Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

T-cell co-stimulation through B7RP-1 and ICOS

Abstract

T-cell activation requires co-stimulation through receptors such as CD28 (refs 1,2,3) and antigen-specific signalling through the T-cell antigen receptor. Here we describe a new murine co-stimulatory receptor–ligand pair. The receptor, which is related to CD28 and is the homologue of the human protein ICOS4, is expressed on activated T cells and resting memory T cells. The ligand, which has homology to B7 molecules and is called B7-related protein-1 (B7RP-1), is expressed on B cells and macrophages. ICOS and B7RP-1 do not interact with proteins in the CD28–B7 pathway, and B7RP-1 co-stimulates T cells in vitro independently of CD28. Transgenic mice expressing a B7RP-1–Fc fusion protein show lymphoid hyperplasia in the spleen, lymph nodes and Peyer's patches. Presensitized mice treated with B7RP-1–Fc during antigen challenge show enhanced hypersensitivity. Therefore, B7RP-1 exhibits co-stimulatory activities in vitro and in vivo. ICOS and B7RP-1 define a new and distinct receptor–ligand pair that is structurally related to CD28–B7 and is involved in the adaptive immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequences of ICOS and B7RP-1.
Figure 2: ICOS and B7RP-1 gene expression.
Figure 3: Interaction of ICOS with B7RP-1.
Figure 4: T-cell proliferation and cytokine secretion by B7RP-1 using B7RP-1–Fc (filled squares) and B7.2–Fc (filled circles) proteins.
Figure 5: Mesenteric lymph nodes and Peyer's patches from B7RP-1–Fc transgenic mice and control littermates.
Figure 6: Contact hypersensitivity.

Similar content being viewed by others

References

  1. Schweitzer,A. N. & Sharpe,A. H. The complexity of the B7-CD28/CTLA-4 costimulatory pathway. Agents Actions 49, 33–43 (1998).

    CAS  PubMed  Google Scholar 

  2. Lenschow,D. J., Walunas,T. L. & Bluestone,J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Chambers,C. A. & Allison,J. P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Hutloff,A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gross,J. A., St John,T. & Allison,J. P. The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J. Immunol. 144, 3201–3210 (1990).

    CAS  PubMed  Google Scholar 

  6. Brunet,J. F. et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature 328, 267–270 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bajorath,J. A molecular model of inducible costimulator protein and three-dimensional analysis of its reaction to the CD28 family of T cell-specific costimulatory receptors. J. Mol. Modeling 5, 169–176 (1999).

    Article  CAS  Google Scholar 

  8. Linsley,P. S. et al. Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules. J. Biol. Chem. 270, 15417–15424 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Aruffo,A. & Seed,B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl Acad. Sci. USA 84, 8573–8577 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freeman,G. J. et al. Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J. Exp. Med. 178, 2185–2192 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Greenfield,E. A., Nguyen,K. A. & Kuchroo,V. K. CD28/B7 costimulation: a review. Crit. Rev. Immunol. 18, 389–418 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Dutton,R. W., Bradley,L. M. & Swain,S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Beverley,P. C. Generation of T-cell memory. Curr. Opin. Immunol. 8, 327–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Inaba,K. et al. Identification of proliferating dendritic cell precursors in mouse blood. J. Exp. Med. 175, 1157–1167 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Simonet,W. S. et al. Long-term impaired neutrophil migration in mice overexpressing human interleukin-8. J. Clin. Invest. 94, 1310–1319 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grabbe,S. & Schwarz,T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol. Today 19, 37–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Tang,A., Judge,T. A. & Turka,L. A. Blockade of CD40-CD40 ligand pathway induces tolerance in murine contact hypersensitivity. Eur. J. Immunol. 27, 3143–3150 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Tang,A., Judge,T. A., Nickoloff,B. J. & Turka,L. A. Suppression of murine allergic contact dermatitis by CTLA4Ig—tolerance induction of Th2 responses requires additional blockade of CD40-ligand. J. Immunol. 157, 117–125 (1996).

    CAS  PubMed  Google Scholar 

  19. DeClerck,Y. A., Yean,T. D., Lu,H. S., Ting,J. & Langley,K. E. Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2. J. Biol. Chem. 266, 3893–3899 (1991).

    CAS  PubMed  Google Scholar 

  20. Simonet,W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Brinster,R. L., Chen,H. Y., Trumbauer,M. E., Yagle,M. K. & Palmiter,R. D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl Acad. Sci. USA 82, 4438–4442 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. McHale,J. F., Harari,O. A., Marshall,D. & Haskard,D. O. Vascular endothelial cell expression of ICAM-1 and VCAM-1 at the onset of eliciting contact hypersensitivity in mice: evidence for a dominant role of TNF-alpha. J. Immunol. 162, 1648–1655 (1999).

    CAS  PubMed  Google Scholar 

  23. Wilcox,J. N. Fundamental principles of in situ hybridization. J. Histochem. Cytochem. 41, 1725–1733 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the contributors to the Amgen Genome Program, in particular, F. J. Calzone, for direction and assistance during the course of this work. Special thanks to K. Christensen and C. DiPalma for assistance with the preparation and the analysis of the transgenic mice, and to B. Yoshinaga and E. Medlock for assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Yoshinaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshinaga, S., Whoriskey, J., Khare, S. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999). https://doi.org/10.1038/45582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45582

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing