of the manuscript. We also would like to thank B. Brinkman for his assistance in confocal imaging (UCSD Neuroscience Microscopy Shared Facility, NINDS grant P30 NS047101). This work is supported by National Institutes of Health (NIH) grants AI57709, DK35108 and AI40682 (E.R.), AI56075 and RR17030 (L.E.) European Commission (Program 6) Network of Excellence RUBICON and Israel Science Foundation-Centers of Excellence Program (Y.B.-N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jongdae Lee, Yinon Ben-Neriah or Eyal Raz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, Supplementary tables S1 and S2 (PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Mo, JH., Katakura, K. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8, 1327–1336 (2006). https://doi.org/10.1038/ncb1500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing