Skip to main content
Log in

Role of nitric oxide in genotoxicity: Implication for carcinogenesis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gardner AW: Trauma and squamous skin cancer. The Lancet 1: 760-761, 1959

    Article  Google Scholar 

  2. Collins RH, Feldman M, Fordtran JS: Colon cancer, dysplasia, and surveillance in patients with ulcerative colitis. N Engl J Med 316: 1654-1658, 1987

    PubMed  Google Scholar 

  3. Korelitz BI: Carcinoma of the intestinal tract in Crohn's disease: results of a survey conducted by the National Foundation for Ileitis and colitis. Am J Gastroenterol 78: 44-46, 1983

    PubMed  Google Scholar 

  4. Kantor AF, Hartge P, Hoover RN, Fraumeni JF: Epidemiological characteristics of squamous cell carcinoma and adenocarcinoma of the bladder. Cancer Res 48: 3853-3855, 1988

    PubMed  Google Scholar 

  5. Lowenfels AB, Maisonneuve P, Cavallini G, Amman RW, Lankisch PG, Anderson JR, Dimagno EP, Andren-Sandberg A, Domellof L: Pancreatitis and the risk of pancreatic cancer. N Engl J Med 328: 1433-1437, 1993

    Article  PubMed  Google Scholar 

  6. Correa P: A human model of gastric carcinogenesis. Cancer Res 48: 3553-3560, 1988

    Google Scholar 

  7. Haswell-Elkins MR, Satrung S, Tsuda M, Mairiang E, Esumi H, Sithithaworn P, Mairiang P, Saitoh M, Yongvanit P, Elkins DB: Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutat Res 305: 241-252, 1994

    PubMed  Google Scholar 

  8. Oshima H, Bartsch H: Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305: 253-264, 1994

    PubMed  Google Scholar 

  9. Tamir S, Tannenbaum SR: The role of nitric oxide (NO) in the carcinogenic process. BBA 1288: f31-f36, 1996

    PubMed  Google Scholar 

  10. Liu RH, Hotchkiss: Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339: 73-89, 1995

    PubMed  Google Scholar 

  11. Arroyo PL, Hatch-Pigott V, Mower HF, Cooney RV: Mutagenicity of nitric oxide and its inhibition by antioxidants. Mutat Res 281: 193-202, 1992

    Article  PubMed  Google Scholar 

  12. Isomura K, Chikahira M, Teranishi K, Hamada K: Induction of mutations and chromosome aberrations in lung cells following in vivoexposure of rats to nitrogen oxides. Mutat Res 136: 119-125, 1984

    PubMed  Google Scholar 

  13. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001-1003, 1991

    PubMed  Google Scholar 

  14. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR: DNA damage and mutation in human cells exposed to nitric oxide in vitro.Proc Natl Acad Sci USA 89: 3030-3034, 1992

    PubMed  Google Scholar 

  15. Tamir S, Burney S, Tannenbaum SR: DNA damage by nitric oxide. Chem Res Toxicol 9: 821-827, 1996

    Article  PubMed  Google Scholar 

  16. Gal A, Wogan GN: Mutagenesis associated with nitric oxide production in transgenic SJL mice. Proc Natl Acad Sci USA 93: 15102-15107, 1996

    Article  PubMed  Google Scholar 

  17. Merchant K, Chen H, Gonzales TC, Keefer LK, Ramsay Shaw B: Deamination of single-stranded DNA cytosine residues in aerobic nitric oxide solution at micromolar total NO exposures. Chem Res Toxicol 9: 891-896, 1996

    Article  PubMed  Google Scholar 

  18. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271: C1424-C1437, 1996

    PubMed  Google Scholar 

  19. Ambs S, Hussain SP, Harris CC: Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. Faseb J, in press

  20. Routledge MN, Wink DA, Keefer LK, Dipple A: DNA sequence changes induced by two nitric oxide-donor drugs in the supF assay. Chem Res Toxicol 7: 628-632, 1994

    PubMed  Google Scholar 

  21. Routledge MN, Wink DA, Keefer LK, Dipple A: Mutations induced by satured aqueous nitric oxide in the pSP189 supF gene in human Ad293 and E. coli MBM7070 cells. Carcinogenesis 14: 1251-1254, 1993

    PubMed  Google Scholar 

  22. Görsdorf S, Appel KE, Engeholm C, Günter O: Nitrogen dioxide induces DNA single-strand breaks in cultured Chinese hamster cells. Carcinogenesis 11: 37-41, 1990

    PubMed  Google Scholar 

  23. Krupitza G, Cerutti P: Poly ADP-ribosylation of histones in intact human keratinocytes. Biochem 28: 4054-4060, 1989

    Google Scholar 

  24. Satoh MS, Lindahl T: Role of poly(ADP-ribose) formation in DNA repair. Nature 356: 356-358, 1992

    PubMed  Google Scholar 

  25. Christen S, Gee P, Ames BN: Mutagenicity of nitric oxide in base pair specific Salmonella tester strains: TA7000 series. In: Lester Packer (ed) Methods in Enzymology (vol 269). San Diego, Academic Press, 1996, pp 267-278

    Google Scholar 

  26. Schmutte C, Rideout WM, Shen J-C, Jones PA: Mutagenicity of nitric oxyde is not caused by deamination of cytosine or 5-methylcytosine in double-stranded DNA. Carcinogenesis 15: 2899-2903, 1994

    PubMed  Google Scholar 

  27. Pacelli R, Wink DA, Cook JA, Krishna MC, DeGraff W, Friedman N, Tsokos M, Samuni A, Mitchell JB: Nitric oxide potentiates hydrogen peroxide-induced killing of Escherischia coli. J Exp Med 182: 1469-1479, 1995

    Article  PubMed  Google Scholar 

  28. Nunoshiba T, Rojas-Walker T, Wishnok JS, Tannenbaum SR, Demple B: Activation by nitric oxide of an oxidativestress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90: 9993-9997, 1993

    PubMed  Google Scholar 

  29. Hidalgo E, Ding H, Demple B: Redox signal transduction: mutations shifting [2Fe-2s] centers of the SoxR sensor-regulator to the oxidized form. Cell 82: 121-129, 1997

    Google Scholar 

  30. Amabile-Cuevas CF, Demple B: Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. NAR 19: 4479-4484, 1991

    Google Scholar 

  31. Chou JH, Greenberg JT, Demple B: Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriology 175: 1026-1031, 1993

    Google Scholar 

  32. Harris CC, Hollstein M: Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329: 1318-1327, 1993

    Article  PubMed  Google Scholar 

  33. Felley-Bosco E, Mirkovitch J, Ambs S, Macé K, Pfeifer A, Keefer LK, Harris CC: Nitric oxide and ethylnitrosourea: relative mutagenicity in the p53 tumor suppressor and hypoxanthine-phosphoribosyltransferase genes. Carcinogenesis 16: 2069-2074, 1995

    PubMed  Google Scholar 

  34. Tornaletti S, Pfeifer GP: Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 1493-1499, 1995

  35. Schmalix WA, Singh JJ, Kapfhammer P, Stadler J, Nussler AK, Geller DA, Billiar TR, Simmons RL, Greim H, Doehmer J: Stable expression of human inducible nitric oxide synthase in V79 Chinese hamster cells. Biochem Pharm 52: 1365-1374, 1996

    Article  PubMed  Google Scholar 

  36. Luperchio S, Tamir S, Tannenbaum SR: NO-induced oxidative stress and glutathione metabolism in rodent and human cells. Free Rad Biol Med 2: 513-519, 1996

    Article  Google Scholar 

  37. Wink DA, Nims RW, Darbyshire JF, Christodoulu D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, Krishna MC, DeGraff WG, Mitchell JB: Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7: 519-525, 1994

    PubMed  Google Scholar 

  38. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620-1624, 1990

    PubMed  Google Scholar 

  39. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB: Nitric oxide protects against cellular damage and cytotoxicity from oxygen species. Proc Natl Acad Sci USA 90: 9813-9817, 1993

    PubMed  Google Scholar 

  40. Ischiropoulos H, Zhu L, Beckman JS: Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298: 446-451, 1992

    PubMed  Google Scholar 

  41. Zingarelli B, O'Coonor M, Wong H, Salzman AL, Szabo C: Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipolysaccharide. J Immunol 156: 350-358, 1996

    PubMed  Google Scholar 

  42. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS: Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5: 834-842, 1992

    PubMed  Google Scholar 

  43. Inoue S, Kawanishi S: Oxidative damage induced by simoultaneous generation of nitric oxide and superoxide. Febs Lett 371: 86-88, 1995

    Article  PubMed  Google Scholar 

  44. deRojas-Walker T, Tamir S, Ji H, Wishnok JS, Tannenbaum SR: Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol 8: 473-477, 1995

    PubMed  Google Scholar 

  45. Miles AM, Gibson M, Kirshna M, Cook JC, Grisham MB: Effects of superoxide on nitric oxide dependent N-nitrosation reactions. Free Rad Res 23: 379-390, 1995

    Google Scholar 

  46. Lewis RS, Tamir S, Tannenbaum SR, Deen WM: Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro.J Biol Chem 270: 29350-29355, 1995

    Article  PubMed  Google Scholar 

  47. Weitzman SA, Stossel TP: Mutation caused by human phagocytes. Science 212: 546-547, 1981

    PubMed  Google Scholar 

  48. Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H: DNA damage by peroxinitrite characterized with DNA repair enzymes. NAR 24: 4105-4110, 1996

    Google Scholar 

  49. Hentze MW, Kuhn LC: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93: 8175-8182, 1996

    Article  PubMed  Google Scholar 

  50. Keyer K, Imlay JA: Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93: 13635-13640, 1996

    Article  PubMed  Google Scholar 

  51. Hausladen A, Fridovitch I: Superoxide and peroxynitrite inactivate aconitase, but nitric oxide does not. J Biol Chem 269: 29405-29408, 1994

    PubMed  Google Scholar 

  52. Castro L, Rodriguez M, Radi R: Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269: 29409-29415, 1994

    PubMed  Google Scholar 

  53. Groves JT, Marla SS: Peroxynitrite-induced DNA strand scission mediated by a manganese prophyrin. J Am Chem Soc 117: 9578-9579, 1995

    Google Scholar 

  54. Salgo MG, Stone K, Squadrito GL, Pryor WA: Peroxynitrite causes DNA nicks in plasmid pBR322. Biochem Biophys Res Commun 210: 1025-1030, 1995

    Article  PubMed  Google Scholar 

  55. Szabo C, Zingarelli B, O'Connor M, Salzman AL: DNA strand breakage, activation of poly(ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93: 1753-1758, 1996

    Article  PubMed  Google Scholar 

  56. Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA, Grisham MB: Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem 271: 40-47, 1996

    Article  PubMed  Google Scholar 

  57. Uppu RM, Squadrito GL, Cueto R, Pryor WA: Selecting the most appropriate synthesis of peroxynitrite. In: Packer L (ed) Methods in Enzymology (vol 269). San Diego, Academic Press, 1996, pp 285-296

    Google Scholar 

  58. Amaya Y, Yamazaki KI, Sato K, Noda T, Nishimo T: Proteolytic conversion of xanthine dehydrogenase from NADdependent type to the O2-dependent type. J Biol Chem 265: 14170-14175, 1990

    PubMed  Google Scholar 

  59. Cote CG, Yu F-S, Zulueta JJ, Vosatka RJ, Hassoun PM: Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide. Am J Physiol 271: L869-L874, 1996

    PubMed  Google Scholar 

  60. Szatrowski TP, Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794-798, 1991

    PubMed  Google Scholar 

  61. Grum CM, Ragsdale RA, Ketai LH, Simon RH: Plasma xanthine oxidase in patients with adult respiratory distress syndrome. J Crit Care 2: 22-26, 1991

    Article  Google Scholar 

  62. Haddad IY, Pataki G, Hu P, Galliani C, Beckman JS, Matalon S: Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. JCI 94: 2407-2413, 1994

    PubMed  Google Scholar 

  63. Juedes MJ, Wogan GN: Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res 349: 51-61, 1996

    PubMed  Google Scholar 

  64. Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Oshima H: Formation of 8-nitroguanine by the reaction of guanine with peroxonitrite in vitro.Carcinogenesis 16: 2045-2050, 1995

    PubMed  Google Scholar 

  65. Douki T, Cadet J, Ames BN: An adduct between peroxynitrite and 2'-deoxyguanosine: 4,5-dihydro-5-hydroxy-4-(nitrosooxy)-2'-deoxyguanosine. Chem Res Toxicol 9: 2-7, 1996

    Google Scholar 

  66. Marletta M: Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol 1: 249-257, 1988

    PubMed  Google Scholar 

  67. Miwa M, Stuehr DJ, Marletta MA, Wishnok JS, Tannen baum SR: Nitrosation of amines by stimulated macrophages. Carcinogenesis 8: 955-958, 1987

    PubMed  Google Scholar 

  68. Iyengar R, Stuehr DJ, Marletta MA: Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursor and role of the respiratory burst. Proc Natl Acad Sci USA 84: 6369-6373, 1987

    PubMed  Google Scholar 

  69. Kosaka H, Wishnok JS, Miwa M, Lead CD, Tannenbaum SR: Nitrosation by stimulated macrophages. Inhibitors, enhancers and substrates. Carcinogenesis 10: 563-566, 1989

    PubMed  Google Scholar 

  70. Marnett LJ, Burcham PC: Endogenous DNA adducts: potential and paradox. Chem Res Toxicol 6: 771-785, 1993

    PubMed  Google Scholar 

  71. Stamler JS, Karaki O, Osborne JA, Simon DI, Keaney J, Vita J, Siegel DJV RC, Loscalzo J: Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89: 7674-7677, 1992

    PubMed  Google Scholar 

  72. Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugerbaker DJ, Chee C, Singel DJ, Loscalzo J, Stamler JS: Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 90: 10957-10961, 1993

    PubMed  Google Scholar 

  73. Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR: The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci USA 93: 14428-14433, 1996

    Article  PubMed  Google Scholar 

  74. Lipton SA, Choi YB, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JA: A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626-632, 1993

    Article  PubMed  Google Scholar 

  75. Broillet M-C, Firestein S: Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron 16: 377-385, 1996

    Article  PubMed  Google Scholar 

  76. Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A: Nitric oxide-stimulated guanine nuceotide exchange on p21 ras. J Biol Chem 270: 7017-7020, 1995

    Article  PubMed  Google Scholar 

  77. Caselli A, Camici G, Manao G, Moneti G, Pazzagli L, Cappugi G, Ramponi G: Nitric oxide causes inactivation of the low molecular weight phosphotyrosine protein phosphatase. J Biol Chem 269: 24878-24882, 1994

    PubMed  Google Scholar 

  78. Haijar D, Lander HM, Pearce SF, Upmacis RK, Pomerantz KB: Nitric oxide enhances prostaglandin-H synthase activity by a heme-independent mechanism: evidence implicating nitrosothiols. J Am Chem Soc 117: 3340-3346, 1995

    Google Scholar 

  79. Lander HM, Milbank AJ, Tauras JM, Hajjar DP, Hempstead BL, Schwartz GD, Kraemer RT, Mirza UA, Chait BT, Campbell Burk S, Quilliam LA: Redox regulation of cell signalling. Nature 381: 380-381, 1996

    Article  PubMed  Google Scholar 

  80. De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang F: Genetic and redox determinants of nitric oxide cytotoxicity in a salmonella typhimurium model. Proc Natl Acad Sci USA 92: 6399-6403, 1995

    PubMed  Google Scholar 

  81. De Groote MA, Testermann T, Xu T, Stauffer G, Fang FC: Homocysteine antagonism of nitric oxide-related cytostasis in salmonella typhimurium. Science 272: 414-417, 1996

    PubMed  Google Scholar 

  82. Hausladen A, Privalle CT, Keng T, DeAngelo J, Stamler JS: Nitrosative stress: activation of the transcription factor OxyR. Cell 86: 719-729, 1996

    Article  PubMed  Google Scholar 

  83. Christman MF, Morgan RW, Jacobson FS, Ames BN: Positive control of a regulation for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753-762, 1985

    PubMed  Google Scholar 

  84. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley-Bosco E, Wang X, Geller DA, Tzeng E, Billiar TR, Harris CC: Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93: 2442-2447, 1996

    Article  PubMed  Google Scholar 

  85. Messmer UK, Ankarcrona M, Nicotera P, Brüne B: P53 expression in nitric oxide-induced apoptosis. FEBS Lett 355: 23-26, 1994

    Article  PubMed  Google Scholar 

  86. Messmer UK, Brüne B: Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO-donor exposure. NAD ??content, and p53 accumulation. Arch Biochem Biophys 327: 1-10, 1996

    Article  PubMed  Google Scholar 

  87. Muhl H, Sandau K, Brüne B, Briner VA, Pfeilschifter J: Nitric oxide donors induce apoptosis in glomerular mesangial cells, epithelial cells and endothelial cells. Europ J Pharmacol 317: 137-149, 1996

    Article  Google Scholar 

  88. Green MHL: Influence of environmental and genetic factors on variation in human response to SNA damaging agents. Environ Pharmacol Toxicol 2: 151-155, 1996

    Article  Google Scholar 

  89. Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481-487, 1991

    PubMed  Google Scholar 

  90. Bartsch H: DNA adducts in human carcinogenesis: etiological relevance and structure-activity relationship. Mutat Res 340: 67-79, 1996

    PubMed  Google Scholar 

  91. El Ghisassi F, Barbin A, Nair J, Bartsch H: Formation of 1,N6-ethenoadenine and 3,N4-ethenocytosine by lipid peroxidation products and nucleic acid bases. Chem Res Toxicol 8: 278-283, 1995

    PubMed  Google Scholar 

  92. Marnett LJ: Generation of mutagens during arachidonic acid metabolism. Cancer Met Rev 13: 303-308, 1994

    Google Scholar 

  93. Bartsch H, Barbin A, Marion MJ, Nair J, Guichard Y: Formation, detection, and role in carcinogenesis of ethenobases in DNA. Drug Metab Rev 26: 349-379, 1994

    PubMed  Google Scholar 

  94. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrebach S, DuBois RN: Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterol 107: 1183-1188, 1994

    Google Scholar 

  95. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothi S: Expression of prostaglandin G/H synthase-1 and-2 protein in human colon cancer. Cancer Res 55: 2556-2559, 1995

    PubMed  Google Scholar 

  96. Asai K, Kimura S, Kato H, Kondo M, Hla T: Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res 55: 3785-3789, 1995

    PubMed  Google Scholar 

  97. Wink DA, Laval J: The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitroand in vivo. Carcinogenesis 15: 2125-2129, 1994

    PubMed  Google Scholar 

  98. Laval J, Wink DA: Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase. Carcinogenesis 15: 443-447, 1994

    PubMed  Google Scholar 

  99. Graziewicz M, Wink DA, Laval F: Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17: 2501-2505, 1996

    PubMed  Google Scholar 

  100. Laird PW, Jaenisch R: DNA methylation and cancer. Hum Mol Genet 3: 1487-1495, 1994

    PubMed  Google Scholar 

  101. Nedderman P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J: Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 271: 12767-12774, 1996

    Article  PubMed  Google Scholar 

  102. Dosanjh MK, Chenna A, Kim E, Fraenkel-Conrat H, Samson L, Singer B: Allfour known xcyclic adducts formed in DNA by the vinyl chloride metabolite chloroacetaldehyde are released by a human glycosylase. Proc Natl Acad Sci USA 91: 1024-1028, 1994

    PubMed  Google Scholar 

  103. Jacob A, Bopp A, Hagen U: In vitrorepair of single-strand breaks in gamma-irradiated DNA by polynucleotide ligase. Int J radiat Biol 22: 431-435, 1972

    Google Scholar 

  104. Wood RD: DNA repair in eukaryotes. Annu Rev Biochem 65: 135-167, 1996

    Article  PubMed  Google Scholar 

  105. Felley-Bosco E, Buzard GS, Billiar TR, Keefer LK: Nitric oxide, altered DNA, and mammalian disease. In: Aruoma OI, Halliwell B (eds) Molecular Biology of Free radicals in Human Diseases, in press

  106. Dröge W, Schulze-Osthoff K, Mihm S, Galter D, Schenk H, Eck H-P, Roth S, Gmünder H: Functions of glutathione and glutathione disulfide in immunology and immunopathology. Faseb J 8: 1131-1138, 1994

    PubMed  Google Scholar 

  107. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1: 27-31, 1995

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felley-Bosco, E. Role of nitric oxide in genotoxicity: Implication for carcinogenesis. Cancer Metastasis Rev 17, 25–37 (1998). https://doi.org/10.1023/A:1005948420548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005948420548

Navigation