Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TMEM16A confers receptor-activated calcium-dependent chloride conductance

Abstract

Calcium (Ca2+)-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca2+-activated chloride channel that is activated by intracellular Ca2+ and Ca2+-mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca2+-activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca2+-activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca2+-activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ANO1-transfected cells respond with robust inward currents to GPCR stimulation.
Figure 2: ANO1 is a Cl - channel.
Figure 3: ANO1 is activated by intracellular Ca 2+ in a voltage-dependent manner.
Figure 4: ANO1 is expressed in transport epithelia and other tissues.
Figure 5: Mouse Ano1 siRNA reduces pilocarpine-induced salivary output.

Similar content being viewed by others

References

  1. Hartzell, C., Putzier, I. & Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719–758 (2005)

    Article  CAS  Google Scholar 

  2. Frings, S., Reuter, D. & Kleene, S. J. Neuronal Ca2+-activated Cl- channels—homing in on an elusive channel species. Prog. Neurobiol. 60, 247–289 (2000)

    Article  CAS  Google Scholar 

  3. Eggermont, J. Calcium-activated chloride channels: (un)known, (un)loved? Proc. Am. Thorac. Soc. 1, 22–27 (2004)

    Article  CAS  Google Scholar 

  4. Large, W. A. & Wang, Q. Characteristics and physiological role of the Ca2+-activated Cl- conductance in smooth muscle. Am. J. Physiol. 271, C435–C454 (1996)

    Article  CAS  Google Scholar 

  5. Nilius, B. & Droogmans, G. in Calcium-Activated Chloride Channels (ed. Fuller, C. M.) 327–344 (Academic, 2002)

    Book  Google Scholar 

  6. Nilius, B. et al. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J. Physiol. (Lond.) 498, 381–396 (1997)

    Article  CAS  Google Scholar 

  7. Nilius, B. et al. Kinetic and pharmacological properties of the calcium-activated chloride-current in macrovascular endothelial cells. Cell Calcium 22, 53–63 (1997)

    Article  CAS  Google Scholar 

  8. Sun, H., Tsunenari, T., Yau, K. W. & Nathans, J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl Acad. Sci. USA 99, 4008–4013 (2002)

    Article  CAS  ADS  Google Scholar 

  9. Huang, P. et al. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J. Biol. Chem. 276, 20093–20100 (2001)

    Article  CAS  Google Scholar 

  10. Cunningham, S. A. et al. Cloning of an epithelial chloride channel from bovine trachea. J. Biol. Chem. 270, 31016–31026 (1995)

    Article  CAS  Google Scholar 

  11. Nilius, B. & Droogmans, G. Amazing chloride channels: an overview. Acta Physiol. Scand. 177, 119–147 (2003)

    Article  CAS  Google Scholar 

  12. Zholos, A. et al. Ca2+- and volume-sensitive chloride currents are differentially regulated by agonists and store-operated Ca2+ entry. J. Gen. Physiol. 125, 197–211 (2005)

    Article  CAS  Google Scholar 

  13. Lee, M. G., Zeng, W. & Muallem, S. Characterization and localization of P2 receptors in rat submandibular gland acinar and duct cells. J. Biol. Chem. 272, 32951–32955 (1997)

    Article  CAS  Google Scholar 

  14. Guibert, C., Marthan, R. & Savineau, J. P. Oscillatory Cl- current induced by angiotensin II in rat pulmonary arterial myocytes: Ca2+ dependence and physiological implication. Cell Calcium 21, 421–429 (1997)

    Article  CAS  Google Scholar 

  15. Kuruma, A. & Hartzell, H. C. Bimodal control of a Ca2+-activated Cl- channel by different Ca2+ signals. J. Gen. Physiol. 115, 59–80 (2000)

    Article  CAS  Google Scholar 

  16. Evans, M. G. & Marty, A. Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J. Physiol. (Lond.) 378, 437–460 (1986)

    Article  CAS  Google Scholar 

  17. Hartzell, C. et al. Looking chloride channels straight in the eye: bestrophins, lipofuscinosis, and retinal degeneration. Physiology (Bethesda) 20, 292–302 (2005)

    CAS  Google Scholar 

  18. Arreola, J. & Melvin, J. E. A novel chloride conductance activated by extracellular ATP in mouse parotid acinar cells. J. Physiol. (Lond.) 547, 197–208 (2003)

    Article  CAS  Google Scholar 

  19. Fuller, C. M. Ismailov, I. I., Keeton, D. A. & Benos, D. J. Phosphorylation and activation of a bovine tracheal anion channel by Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 269, 26642–26650 (1994)

    CAS  PubMed  Google Scholar 

  20. Piper, A. S. & Large, W. A. Multiple conductance states of single Ca2+-activated Cl- channels in rabbit pulmonary artery smooth muscle cells. J. Physiol. (Lond.) 547, 181–196 (2003)

    Article  CAS  Google Scholar 

  21. Arreola, J., Melvin, J. E. & Begenisich, T. Activation of calcium-dependent chloride channels in rat parotid acinar cells. J. Gen. Physiol. 108, 35–47 (1996)

    Article  CAS  Google Scholar 

  22. Maricq, A. V. & Korenbrot, J. I. Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1, 503–515 (1988)

    Article  CAS  Google Scholar 

  23. Kenyon, J. L. & Scott, R. H. in Calcium-Activated Chloride Channels (ed. Fuller, C. M.) 135–166 (Academic, 2002)

    Book  Google Scholar 

  24. Willis, W. D. & Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord (eds Willis, W. D. & Coggeshall, R. E.) (Plenum, 2004)

    Book  Google Scholar 

  25. Liu, X. et al. Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1-/- mice. Proc. Natl Acad. Sci. USA 104, 17542–17547 (2007)

    Article  CAS  ADS  Google Scholar 

  26. He, X. et al. Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflugers Arch. 433, 260–268 (1997)

    Article  CAS  Google Scholar 

  27. Gruber, A. D. et al. Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl- channel proteins. Genomics 54, 200–214 (1998)

    Article  CAS  Google Scholar 

  28. Elble, R. C. & Pauli, B. U. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J. Biol. Chem. 276, 40510–40517 (2001)

    Article  CAS  Google Scholar 

  29. Gruber, A. D., Schreur, K. D., Ji, H. L., Fuller, C. M. & Pauli, B. U. Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland. Am. J. Physiol. 276, C1261–C1270 (1999)

    Article  CAS  Google Scholar 

  30. Greenwood, I. A., Miller, L. J., Ohya, S. & Horowitz, B. The large conductance potassium channel β-subunit can interact with and modulate the functional properties of a calcium-activated chloride channel, CLCA1. J. Biol. Chem. 277, 22119–22122 (2002)

    Article  CAS  Google Scholar 

  31. Qu, Z., Fischmeister, R. & Hartzell, C. Mouse bestrophin-2 is a bona fide Cl- channel: identification of a residue important in anion binding and conduction. J. Gen. Physiol. 123, 327–340 (2004)

    Article  CAS  Google Scholar 

  32. Hartzell, H. C., Qu, Z., Yu, K., Xiao, Q. & Chien, L. T. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol. Rev. 88, 639–672 (2008)

    Article  CAS  Google Scholar 

  33. Arreola, J. et al. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl- channel gene. J. Physiol. (Lond.) 545, 207–216 (2002)

    Article  CAS  Google Scholar 

  34. Rosenfeld, M. A. & Collins, F. S. Gene therapy for cystic fibrosis. Chest 109, 241–252 (1996)

    Article  CAS  Google Scholar 

  35. Schwiebert, E. M., Benos, D. J., Egan, M. E., Stutts, M. J. & Guggino, W. B. CFTR is a conductance regulator as well as a chloride channel. Physiol. Rev. 79, S145–S166 (1999)

    Article  CAS  Google Scholar 

  36. Grubb, B. R., Vick, R. N. & Boucher, R. C. Hyperabsorption of Na+ and raised Ca2+-mediated Cl-secretion in nasal epithelia of CF mice. Am. J. Physiol. 266, C1478–C1483 (1994)

    Article  CAS  Google Scholar 

  37. Boucher, R. C. et al. Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms. J. Clin. Invest. 84, 1424–1431 (1989)

    Article  CAS  Google Scholar 

  38. Anderson, M. P. & Welsh, M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc. Natl Acad. Sci. USA 88, 6003–6007 (1991)

    Article  CAS  ADS  Google Scholar 

  39. Knowles, M. R., Clarke, L. L. & Boucher, R. C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N. Engl. J. Med. 325, 533–538 (1991)

    Article  CAS  Google Scholar 

  40. Huang, X., Godfrey, T. E., Gooding, W. E., McCarty, K. S. & Gollin, S. M. Comprehensive genome and transcriptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma. Genes Chromosom. Cancer 45, 1058–1069 (2006)

    Article  CAS  Google Scholar 

  41. Carles, A. et al. Head and neck squamous cell carcinoma transcriptome analysis by comprehensive validated differential display. Oncogene 25, 1821–1831 (2006)

    Article  CAS  Google Scholar 

  42. Espinosa, I. et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am. J. Surg. Pathol. 32, 210–218 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. MacKinnon and J. Wood for a review of themanuscript. We also thank B. Hille for his technical comment on ion permeability. This work was supported by Acceleration Research of MOEST/KOSEF of Korea. This work was also supported by the Brain Korea 21 Project and by the Wellcome Trust Foundation, UK (R.R.).

Author Contributions Y.D.Y. cloned the channel and its mutants and GPCRs. W.-S.S. worked on bioinformatics. Y.D.Y. recorded currents in oocytes. H.C., B.L. and M.H.T. recorded whole-cell currents. J.Y.K. recorded single-channel currents. J.L. and Y.C. worked on siRNA in vivo. B.-M.K. worked on western blot. R.R. measured Ca2+ and currents. S.P.P. measured electrolytes in saliva. Y.K.S. worked on immunohistochemistry. U.O. designed and supervised experiments, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uhtaek Oh.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Figures 1-7 and Legends; Supplementary Tables 1-2 and Supplementary References. (PDF 7331 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Cho, H., Koo, J. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008). https://doi.org/10.1038/nature07313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07313

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing