Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean

Abstract

Members of the muscarinic acetylcholine receptor family (M1–M5) have central roles in the regulation of many fundamental physiological functions1,2. Identifying the specific receptor subtype(s) that mediate the diverse muscarinic actions of acetylcholine is of considerable therapeutic interest, but has proved difficult primarily because of a lack of subtype-selective ligands3. Here we show that mice deficient in the M3 muscarinic receptor (M3R-/- mice) display a significant decrease in food intake, reduced body weight and peripheral fat deposits, and very low levels of serum leptin and insulin. Paradoxically, hypothalamic messenger RNA levels of melanin-concentrating hormone (MCH), which are normally upregulated in fasted animals leading to an increase in food intake4,5, are significantly reduced in M3R-/- mice. Intra-cerebroventricular injection studies show that an agouti-related peptide analogue lacked orexigenic (appetite-stimulating) activity in M3R-/- mice. However, M3R-/- mice remained responsive to the orexigenic effects of MCH. Our data indicate that there may be a cholinergic pathway that involves M3-receptor-mediated facilitation of food intake at a site downstream of the hypothalamic leptin/melanocortin system and upstream of the MCH system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the mouse M3 muscarinic receptor gene.
Figure 2: Body weight, food intake, mass of peripheral fat pads, metabolic rate and salivation response of wild-type and M3R-/- mice.
Figure 3: Glucose and insulin tolerance tests for wild-type and M3R-/- mice.
Figure 4: Role of M3 muscarinic receptors in neuropeptide-mediated feeding behaviour.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Brown, J. H. & Taylor, P. in The Pharmacological Basis of Therapeutics 9th edn (eds Hardman, J. G. et al.) 141–160 (McGraw-Hill, New York, 1996).

    Google Scholar 

  2. Wess, J., Buhl, T., Lambrecht, G. & Mutschler, E. in Comprehensive Medicinal Chemistry, Vol. 3 (ed. Emmett, J .C.) 423–491 (Pergamon, Oxford, 1990).

    Google Scholar 

  3. Caulfield, M. P. Muscarinic receptors—characterization, coupling and function. Pharmacol. Ther. 58, 319–379 (1993).

    Article  CAS  Google Scholar 

  4. Qu, D. et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670–674 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Levey, A. I., Edmunds, S. M., Heilman, C. J., Desmond, T. J. & Frey, K. A. Localization of muscarinic M3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63, 207–221 (1994).

    Article  CAS  Google Scholar 

  7. Hamilton, S. E. et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl Acad. Sci. USA 94, 13311–13316 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Gomeza, J. et al. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc. Natl Acad. Sci. USA 96, 1692–1697 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Gomeza, J. et al. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl Acad. Sci. USA 96, 10483–10488 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Rogers, P. & Webb, G. P. Estimation of body fat in normal and obese mice. Br. J. Nutr. 43, 83–86 (1980).

    Article  CAS  Google Scholar 

  11. Flier, J. & Maratos-Flier, E. Obesity and hypothalamus: Novel peptides for new pathways. Cell 92, 437–440 (1998).

    Article  CAS  Google Scholar 

  12. Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232 (1999).

    Article  CAS  Google Scholar 

  13. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  Google Scholar 

  14. Matsui, M. et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc. Natl Acad. Sci. USA 97, 9579–9584 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Levey, A. I. Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci. 52, 441–448 (1993).

    Article  CAS  Google Scholar 

  16. Eglen, R. M., Hegde, S. S. & Watson, N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol. Rev. 48, 531–565 (1996).

    CAS  PubMed  Google Scholar 

  17. Crawley, J. N. & Paylor, R. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm. Behav. 31, 197–211 (1997).

    Article  CAS  Google Scholar 

  18. Boschero, A. C. et al. Oxotremorine-m potentiation of glucose-induced insulin release from rat islets involves M3 muscarinic receptors. Am. J. Physiol. 268, E336–E342 (1995).

    CAS  PubMed  Google Scholar 

  19. Gong, D. W. et al. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J. Biol. Chem. 275, 16251–16257 (2000).

    Article  CAS  Google Scholar 

  20. Bittencourt, J. C. et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 319, 218–245 (1992).

    Article  CAS  Google Scholar 

  21. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  Google Scholar 

  22. Elias, C. F. et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459 (1998).

    Article  CAS  Google Scholar 

  23. Broberger, C., De Lecea, L., Sutcliffe, J. G. & Hökfelt, T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 402, 460–474 (1998).

    Article  CAS  Google Scholar 

  24. Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    Article  CAS  Google Scholar 

  25. Mystkowski, P. et al. Hypothalamic melanin-concentrating hormone and estrogen-induced weight loss. J. Neurosci. 20, 8637–8642 (2000).

    Article  CAS  Google Scholar 

  26. Rossi, M. et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139, 4428–4431 (1998).

    Article  CAS  Google Scholar 

  27. Bayer, L., Risold, P. Y., Griffoond, B. & Fellmann, D. Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections. Neuroscience 91, 1087–1101 (1999).

    Article  CAS  Google Scholar 

  28. Zeng, F., Hopp, A., Soldner, A. & Wess, J. Use of a disulfide cross-linking strategy to study muscarinic receptor structure and mechanisms of activation. J. Biol. Chem. 274, 16629–16640 (1999).

    Article  CAS  Google Scholar 

  29. Kleiber, M. in The Fire of Life 2nd edn 179–222 (R. E. Krieger, Huntington, New York, 1975).

    Google Scholar 

  30. Parkes, M. W. & Parks, J. C. Supersensitivity of salivation in response to pilocarpine after withdrawal of chronically administered hyoscine in the mouse. Br. J. Pharmacol. 46, 315–323 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the JSPS Research Fellowship Program (M.Y.) and through a CRADA between the NIDDK and the Eli Lilly Research Laboratories (B.X.). We thank M. L. Reitman, H. Kodama, H. Kanki and T. Sakurai for advice and discussions; J. Gan, N. Tsujino and C. Li for technical assistance; R. A. Kesterson for critical reading of the manuscript; and A. M. Spiegel and I. W. Levin for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, M., Miyakawa, T., Duttaroy, A. et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410, 207–212 (2001). https://doi.org/10.1038/35065604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065604

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing