Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of companion diagnostics in the development and use of mutation-targeted cancer therapies

Abstract

Among all the known differences between cancer and normal cells, it is only the genetic differences that unequivocally distinguish the former from the latter. It is therefore not surprising that recent therapeutic advances are based on agents that specifically target the products of the genes that are mutated in cancer cells. The ability to identify the patients most likely to benefit from such therapies is a natural outgrowth of these discoveries. Development of companion diagnostic tests for this identification is proceeding but should receive much more attention than it currently does. These tests can simplify the drug discovery process, make clinical trials more efficient and informative, and be used to individualize the therapy of cancer patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential targets and mechanisms of action of mutation-targeted drugs.

Kim Caesar

Figure 2: Uses and advantages of companion diagnostics in drug development and patient management.

Kim Caesar

Similar content being viewed by others

References

  1. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. O'Brien, S.G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Goldman, J.M. & Melo, J.V. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451–1464 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hughes, T.P. et al. for the International Randomised Study of Interferon versus STI571 (IRIS) Study Group. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Druker, B.J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001). (Published erratum appears in N. Engl. J. Med. 345, 232 (2001).)

    Article  CAS  PubMed  Google Scholar 

  6. Kantarjian, H. et al. for the international ST571 CML study group. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Talpaz, M. et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99, 1928–1937 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sawyers, C.L. et al. Imatinib induce hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99, 3530–3539 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kantarjian, H.M. et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood 99, 3547–3553 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Ottmann, O.G. et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100, 1965–1971 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Gabert, J. et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer Program. Leukemia 17, 2318–2357 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Rosti, G. et al. for the Study and Writing Committee of the Italian Cooperative Study Group (ICSG) on Chronic Myeloid Leukemia. Molecular response to imatinib in late chronic-phase chronic myeloid leukemia. Blood 103, 2284–2290 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Martinelli, G. et al. Prediction of response to imatinib by prospective quantitation of BCR-ABL transcript in late chronic phase chronic myeloid leukemia patients. Ann. Oncol. 17, 495–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, L., Knight, K., Lucas, C. & Clark, R.E. The role of serial BCR-ABL transcript monitoring in predicting the emergence of BCR-ABL kinase mutations in imatinib-treated patients with chronic myeloid leukemia. Haematologica 91, 235–239 (2006).

    CAS  PubMed  Google Scholar 

  15. Kang, H.Y. et al. Comparison of allele specific oligonucleotide-polymerase chain reaction and direct sequencing for high throughput screening of ABL kinase domain mutations in chronic myeloid leukemia resistant to imatininb. Haematologica 91, 659–662 (2006).

    CAS  PubMed  Google Scholar 

  16. Iacobucci, I. et al. Comparison between patients with philadelphia-positive chronic phase chronic myeloid leukemia who obtained a complete cytogenetic response within 1 year of imatinib therapy and those who achieved such a response after 12 months of treatment. J. Clin. Oncol. 24, 454–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Yanada, M. et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL–positive acute lymphoblastic leukemia: A Phase II Study by the Japan Adult Leukemia Study Group. J. Clin. Oncol. 24, 460–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Rea, D. et al. on behalf of the Intergroupe Français des Leucémies Myéloïdes CHronique (FI ϕLMC) and of the Group for Research in Adult Lymphoblastic Leukemia (GRAALL). High-dose imatinib mesylate combined with vincristine and dexamethasone (DIV regimen) as induction therapy in patients with resistant Philadelphia-positive acute lymphoblastic leukemia and lymphoid blast crisis of chronic myeloid leukemia. Leukemia 20, 400–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wassmann, B. et al. Alternative versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Blood, advance online publication 25 April 2006 (doi 10.1182/blood-2005-11-4386).

  20. Demetri, G.D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. van Oosterom, A.T. et al. European organisation for research and treatment of cancer soft tissue and bone sarcoma group. safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358, 1421–1423 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Diebiec-Rychter, M. et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC soft tissue and bone sarcoma group. Eur. J. Cancer 40, 689–695 (2004).

    Article  CAS  Google Scholar 

  23. Singer, S. et al. Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J. Clin. Oncol. 20, 3898–3905 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Barthe, C., Cony-Makhoul, P., Melo, J.V. & Mahon, J.R. Roots of clinical resistance to STI-571 cancer therapy. Science 293, 2163 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann, W.K. et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood 99, 1860–1862 (2002).

    Article  PubMed  Google Scholar 

  26. von Bubnoff, N., Schneller, F., Peschel, C. & Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359, 487–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Shah, N.P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hochhaus, A. et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16, 2190–2196 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Branford, S. et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102, 276–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Burgess, M.R., Skaggs, B.J., Shah, N.P., Lee, F.Y. & Sawyers, C.L. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc. Natl. Acad. Sci. USA 102, 3395–3400 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lomabardo, L.J. et al. Discovery of N-(2-chloro-6-methyl-phanul)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661 (2004).

    Article  CAS  Google Scholar 

  33. Weisberg, E. et al. Characterization of AMN107, a selective inhbitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Komarova, N.L. & Wodarz, D. Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102, 9714–9719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA 102, 16368–16373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactions. Nature 437, 376–380 (2005). (Published corrigendum appears in Nature 441, 120 (2006).)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Li, M., Diehl, F., Dressman, D., Vogelstein, B. & Kinzler, K. BEAMing up for detection and quandification or rare sequence variants. Nat. Methods 3, 95–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Torsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  40. Slamon, D.J. et al. Concurrent administration of anti-HER2 monoclonal antibody and first-line chemotherapy for HER2-overexpressing metastatic breast cancer. A phase III, multinational, randomized controlled trial. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Piccart-Gebhart, M.J. et al. for the Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Romond, H.E. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Papaldo, P. et al. A phase II study on metastatic breast cancer patients treated with weekly vinorelbine with or without trastuzumab according to HER2 expression: changing the natural history of HER2-positive disease. Ann. Oncol. 17, 630–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Joensuu, H. et al. The FinHer Study Investigators. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med. 354, 809–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Tubbs, R.R. et al. Discrepancies in clinical laboratory testing of eligibility for trastuzumab therapy: apparent immunohistochemical false-positives do not get the message. J. Clin. Oncol. 19, 2714–2721 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Press, M.F. et al. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J. Clin. Oncol. 20, 3095–3105 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Willmore, C., Holden, J.A. & Layfield, L.J. Correlation of HER2 gene amplification with immunohistochemistry in breast cancer as determined by a novel monoplex polymerase chain reaction assay. Appl. Immunohistochem. Mol. Morphol. 13, 333–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Hicks, D.G. & Tubbs, R.R. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol. 36, 250–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Isola, J. et al. Interlaboratory comparison of HER-2 oncogene amplification as detected by chromogenic and fluorescence in situ hybridization. Clin. Cancer Res. 10, 4793–4798 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hanna, W.M. & Kwok, K. Chromogenic in-situ hybridization: a viable alterative to fluorescence in-situ hybridization in the HER2 testing algorithm. Mod. Pathol. 19, 481–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Tangrea, M.A. et al. Expression microdissection: operator-independent retrieval of cells for molecular profiling. Diagn. Mol. Pathol. 13, 207–212 (2004).

    Article  PubMed  Google Scholar 

  52. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Saltz, L.B. et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 22, 1201–1208 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Vincenzi, B., Santini, D. & Tonini, G. Lack of response of cetuximab plus oxaliplatin in advanced colorectal cancer patients resistant to both oxaliplatin and cetuximab plus irinotecan. Ann. Oncol. 17, 527–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Moroni, M. et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 6, 279–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Lièvre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colortectal cancer. Cancer Res. 66, 3992–3995 (2006).

    Article  PubMed  Google Scholar 

  57. Bonner, J.A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Barber, T.D., Vogelstein, B., Kinzler, K.W. & Velculescu, V.E. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N. Engl. J. Med. 351, 2883 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Gopal, A.K. & Press, O.W. Clinical applications of anti-CD20 antibodies. J. Lab. Clin. Med. 134, 445–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Jain, R.K., Duda, D.G., Clark, J.W. & Loeffler, J.S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. 3, 24–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Kris, M.G. et al. Efficacy of gefitinib, an ihibitor of epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. J. Am. Med. Assoc. 290, 2129–2158 (2003).

    Article  Google Scholar 

  62. Fukuoka, M., Kris, M.G., Baselga, J., Ochs, J.S. & Haber, D.A. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J. Clin. Oncol. 23, 8081–8092 (2005).

    Article  PubMed  Google Scholar 

  63. Shepherd, F.A. et al. The National Cancer Institute of Canada Clinical Trials Group. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Paez, J.G. et al. EGFR Mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Motzer, R.J., Hoosen, S., Bell, C.L. & Christensen, J.G. Sunitinib malate for the treatment of solid tumours: a review of current clinical data. Expert Opin. Investig. Drugs 15, 553–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Schõffski, P. et al. Emerging role of tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review. Annals of Oncology, published online 17 January 2006 (doi:10.1093/annonc/mdj133).

    Google Scholar 

  69. Torrance, C.J., Agrawal, V., Vogelstein, B. & Kinzler, K.W. Use of isogenic cancer cells for high-throughput screening and drug discovery. Nat. Biotechnol. 19, 940–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Weinstein, I.B. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Robert, F. et al. Phase I/IIa study of cetuximab with gemcitabine plus carboplatin in patients with chemotherapy-naïve advanced non-small-cell lung cancer. J. Clin. Oncol. 22, 9089–9096 (2006).

    Google Scholar 

  72. Thienelt, C.D. et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J. Clin. Oncol. 22, 8786–8793 (2005).

    Article  Google Scholar 

  73. Huang, S-F. et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin. Cancer Res. 10, 8195–8203 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Han, S-W. et al. Predicitve and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol. 11, 2493–2501 (2005).

    Article  CAS  Google Scholar 

  75. Mitsudomi, T. et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J. Clin. Oncol. 23, 2513–2520 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, K-S. et al. Predictors of the response to gefitinib in refractory non-small cell lung cancer. Clin. Cancer Res. 11, 2244–2251 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Tokumo, M. et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin. Cancer Res. 11, 1167–1173 (2005).

    CAS  PubMed  Google Scholar 

  78. Chou, T-Y. et al. Mutation in the tyrosine kinase domain of epidermal growth factor receptor is a predictive and prognostic factor for gefitinib treatment in patients with non-small cell lung cancer. Clin. Cancer Res. 11, 3750–3757 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Mu, X.L. et al. Gefitinib-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in Chinese patients with non-small cell lung cancer. Clin. Cancer Res. 11, 4289–4294 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Cortes-Funes, H. et al. On behalf of the Spanish Lung Cancer Group. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. Ann. Oncol. 16, 1081–1086 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Cappuzzo, F. et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. National Can. Inst. 97, 643–655 (2005).

    Article  CAS  Google Scholar 

  82. Takano, T. et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 23, 6829–6837 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Bell, D.W. et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib Trials. J. Clin. Oncol. 23, 8081–8092 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Reily, G.J. et al. Clinical course of patients with non-small cell lung cacner and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin. Cancer Res. 12, 839–844 (2006).

    Article  Google Scholar 

  85. Fujiwara, Y. et al. Relationship between epidermal growth factor receptor mutations and the severity of adverse events by gefetinib in patients with advanced non-small cell lung cancer. Lung Cancer 52, 99–103 (2006).

    Article  PubMed  Google Scholar 

  86. Shimato, S. et al. EGFR mutations in patients with brain metastases from lung cancer: association with the efficacy of gefetinib. Neuro-oncol. 8, 137–144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Han, S-W. et al. Optimization of patient selection for gefetinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin. Cancer Res. 12, 2538–2544 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Tsao, M-S. et al. Erlotinib in lung cancer–molecular and clinical predictors of outcome. N. Engl. J. Med. 353, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Eberhard, D.A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin.Oncol. 23, 5900–5909 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Nahta, R. et al. Herceptin: mechanisms of action and resistance. Can. Lett. 232, 123–128 (2006).

    Article  CAS  Google Scholar 

  91. Hynes, N.E. & Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Can. 5, 341–354 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolas Papadopoulos.

Ethics declarations

Competing interests

Under separate licensing agreements between the Johns Hopkins University and Genzyme Corporation, Exact Sciences Corporation, Agencourt Bioscience Corporation and Alteris Therapeutics, Inc., Kenneth W. Kinzler and Bert Vogelstein are entitled to a share of royalty received by the University on sales of products related to research described in this review. The authors and the University own Genzyme stock, which is subject to certain restrictions under University policy. K.W.K is a consultant to and receives research funding from Genzyme. N.K. consults ad hoc for EXACT Sciences Corporation. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, N., Kinzler, K. & Vogelstein, B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat Biotechnol 24, 985–995 (2006). https://doi.org/10.1038/nbt1234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing