Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function

Abstract

It is increasingly being recognized that cells coordinate the activity of separate ion channels that allow electrolytes into the cell. However, a perplexing problem in channel regulation has arisen in the fatal genetic disease cystic fibrosis, which results from the loss of a specific Cl- channel (the CFTR channel) in epithelial cell membranes1. Although this defect clearly inhibits the absorption of Na+ in sweat glands2,3, it is widely accepted that Na+ absorption is abnormally elevated in defective airways in cystic fibrosis4,5. The only frequently cited explanation for this hypertransport is that the activity of an epithelial Na+ channel (ENaC) is inversely related to the activity of the CFTR Cl- channel5,6,7. However, we report here that, in freshly isolated normal sweat ducts, ENaC activity is dependent on, and increases with, CFTR activity. Surprisingly, we also find that the primary defect in Cl- permeability in cystic fibrosis8 is accompanied secondarily by a Na+ conductance in this tissue that cannot be activated. Thus, reduced salt absorption in cystic fibrosis is due not only to poor Cl- conductance but also to poor Na+ conductance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of cAMP and ATP activation of CFTR Cl- conductance (gCFTR) on amiloride-sensitive epithelial Na+ conductance (gENaC).
Figure 2: Effect of stimulating gCFTR with cGMP and ATP on gENaC.
Figure 3: Effect of stimulating gCFTR with GTP-γ-S and ATP on gENaC.
Figure 4: Failure of stimulation to increase gENaC† in the absence of functional CFTR.

Similar content being viewed by others

References

  1. Sheppard,D. N. & Welsh,M. J. Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23–S45 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Quinton,P. M. Chloride impermeability in cystic fibrosis. Nature 301, 421–422 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Quinton,P. M. Physiological basis of cystic fibrosis: A historic perspective. Physiol. Rev. 79, S3–S22 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Boucher,R. C. Human airway ion transport. Part I. Am. J. Respir. Crit. Care Med. 150, 271–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Schwiebert,E. M., Benos,D. J., Egan,M. E., Stutts,M. J. & Guggino,W. B. CFTR is a conductance regulator as well as a chloride channel. Physiol. Rev. 79, S145–S166 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Stutts,M. J. et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kunzelmann,K., Kiser,G. L., Schreiber,R. & Riordan,J. R. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 400, 341–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Pilewski,J. M. & Frizzell,R. A. Role of CFTR in airway disease. Physiol. Rev. 79, S215–S255 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Knowles,M. R. et al. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 1067–1070 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Boucher,R. C., Cotton,C. U., Gatzy,J. T., Knowles,M. R. & Yankaskas,J. R. Evidence for reduced Cl- and increased Na+ permeability in cystic fibrosis human primary cell cultures. J. Physiol. (Paris) 405, 77–103 (1988).

    Google Scholar 

  11. Boucher,R. C., Stutts,M. J., Knowles,M. R., Cantley,L. & Gatzy,J. T. Na+ transport in cystic fibrosis respiratory epithelia: abnormal basal rate and response to adenylate cyclase activation. J. Clin. Invest. 78, 1245–1252 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stutts,M. J., Rossier,B. C. & Boucher,R. C. Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J. Biol. Chem. 272, 14037–14040 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Quinton,P. M. Missing Cl conductance in cystic fibrosis. Am. J. Physiol. 251, C649–C652 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Quinton,P. M. & Reddy,M. M. Control of CFTR Cl conductance by ATP levels through non-hydrolytic binding. Nature 360, 79–81 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Reddy,M. M. & Quinton,P. M. Rapid regulation of electrolyte absorption in sweat duct. J. Membr. Biol. 140, 57–67 (1994).

    CAS  PubMed  Google Scholar 

  16. Reddy,M. M. & Quinton,P. M. G-Proteins activate CFTR-GCl in the native sweat duct. Ped. Pulmonol. S14, R46 (1998).

    Google Scholar 

  17. Ismailov,I. I., McDuffie,J. H. & Benos,D. J. Protein kinase A phosphorylation and G-protein regulation of purified renal Na+ channels in planar bilayer membranes. J. Biol. Chem. 269, 10235–10241 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Flockhart,D. A., Friest,W., Hoppe,J., Loncoln,T. M. & Corban,J. D. ATP analog specificity of cAMP dependent protein kinase, cGMP dependent protein kinase, and phosphorylase kinase. Eur. J. Biochem. 140, 289–295 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Verrey,F. Antidiuretic hormone action in A6 cells: effect on apical Cl and Na conductances and synergism with aldosterone for NaCl reabsorption. J. Membr. Biol. 138, 65–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Letz,B., Korbmacher,C. cAMP stimulates CFTR-like Cl- channels and inhibits amiloride-sensitive Na+ channels in mouse CCD cells. Am. J. Physiol. 272, C657–C666 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ecke,D., Bleich,M. & Greger,R. The amiloride inhibitable Na+ conductance of rat colonic crypt cells is suppressed by forskolin. Pflugers Arch. 431, 984–986 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Panah,M. R. et al. Hyperexpression of recombinant CFTR in heterologous cells alters its physiological properties. Am. J. Physiol. Cell 274, C310–C318 (1998).

    Article  Google Scholar 

  23. Short,D. B. et al. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19797–19801 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Hall,R. A. et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl Acad. Sci. USA 95, 8496–8501 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang,C., Finkbeiner,W. E., Widdicombe,J. H. & Miller,S. S. Fluid transport across cultures of human tracheal glands is altered in cystic fibrosis. J. Physiol. (Lond.) 501, 637–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Welsh,M. J. Electrolyte transport by airway epithelia. Physiol. Rev. 67, 1143–1184 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Sato,K. & Sato,F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J. Clin. Invest. 73, 1763–1771 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greger,R. & Schlatter,F. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Eur. J. Physiol. 396, 325–334 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Taylor for technical assistance. This work was funded by grants from the Nancy McCracken Endowment, the Cystic Fibrosis Foundation and the USPHS National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Quinton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M., Light, M. & Quinton, P. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature 402, 301–304 (1999). https://doi.org/10.1038/46297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46297

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing