Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemokines as regulators of T cell differentiation

Abstract

Chemokines play well established roles as attractants of naïve and effector T cells. New studies indicate that chemokines also have roles in regulating T cell differentiation. Blocking Gi protein–coupled receptor signaling by pertussis toxin as well as deficiencies in Gαi2, chemokine receptor 2 (CCR2), CCR5, chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1, or MCP-1), CCL3 (macrophage inflammatory protein 1α, or MIP-1α) and CCL5 (RANTES) have all been found to have effects on the magnitude and cytokine polarity of the T cell response. Here we focus on findings in the CCL2-CCR2 and CCL3-CCR5 ligand-receptor systems. The roles of these molecules in regulating T cell fate include possible indirect effects on antigen-presenting cells and direct effects on differentiating T cells. Models to account for the action of chemokines and G protein–coupled receptor signals in regulating T cell differentiation are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms by which chemokines may influence T cell differentiation.
Figure 2: Possible pathways of chemokine and Gi protein–coupled receptor-mediated regulation of TH cell polarization.

Similar content being viewed by others

References

  1. Murphy, K. M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. O'Garra, A., McEvoy, L. M. & Zlotnik, A. T-cell subsets: Chemokine receptors guide the way. Curr. Biol. 8, 646–649 (1998).

    Article  Google Scholar 

  6. Rutledge, B. J. et al. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 155, 4838–4843 (1995).

    CAS  PubMed  Google Scholar 

  7. Chensue, S. W. et al. Role of monocyte chemoattractant protein-1 (MCP-1) in Th1 (mycobacterial) and Th2 (schistosomal) antigen-induced granuloma formation: relationship to local inflammation, Th cell expression, and IL-12 production. J. Immunol. 157, 4602–4608 (1996).

    CAS  PubMed  Google Scholar 

  8. Rollins, B. J. Chemokines. Blood 90, 909–928 (1997).

    CAS  PubMed  Google Scholar 

  9. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Coillie, E., Van Damme, J. & Opdenakker, G. The MCP/eotaxin subfamily of CC chemokines. Cytok. Growth Factor Rev. 10, 61–86 (1999).

    Article  CAS  Google Scholar 

  12. Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuziel, W. A. et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc. Natl Acad. Sci. USA 94, 12053–12058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, B. et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Warmington, K. S. et al. Effect of C-C chemokine receptor 2 (CCR2) knockout on type-2 (schistosomal antigen-elicited) pulmonary granuloma formation: analysis of cellular recruitment and cytokine responses. Am. J. Pathol. 154, 1407–1416 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L. & Luster, A. D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075–1080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fife, B. T., Huffnagle, G. B., Kuziel, W. A. & Karpus, W. J. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 899–906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blease, K. et al. Enhanced pulmonary allergic responses to Aspergillus in CCR2−/− mice. J. Immunol. 165, 2603–2611 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Traynor, T. R., Kuziel, W. A., Toews, G. B. & Huffnagle, G. B. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164, 2021–2027 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Braun, M. C., Lahey, E. & Kelsall, B. L. Selective suppression of IL-12 production by chemoattractants. J. Immunol. 164, 3009–3017 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Moser, M. & Murphy, K. M. Dendritic cell regulation of TH1-TH2 development. Nature Immunol. 1, 199–205 (2000).

    Article  CAS  Google Scholar 

  25. Karpus, W. J., Kennedy, K. J., Kunkel, S. L. & Lukacs, N. W. Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J. Exp. Med. 187, 733–741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sallusto, F., Lanzavecchia, A. & Mackay, C. R. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol. Today 19, 568–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Karpus, W. J. et al. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol. 158, 4129–4136 (1997).

    CAS  PubMed  Google Scholar 

  28. Qin, S. et al. Expression of monocyte chemoattractant protein-1 and interleukin-8 receptors on subsets of T cells: correlation with transendothelial chemotactic potential. Eur. J. Immunol. 26, 640–647 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Loetscher, P., Seitz, M., Baggiolini, M. & Moser, B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J. Exp. Med. 184, 569–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Toney, L. M. et al. BCL-6 regulates chemokine gene transcription in macrophages. Nature Immunol. 1, 214–220 (2000).

    Article  CAS  Google Scholar 

  31. Karpus, W. J. & Kennedy, K. J. MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol. 62, 681–687 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Foti, M. et al. Upon dendritic cell (DC) activation chemokines and chemokine receptor expression are rapidly upregulated for recruitment and maintenance of DC at the inflammatory site. Int. Immunol. 11, 979–986 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nature Immunol. 1, 387–391 (2000).

    Article  CAS  Google Scholar 

  35. Peters, W., Dupuis, M. & Charo, I. F. A mechanism for the impaired IFN-γ production in CCR2 knockout mice: Role of CCR2 in linking the innate and adaptive immune responses. J. Immunol. 165, 7072–7077 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Sato, N. et al. CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, b cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 192, 205–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  38. Baggiolini, M., Dewald, B. & Moser, B. Interleukin-8 and related chemotactic cytokines – CXC and CC chemokines. Adv. Immunol. 55, 97–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Topham, P. S. et al. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J. Clin. Invest. 104, 1549–1557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).

    CAS  PubMed  Google Scholar 

  41. Lukacs, N. W., Kunkel, S. L., Strieter, R. M., Warmington, K. & Chensue, S. W. The role of macrophage inflammatory protein 1 α in Schistosoma mansoni egg-induced granulomatous inflammation. J. Exp. Med. 177, 1551–1559 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Cook, D. N. et al. Requirement of MIP-1α for an inflammatory response to viral infection. Science 269, 1583–1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Tumpey, T. M. et al. Absence of macrophage inflammatory protein-1α prevents the development of blinding herpes stromal keratitis. J. Virol. 72, 3705–3710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Salazar-Mather, T. P., Orange, J. S. & Biron, C. A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med. 187, 1–14 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domachowske, J. B. et al. The chemokine macrophage-inflammatory protein-1 α and its receptor CCR1 control pulmonary inflammation and antiviral host defense in paramyxovirus infection. J. Immunol. 165, 2677–2682 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Chensue, S. W. et al. Differential expression and cross-regulatory function of RANTES during mycobacterial (type 1) and schistosomal (type 2) antigen-elicited granulomatous inflammation. J. Immunol. 163, 165–173 (1999).

    CAS  PubMed  Google Scholar 

  47. Loetscher, P. et al. CCR5 is characteristic of Th1 lymphocytes. Nature 391, 344–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Kawai, T. et al. Selective diapedesis of Th1 cells induced by endothelial cell RANTES. J. Immunol. 163, 3269–3278 (1999).

    CAS  PubMed  Google Scholar 

  49. Gao, W. et al. Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J. Clin. Invest. 105, 35–44 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zou, W. et al. Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. J. Immunol. 165, 4388–4396 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Sato, N. et al. Defects in the generation of IFN-γ are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 α-, or CCR2-deficient mice. J. Immunol. 163, 5519–5525 (1999).

    CAS  PubMed  Google Scholar 

  52. Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol. 1, 83–87 (2000).

    Article  CAS  Google Scholar 

  53. Zhou, Y. et al. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J. Immunol. 160, 4018–4025 (1998).

    CAS  PubMed  Google Scholar 

  54. Littman, D. R. Chemokine receptors: keys to AIDS pathogenesis? Cell 93, 677–680 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Andres, P. G. et al. Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J. Immunol. 164, 6303–6312 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Gao, J. L. et al. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J. Exp. Med. 185, 1959–1968 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rottman, J. B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol. 30, 2372–2377 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Ben-Baruch, A. et al. Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors. C-C CKR1, a receptor for macrophage inflammatory protein-1 α/Rantes, is also a functional receptor for MCP3. J. Biol. Chem. 270, 22123–22128 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Blanpain, C. et al. CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood 94, 1899–1905 (1999).

    CAS  PubMed  Google Scholar 

  60. Gong, X. et al. Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. J. Biol. Chem. 272, 11682–11685 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Hadida, F. et al. HIV-specific T cell cytotoxicity mediated by RANTES via the chemokine receptor CCR3. J. Exp. Med. 188, 609–614 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Post, T. W. et al. Molecular characterization of two murine eosinophil beta chemokine receptors. J. Immunol. 155, 5299–5305 (1995).

    CAS  PubMed  Google Scholar 

  63. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Tang, H. L. & Cyster, J. G. Chemokine upregulation and activated T cell attraction by maturing dendritic cells. Science 284, 819–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Lieberam, I. & Forster, I. The murine β-chemokine TARC is expressed by subsets of dendritic cells and attracts primed CD4+ T cells. Eur. J. Immunol. 29, 2684–2694 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol. 161, 5111–5115 (1998).

    CAS  PubMed  Google Scholar 

  67. Zingoni, A. et al. The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. J. Immunol. 161, 547–551 (1998).

    CAS  PubMed  Google Scholar 

  68. Imai, T. et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int. Immunol. 11, 81–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Campbell, J. J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Co-expression of ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Byrnes, H. D. et al. Macrophage inflammatory protein-3 β enhances IL-10 production by activated human peripheral blood monocytes and T cells. J. Immunol. 163, 4715–4720 (1999).

    CAS  PubMed  Google Scholar 

  72. Rossi, D. L., Vicari, A. P., Franz-Bacon, K., McClanahan, T. K. & Zlotnik, A. Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3α and MIP-3β. J. Immunol. 158, 1033–1036 (1997).

    CAS  PubMed  Google Scholar 

  73. Munoz, J. J., Bernard, C. C. & Mackay, I. R. Elicitation of experimental allergic encephalomyelitis (EAE) in mice with the aid of pertussigen. Cell. Immunol. 83, 92–100 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Brady, M. T., Mahon, B. P. & Mills, K. H. Pertussis infection and vaccination induces Th1 cells. Immunol. Today 19, 534 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. He, J., Gurunathan, S., Iwasaki, A., Ash-Shaheed, B. & Kelsall, B. L. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J. Exp. Med. 191, 1605–1610 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rudolph, U. et al. Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genet. 10, 143–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Amiel, S. A. The effects of Bordetella pertussis vaccine on cerebral vascular permeability. Br. J. Exp. Pathol. 57, 653–662 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mahon, B. P., Ryan, M. S., Griffin, F. & Mills, K. H. Interleukin-12 is produced by macrophages in response to live or killed Bordetella pertussis and enhances the efficacy of an acellular pertussis vaccine by promoting induction of Th1 cells. Infect. Immun. 64, 5295–5301 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hornquist, C. E. et al. G(α)i2-deficient mice with colitis exhibit a local increase in memory CD4+ T cells and proinflammatory Th1-type cytokines. J. Immunol. 158, 1068–1077 (1997).

    CAS  PubMed  Google Scholar 

  80. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Wittmann, M. et al. C5a suppresses the production of IL-12 by IFN-γ-primed and lipopolysaccharide-challenged human monocytes. J. Immunol. 162, 6763–6769 (1999).

    CAS  PubMed  Google Scholar 

  82. Hopken, U. E., Lu, B., Gerard, N. P. & Gerard, C. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Ansel, K. M. et al. A chemokine driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Zisman, D. A. et al. MCP-1 protects mice in lethal endotoxemia. J. Clin. Invest. 99, 2832–2836 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet. 16, 161–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Inngjerdingen, M., Damaj, B. & Maghazachi, A. A. Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309. J. Immunol. 164, 4048–4054 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Braun, S. E. et al. The CC chemokine CK β-11/MIP-3 β /ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J. Immunol. 164, 4025–4031 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Matloubian, M., David, A., Engel, S., Ryan, J. E. & Cyster, J. G. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nature Immunol. 1, 298–304 (2000).

    Article  CAS  Google Scholar 

  90. Fearon, D. T. & Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Campbell, E. M. et al. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2−/− mice: the role of mast cells. J. Immunol. 163, 2160–2167 (1999).

    CAS  PubMed  Google Scholar 

  92. Lippert, U. et al. Expression and functional activity of the IL-8 receptor type CXCR1 and CXCR2 on human mast cells. J. Immunol. 161, 2600–2608 (1998).

    CAS  PubMed  Google Scholar 

  93. Mekori, Y. A. & Metcalfe, D. D. Mast cell-T cell interactions. J. Allergy Clin. Immunol. 104, 517–523 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Li, L. et al. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J. Immunol. 162, 2477–2487 (1999).

    CAS  PubMed  Google Scholar 

  95. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Doucet, C. et al. IL-4 and IL-13 specifically increase adhesion molecule and inflammatory cytokine expression in human lung fibroblasts. Int. Immunol. 10, 1421–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Yamamoto, T., Eckes, B., Mauch, C., Hartmann, K. & Krieg, T. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 α loop. J. Immunol. 164, 6174–6179 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Jordan, N. J. et al. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J. Clin. Invest. 104, 1061–1069 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Salcedo, R. et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96, 34–40 (2000).

    CAS  PubMed  Google Scholar 

  100. Devalaraja, R. M. et al. Delayed wound healing in CXCR2 knockout mice. J. Invest. Dermatol. 115, 234–244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Galli, G. et al. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo: preferential association with the production of type 2 cytokines. Eur. J. Immunol. 30, 204–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Iellem, A. et al. Inhibition by IL-12 and IFN-α of I-309 and macrophage-derived chemokine production upon TCR triggering of human Th1 cells. Eur. J. Immunol. 30, 1030–1039 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, S., Lukacs, N. W., Lawless, V. A., Kunkel, S. L. & Kaplan, M. H. Cutting edge: differential expression of chemokines in Th1 and Th2 cells is dependent on Stat6 but not Stat4. J. Immunol. 165, 10–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Schrum, S., Probst, P., Fleischer, B. & Zipfel, P. F. Synthesis of the CC-chemokines MIP-1α, MIP-1β, and RANTES is associated with a type 1 immune response. J. Immunol. 157, 3598–3604 (1996).

    CAS  PubMed  Google Scholar 

  105. Liu, H. et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl Acad. Sci. USA 96, 4581–4585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sozzani, S. et al. The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 92, 4036–4039 (1998).

    CAS  PubMed  Google Scholar 

  107. Stine, J. T. et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95, 1151–1157 (2000).

    CAS  PubMed  Google Scholar 

  108. Lalani, A. S., Barrett, J. W. & McFadden, G. Modulating chemokines: more lessons from viruses. Immunol. Today 21, 100–106 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Human Frontiers Science Program (to S. A. L.) and Packard Foundation (to J. G. C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjiv A. Luther or Jason G. Cyster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, S., Cyster, J. Chemokines as regulators of T cell differentiation. Nat Immunol 2, 102–107 (2001). https://doi.org/10.1038/84205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/84205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing