Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXO3A directs a protective autophagy program in haematopoietic stem cells

Abstract

Blood production is ensured by rare, self-renewing haematopoietic stem cells (HSCs). How HSCs accommodate the diverse cellular stresses associated with their life-long activity remains elusive. Here we identify autophagy as an essential mechanism protecting HSCs from metabolic stress. We show that mouse HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy after ex vivo cytokine withdrawal and in vivo calorie restriction. We demonstrate that FOXO3A is critical to maintain a gene expression program that poises HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FOXO3A-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HSCs induce autophagy after metabolic stress.
Figure 2: Autophagy protects HSCs from starvation-induced apoptosis.
Figure 3: FOXO3A poises HSCs for rapid autophagy induction.
Figure 4: Ongoing autophagy in old HSCs.
Figure 5: Ongoing autophagy is essential for the continued survival of old HSCs.

Similar content being viewed by others

References

  1. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008)

    Article  CAS  Google Scholar 

  3. Rossi, D. J., Jamieson, C. H. M. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008)

    Article  CAS  Google Scholar 

  4. Warr, M. R., Pietras, E. M. & Passegué, E. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 681–701 (2011)

    Article  CAS  Google Scholar 

  5. Ferraro, E. & Cecconi, F. Autophagic and apoptotic response to stress signals in mammalian cells. Arch. Biochem. Biophys. 462, 210–219 (2007)

    Article  CAS  Google Scholar 

  6. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009)

    Article  CAS  Google Scholar 

  7. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004)

    Article  CAS  Google Scholar 

  8. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007)

    Article  CAS  Google Scholar 

  9. Debnath, J., Baehrecke, E. H. & Kroemer, G. Does autophagy contribute to cell death? Autophagy 1, 66–74 (2005)

    Article  CAS  Google Scholar 

  10. Oguro, H. & Iwana, A. Life and death in hematopoietic stem cells. Curr. Opin. Immunol. 19, 503–509 (2007)

    Article  CAS  Google Scholar 

  11. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007)

    Article  CAS  Google Scholar 

  13. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008)

    Article  CAS  Google Scholar 

  14. Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008)

    Article  CAS  Google Scholar 

  15. Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo . Proc. Natl Acad. Sci. USA 107, 832–837 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Liu, F. et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  17. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011)

    Article  CAS  Google Scholar 

  18. Pietras, E. M., Warr, M. R. & Passegué, E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 195, 709–720 (2011)

    Article  CAS  Google Scholar 

  19. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004)

    Article  CAS  Google Scholar 

  20. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010)

    Article  CAS  Google Scholar 

  21. Shvets, E., Fass, E. & Elazar, Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4, 621–628 (2008)

    Article  CAS  Google Scholar 

  22. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010)

    Article  CAS  Google Scholar 

  23. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010)

    Article  CAS  Google Scholar 

  24. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000)

    Article  CAS  Google Scholar 

  25. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo . Cell Metab. 6, 458–471 (2007)

    Article  CAS  Google Scholar 

  26. Maiuri, M. C. et al. Autophagy regulation by p53. Curr. Opin. Cell Biol. 22, 181–185 (2010)

    Article  CAS  Google Scholar 

  27. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007)

    Article  CAS  Google Scholar 

  28. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011)

    Article  CAS  Google Scholar 

  29. Chen, C., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009)

    PubMed  PubMed Central  Google Scholar 

  30. Ergen, A. V., Boles, N. C. & Goodell, M. A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119, 2500–2509 (2012)

    Article  CAS  Google Scholar 

  31. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005)

    Article  CAS  Google Scholar 

  32. Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009)

    Article  CAS  Google Scholar 

  33. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007)

    Article  CAS  Google Scholar 

  34. Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor FoxO3a. Science 301, 215–218 (2003)

    Article  ADS  CAS  Google Scholar 

  35. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992)

    Article  ADS  CAS  Google Scholar 

  36. Takeuchi, O. et al. Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc. Natl Acad. Sci. USA 102, 11272–11277 (2005)

    Article  ADS  CAS  Google Scholar 

  37. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995)

    Article  ADS  CAS  Google Scholar 

  38. Santaguida, M. et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15, 341–352 (2009)

    Article  CAS  Google Scholar 

  39. Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Brunet for Foxo3a−/− mice, S. Oakes for Bak−/−Baxfl/fl mice, N. Mizushima for GFP-LC3 transgenic mice, J. Wong for electron microscopy analyses, M. Kissner for management of our Flow Cytometry Core Facility, and all members of the Passegué, particularly E. Pietras, and Debnath laboratories for critical insights and suggestions. M.R.W. is an LLS Special Fellow. This work was supported by a Culpepper Scholar Award (Partnership for Cures) and NIH grant CA126792 to J.D., and a CIRM New Faculty Award and NIH grant HL092471 to E.P.

Author information

Authors and Affiliations

Authors

Contributions

M.R.W., M.B., J.F., D.R. and T.G. performed all of the experiments. R.M. and J.D. generated the Atg12fl/fl mice. M.R.W., M.B., J.D. and E.P. designed the experiments and interpreted the results. M.R.W. and E.P. wrote the manuscript.

Corresponding author

Correspondence to Emmanuelle Passegué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-16 and Supplementary Tables 1-3. (PDF 1638 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warr, M., Binnewies, M., Flach, J. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013). https://doi.org/10.1038/nature11895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11895

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing