Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Historical claims and current interpretations of replicative aging

Abstract

Replicative aging is the process by which most normal human cells “count” the number of times they have divided, eventually undergoing a growth arrest termed cellular senescence. This process is dependent on the shortening of telomeres, repeated sequences at the ends of the chromosomes. The loss of telomeric sequences with each cell division eventually induces a growth arrest that has a similar phenotype to that of cells stressed by inadequate culture or other conditions. Experiments over the past several years have identified species in which replicative aging does not occur and many examples in which a failure to proliferate has been misinterpreted as replicative senescence. Insights from these studies now permit a reevaluation of much of the seemingly contradictory data concerning replicative aging. There are good theoretical reasons for believing a limited proliferative capacity contributes to declining tissue homeostasis with increasing age. Although the presence of telomere shortening provides strong circumstantial evidence that replicative aging is occurring in vivo, thus far there is only very limited direct evidence for actual physiological effects of replicative aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: There are many signals that can activate cell cycle checkpoint factors that produce a growth arrest.

Similar content being viewed by others

References

  1. Kirkwood, T.B. The nature and causes of ageing. Ciba Found. Symp. 134, 193–207 (1988).

    CAS  PubMed  Google Scholar 

  2. Finch, C.E. Longevity, Senescence, and the Genome (University of Chicago Press, Chicago; 1990), p. 922.

    Google Scholar 

  3. Bucala, R. & Cerami, A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv. Pharmacol. 23, 1–34 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Vogelstein, B. & Kinzler, K.W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 5, 787–791 (1997).

    Article  Google Scholar 

  7. Oikawa, S. & Kawanishi, S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 453, 365–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Dernberg, A.F., Sedat, J.W., Cande, W.Z., & Bass, H.W. Cytology of telomeres. in Telomeres (eds Blackburn, E.H. & Greider, C.W.) 295–338 (Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY; 1995).

    Google Scholar 

  9. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl. Acad. Sci. USA 98, 10308–10313 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mattson, M.P. & Klapper, W. Emerging roles for telomerase in neuronal development and apoptosis. J. Neurosci. Res. 63, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Klapper, W., Heidorn, K., Kuhne, K., Parwaresch, R. & Krupp, G. Telomerase activity in 'immortal' fish. FEBS Lett. 434, 409–412 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Sherr, C.J. & DePinho, R.A. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wright, W.E. & Shay, J.W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med. 6, 849–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Wright, W.E. & Shay, J.W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev. 11, 98–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell, J.R., Wood, E., & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Mendrysa, S.M. & Perry, M.E. The p53 tumor suppressor protein does not regulate expression of its own inhibitor, MDM2, except under conditions of stress. Mol. Cell. Biol. 20, 2023–2230 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Harada, Y.N. et al. Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol. Cell Biol. 19, 2366–2372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Loo, D.T., Fuquay, J.I., Rawson, C.L. & Barnes, D.W. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236, 200–202 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, D.G., Tokumoto, Y.M., Apperly, J.A., Lloyd, A.C. & Raff, M.C. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291, 868–871 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Mathon, N.F., Malcolm, D.S., Harrisingh, M.C., Cheng, L. & Lloyd, A.C. Lack of replicative senescence in normal rodent glia. Science 291, 872–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Harley, C.B. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Robles, S.J. & Adami, G.R. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Severino, J., Allen, R.G., Balin, S., Balin, A. & Cristofalo, V.J. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Q. & Ames, B.N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl. Acad. Sci. USA 91, 4130–4134 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, J., Woods, D., McMahon, M. & Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dimri, G.P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drayton, S. & Peters, G. Immortalisation and transformation revisited. Curr. Opin. Genet. Dev. 12, 98–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Shay, J.W. & Wright, W.E. Aging. When do telomeres matter? Science 291, 839–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Steinert, S., White, D.M., Zou, Y., Shay, J.W. & Wright, W.E. Telomere biology and cellular aging in nonhuman primate cells. Exp. Cell. Res. 272, 146–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, M., Yang, L. & Hornsby, P.J. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat. Biotechnol. 18, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Rubin, H. Cell aging in vivo and in vitro. Mech. Ageing Dev. 98, 1–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Rubin, H. Telomerase and cellular lifespan: ending the debate? Nat. Biotechnol. 16, 396–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Rubin, H. The relation between lifespan of a species and the number of doublings of its cells in culture is an unresolved issue. Mech. Ageing Dev. 100, 209–210 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Rubin, H. Multistage carcinogenesis in cell culture. Dev. Biol. 106, 61–66 (2001).

    CAS  Google Scholar 

  44. Romanov, S.R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Jarrard, D.F. et al. p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59, 2957–2964 (1999).

    CAS  PubMed  Google Scholar 

  47. Dickson, M.A. et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)- enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell Biol. 20, 1436–1447 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Farwell, D.G. et al. Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. Am. J. Pathol. 156, 1537–1547 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramirez, R.D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saito, H., Hammond, A.T. & Moses, R.E. The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp. Cell. Res. 217, 272–279 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Packer, L. & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423–425 (1977).

    Article  CAS  PubMed  Google Scholar 

  52. Atamna, H., Paler-Martinez, A. & Ames, B.N. N-t-butyl hydroxylamine, a hydrolysis product of α-phenyl-N-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J. Biol. Chem. 275, 6741–6748 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Cristofalo, V.J. Thymidine labelling index as a criterion of aging in vitro. Gerontology 22, 9–27 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Taylor, W.G., Richter, A., Evans, V.J. & Sanford, K.K. Influence of oxygen and pH on plating efficiency and colony development of WI-38 and Vero cells. Exp. Cell. Res. 86, 152–156 (1974).

    Article  CAS  PubMed  Google Scholar 

  55. McKeehan, W.L. & Ham, R.G. Methods for reducing the serum requirement for growth in vitro of nontransformed diploid fibroblasts. Dev. Biol. Stand. 37, 97–98 (1976).

    CAS  PubMed  Google Scholar 

  56. Wolf, N.S. & Pendergrass, W.R. The relationships of animal age and caloric intake to cellular replication in vivo and in vitro: a review. J. Gerontol. A Biol. Sci. Med. Sci. 54, B502–B517 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Schultz, E. & Lipton, B.H. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech. Ageing Dev. 20, 377–383 (1982).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, J.R. & Hayflick, L. Variation in the life-span of clones derived from human diploid cell strains. J. Cell. Biol. 62, 48–53 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith, J.R. & Whitney, R.G. Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207, 82–84 (1980).

    Article  CAS  PubMed  Google Scholar 

  60. Martin, G.M., Sprague, C.A., Norwood, T.H. & Pendergrass, W.R. Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia. Am. J. Pathol. 74, 137–154 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, J.R., Pereira-Smith, O.M. & Schneider, E.L. Colony size distributions as a measure of in vivo and in vitro aging. Proc. Natl. Acad. Sci. USA 75, 1353–1356 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harley, C.B., Fletcher, A.B. & Greider, C.W. Telomeres shorten during aging. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Vaziri, H. et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52, 661–667 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shay, J.W., Wright, W.E., Brasiskyte, D. & Van der Haegen, B.A. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407–1413 (1993).

    CAS  PubMed  Google Scholar 

  65. Huffman, K.E., Levene, S.D., Tesmer, V.M., Shay, J.W. & Wright, W.E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Shay, J.W., Werbin, H. & Wright, W.E. Telomeres and telomerase in human leukemias. Leukemia 10, 1255–1261 (1996).

    CAS  PubMed  Google Scholar 

  67. Holt, S.E., Shay, J.W. & Wright, W.E. Refining the telomere–telomerase hypothesis of aging and cancer. Nat. Biotechnol. 14, 836–839 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Artandi, S.E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Lindsey, J., McGill, N.I., Lindsey, L.A., Green, D.K. & Cooke, H.J. In vivo loss of telomeric repeats with age in humans. Mutat. Res. 256, 45–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Hiyama, E. et al. Telomerase activity in human intestine. Int. J. Oncol. 9, 453–458 (1996).

    CAS  PubMed  Google Scholar 

  71. Iwama, H. et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum. Genet. 102, 397–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, L., Suwa, T., Wright, W.E., Shay, J.W. & Hornsby, P.J. Telomere shortening and decline in replicative potential as a function of donor age in human adrenocortical cells. Mech. Ageing Dev. 122, 1685–1694 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Urano, Y. et al. Frequent p53 accumulation in the chronically sun-exposed epidermis and clonal expansion of p53 mutant cells in the epidermis adjacent to basal cell carcinoma. J. Invest. Dermatol. 104, 928–932 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. & Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Moog, F. The small intestine in old mice: growth, alkaline phosphatase and disaccharidase activities, and deposition of amyloid. Exp. Gerontol. 12, 223–235 (1977).

    Article  CAS  PubMed  Google Scholar 

  77. Potten, C.S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Cheshier, S.H., Morrison, S.J., Liao, X. & Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bradford, G.B., Williams, B., Rossi, R. & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol. 25, 445–453 (1997).

    CAS  PubMed  Google Scholar 

  80. Mahmud, N. et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 97, 3061–3068 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Holt, S.E., Wright, W.E. & Shay, J.W. Multiple pathways for the regulation of telomerase activity. Eur. J. Cancer 33, 761–766 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. White, L.K., Wright, W.E. & Shay, J.W. Telomerase inhibitors. Trends Biotechnol. 19, 114–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Ray, A. & Runge, K.W. The yeast telomere length counting machinery is sensitive to sequences at the telomere–nontelomere junction. Mol. Cell. Biol. 19, 31–45 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Herbert, B. et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96, 14276–14281 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blackburn, E.H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, J., Wang, H., Bishop, J.M. & Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shay, J.W., Pereira-Smith, O.M. & Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Steinert, S., Shay, J.W. & Wright, W.E. Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem. Biophys. Res. Commun. 273, 1095–1098 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Ouellette, M.M. et al. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072–10076 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Y., Kha, H., Ungrin, M., Robinson, M.O. & Harrington, L. Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc. Natl. Acad. Sci. USA 99, 3597–3602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hemann, M.T., Strong, M.A., Hao, L.Y. & Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Holt, S.E., Wright, W.E. & Shay, J.W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 16, 2932–2939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Holt, S.E., Aisner, D.L., Shay, J.W. & Wright, W.E. Lack of cell cycle regulation of telomerase activity in human cells. Proc. Natl. Acad. Sci. USA 94, 10687–10692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Diede, S.J. & Gottschling, D.E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99, 723–733 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Qi, H. & Zakian, V.A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev. 14, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yashima, K. et al. Expression of the RNA component of telomerase during human development and differentiation. Cell Growth Diff. 9, 805–813 (1998).

    CAS  PubMed  Google Scholar 

  98. Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W. & Shay, J.W. Telomerase activity in human germline and embryonic tissues. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Forsyth, N.R., Wright, W.E. & Shay, J.W. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69, 188–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Decary, S. et al. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul. Disord. 10, 113–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Wright, W.E. Myoblast senescence in muscular dystrophy. Exp. Cell Res. 157, 343–354 (1985).

    Article  CAS  PubMed  Google Scholar 

  102. Blau, H.M., Webster, C. & Pavlath, G.K. Defective myoblasts identified in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 80, 4856–4860 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Miura, N. et al. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet. Cytogenet. 93, 56–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Kitada, T., Seki, S., Kawakita, N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. Biochem. Biophys. Res. Commun. 211, 33–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Urabe, Y. et al. Telomere length in human liver diseases. Liver 16, 293–297 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by AG07992 from the National Institute on Aging and the Ellison Medical Foundation. The authors are holders of the Southland Financial Corporation Distinguished Chair in Geriatric Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woodring E. Wright or Jerry W. Shay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, W., Shay, J. Historical claims and current interpretations of replicative aging. Nat Biotechnol 20, 682–688 (2002). https://doi.org/10.1038/nbt0702-682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0702-682

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing