Catecholamines, acetylcholine and excitability of mechanoreceptors

https://doi.org/10.1016/0301-0082(80)90007-6Get rights and content

First page preview

First page preview
Click to open first page preview

References (253)

  • G.N. Akoev et al.

    Potassium ions and electrical activity of single mechanoreceptors. Pacinian corpuscle

    Sechenov J. Physiol. USSR

    (1974)
  • G.N. Akoev et al.

    The role of ions and biologically active substances in the regulation of excitability of mechanoreceptors

  • A.E. Andersen et al.

    An electron microscopic investigation of the sensory organs in the hard palate region of the hen (Gallus domesticus)

    Z. Zellforsch.

    (1968)
  • K.H. Andres

    Über die Feinstruktur der Rezeptoren an Sinushaaren

    Z. Zellforsh.

    (1966)
  • K.H. Andres

    Zur Ultrastruktur verchiedener Mechanorezeptoren von höheren Wirbeltieren

    Anat. Anz.

    (1969)
  • K.H. Andres et al.

    Morphology of cutaneous receptors

  • P.K. Anokchin

    On the two-phase action of adrenaline on the baroreceptors of the aortic nerve

  • C.J. Armett et al.

    The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase

    J. Physiol. (Lond.)

    (1960)
  • C.J. Armett et al.

    The action of acetylcholine and some related substances on conduction in mammalian non-myelinated nerve fibres

    J. Physiol. (Lond.)

    (1961)
  • C.J. Armett et al.

    The ionic requirements for the action of acetylcholine on mammalian non-myelinated fibres

    J. Physiol. (Lond.)

    (1963)
  • D. Armstrong et al.

    Observations on chemical excitante of cutaneous pain in man

    J. Physiol. (Lond.)

    (1953)
  • B.Q. Banker et al.

    The ultrastructural features of the mammalian muscle spindle

    J. Neuropath. exp. Neurol.

    (1971)
  • D. Barker

    The innervation of the muscle-spindle

    Q. J. microsc. Sci.

    (1948)
  • D. Barker

    The Morphology of muscle receptors

  • D. Barker et al.

    The innervation of individual intrafusal muscle fibres

  • D. Barker et al.

    Fusimotor innervation in the cat

    Phil. Trans. R. Soc. (Lond.)

    (1970)
  • E.B. Beckett et al.

    Histology and cytochemistry of human skin

  • C. Bernard

    Influence du grand sympathique sur la sensibilité et sur la calorification

    C.R. Soc. Biol. Paris

    (1851)
  • K.D. Bhoola et al.

    The effect of adrenaline on mammalian muscle spindles

    J. Physiol. (Lond.)

    (1962)
  • T.J. Biscoe et al.

    Factors affecting the cat carotid chemoreceptor and cervical sympathetic activity with special reference to passive hind-limb movements

    J. Physiol. (Lond.)

    (1967)
  • T.J. Biscoe et al.

    The distribution of cholinesterases in the cat carotid body

    J. Physiol. (Lond.)

    (1966)
  • A.V. Borodulia et al.

    Adrenergic innervation of internal carotid arteries

  • G.L. Brown et al.

    Some effects of nicotine-like substances and their relation to sensory nerve endings

    J. Physiol. (Lond.)

    (1948)
  • Brücke E.Th.von

    Einflüsse des vegetativen Nervensystems auf Vorglänge innerhalb des animalischen systems

    Ergebn. Physiol.

    (1932)
  • P.R. Burgess et al.

    Characteristics of knee joint receptors in the cat

    J. Physiol. (Lond)

    (1969)
  • N. Cauna

    The distribution of cholinesterase in the cutaneous receptor organs, especially touch corpuscles of the human finger

    J. Histochem. Cytochem.

    (1960)
  • N. Cauna

    Functional significance of the submicroscopical, histochemical and microscopical organization of the cutaneous receptor organs

    Anat. Anz.

    (1962)
  • N. Cauna

    Cholinesterase activity in the somatic and automatic nerve supply of the skin

    Ann. d'Histochimie

    (1963)
  • N. Cauna

    Fine structure of the receptor organs and its probable functional significance

  • N. Cauna et al.

    Sensory receptor organs of the human nasal respiratory mucosa

    Am. J. Anat.

    (1969)
  • N. Cauna et al.

    The fine structure of Meissner's touch corpuscles in human fingers

    J. Biophys. biochem. Cytol.

    (1960)
  • I. Calma et al.

    The effect of adrenaline on muscle spindle in the cat

    Arch. Ital. Biol.

    (1962)
  • W.T. Catton

    Threshold, recovery and fatigue of tactile receptors in frog skin

    J. Physiol. (Lond.)

    (1961)
  • M.R. Chambers et al.

    The structure and function of the slowly adapting type II mechanoreceptor in hairy skin

    Quart. J. exp. Physiol.

    (1972)
  • V.L. Cherepnov

    The ultrastructure of the inner core of the Pacinian corpuscles

    J. evol. Biochem. Physiol. (USSR)

    (1968)
  • V.L. Cherepnov

    The effect produced by mechanical stimulation on the ultrastructure of the inner core of Pacinian corpuscle

  • K.E. Chernetski

    Sympathetic enhancement of peripheral sensory input in the frog

    J. Neurophysiol.

    (1964)
  • H.N. Chouchkov

    Histochemical demonstration of primary catecholamines in the Pacinian corpuscle of the cat

    Experientia (Basel)

    (1968)
  • H.N. Chouchkov

    Cytological distribution of the cholinesterase activity in the capsulated VaterPacini receptors

    C.R. Acad. Bulg. Sci.

    (1968)
  • H.N. Chouchkov

    Ultrastructure of Pacinian corpuscles in men and cats

    Z. Micr. anat. Forsch.

    (1971)
  • Cited by (40)

    • GDNF levels in the lower lip skin in a rat model of trigeminal neuropathic pain: Implications for nonpeptidergic fiber reinnervation and parasympathetic sprouting

      2011, Pain
      Citation Excerpt :

      Parasympathetic fibers release acetylcholine (ACh) as their primary neurotransmitter, and sensory fibers express nicotinic and muscarinic receptors [20]. Application of ACh has been shown to have a direct effect on sensitizing peripheral sensory afferents [2], and injection of ACh subcutaneously significantly decreased pain thresholds [51]. As with sympathetic fibers, parasympathetic fibers also release adenosine triphosphate as a cotransmitter with ACh, further implicating the P2X3 expressing, nonpeptidergic fibers in this abnormal sensory-autonomic interaction.

    View all citing articles on Scopus
    View full text