Skip to main content

Advertisement

Log in

A Dynamic Reinfection Hypothesis of Latent Tuberculosis Infection

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background:

It has been traditionally postulated that individuals, once infected by Mycobacterium tuberculosis, will retain throughout their entire lifetime latent bacilli which will remain dormant in old lesions. This bacillus would then be the source of a later reactivation of active tuberculosis (TB), with the aid of resuscitation factors. Unfortunately, the presence of these bacilli can only be predicted by indirect immunological methods, such as the tuberculin skin test (TST) or T cell interferon–gamma release assays. Other evidence shows that a 9-month isoniazid treatment of TST+ individuals converting to TB reduces the incidence of TB by approximately 90%.

Questions:

Taking into account this widely accepted framework, I suggest that there are at least three relevant questions to answer: (1) How can dormant bacilli remain in the lungs for an entire lifetime, taking into account constant cellular turnover and the healing of damaged tissues? (2) What provides the resuscitation factor to dormant bacilli, assuming that these latent bacilli are indeed present inside old lesions? (3) Why can a 9-month treatment with isoniazid eliminate dormant bacilli? As isoniazid is active only against growing bacilli, and thus is only able to destroy them after reactivation of latent bacilli, this treatment should have to be provided for life if the traditionally accepted postulate is correct.

Hypothesis:

For a better understanding of latent TB infection. I propose a hypothesis that describes a dynamic scenario of constant endogenous reinfection with M. tuberculosis which explains the efficacy of the current standard of treatment. If this hypothesis is true, new strategies for the management of TB may arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

INH:

Isoniazid

LTBI::

Latent tuberculosis infection

NO::

Nitric oxide

TAG::

Triglycerides

TB::

Tuberculosis

TST::

Tuberculin skin test

References

  1. Rieder HL: Epidemiologyic basis of Tuberculosis. International Union against Tuberculosis and Lung Diseases, Paris 1999.

    Google Scholar 

  2. Rothel JS, Andersen P: Diagnosis of latent Mycobacterium tuberculosis infection: is the demise of the Mantoux test imminent? Expert Rev Anti Infect Ther 2005; 3: 981–993.

    Article  PubMed  CAS  Google Scholar 

  3. Orme M: The latent tuberculosis bacillus (I’ll let you know if I ever meet one). Int J Tuberc Lung Dis 2001; 5: 589–593.

    PubMed  CAS  Google Scholar 

  4. Comstock GW: How much isoniazid is needed for prevention of tuberculosis among immunocompetent adults? Int J Tuberc Lung Dis 1999; 3: 847–850.

    PubMed  CAS  Google Scholar 

  5. Ulrichs T, Kaufmann SH: New insights into the function of granulomas in human tuberculosis. J Pathol 2006; 208: 261–269.

    Article  PubMed  CAS  Google Scholar 

  6. Park MK, Myers RA, Marzella L: Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clin Infect Dis 1992; 14: 720–740.

    PubMed  CAS  Google Scholar 

  7. Harmon KR, Marinelli WA, Henke CA, Bitterman PB: Regulation of cell replication. In: Crystal RG, West JB, (eds): The lung: scientific foundations, vol 2.9. Raven Press Ltd, New York 1991, pp 105–129.

    Google Scholar 

  8. Howat WJ, Holgate ST, Lackie PM: TGF-beta isoform release and activation during in vitro bronchial epithelial wound repair. Am J Physiol Lung Cell Mol Physiol 2002; 282: L115–L123.

    PubMed  CAS  Google Scholar 

  9. Daniel TM: The history of tuberculosis. Respir Med 2006; 100: 1862–1870.

    Article  PubMed  Google Scholar 

  10. Hernandez-Pando R, Jeyanathan M, Mengistu G, et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 2000; 356: 2133–2138.

    Article  PubMed  CAS  Google Scholar 

  11. Opie EL, Aronson JD: Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch Pathol 1927; 4: 121.

    Google Scholar 

  12. Shleeva MO, Bagramyan K, Telkov MV, et al. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 2002; 148: 1581–1591.

    PubMed  CAS  Google Scholar 

  13. Fox W, Ellard GA, Mitchison DA: Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int J Tuberc Lung Dis 1999; 3: S231–S279.

    PubMed  CAS  Google Scholar 

  14. Cardona PJ, Llatjós R, Gordillo S, Díaz J, Ojanguren I, Ariza A, Ausina V: Evolution of granulomas in mice infected aerogenically with Mycobacterium tuberculosis. Scand J Immunol 2000; 52: 156–163.

    Article  PubMed  CAS  Google Scholar 

  15. Cardona PJ, Gordillo S, Díaz J, Tapia G, Amat I, Pallarés A, Vilaplana C, Ariza A, Ausina V: Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect Immun 2003; 71: 5845–5854.

    Article  PubMed  CAS  Google Scholar 

  16. Dvorak AM, Dvorak HF, Peters SP, Shulman ES, MacGlashan DWJr, Pyne K, et al. Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J Immunol 1983; 131: 2965–2976.

    PubMed  CAS  Google Scholar 

  17. D’Avila H, Melo RC, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT: Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 2006; 176: 3087–3097.

    PubMed  Google Scholar 

  18. Muñoz-Elias EJ, Timm J, Botha T, Chan WT, Gomez JE, McKinney JD: Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun 2005; 73: 546–551.

    Article  PubMed  CAS  Google Scholar 

  19. Wallace JG: The heat resistance of tubercle bacilli in the lungs of infected mice. Am Rev Respir Dis 1961; 83: 866–871.

    PubMed  CAS  Google Scholar 

  20. Morita RY: Bioavailability of energy and the starvation state. In: Kjelleberg S (ed): Starvation in bacteria, vol. Plenum Press, New York, 1993, pp 1–23.

    Google Scholar 

  21. Cox RA: Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology 2004; 150: 142–3.

    Article  CAS  Google Scholar 

  22. Mestas J, Hughes CC: Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172: 2731–2738.

    PubMed  CAS  Google Scholar 

  23. Hofmann W, Asgharian B: The effect of lung structure on mucociliary clearance and particle retention in human and rat lungs. Toxicol Sci 2003; 73: 448–456.

    Article  PubMed  CAS  Google Scholar 

  24. Bui TD, Dabdub D, George SC: Modeling bronchial circulation with application to soluble gas exchange: description and sensitivity analysis. J Appl Physiol 1998; 84: 2070–2088.

    PubMed  CAS  Google Scholar 

  25. Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce de Leon A, Daley CL, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 1999; 353: 444–449.

    Article  PubMed  CAS  Google Scholar 

  26. Caceres N, Tapia G, Ojanguren I, Ariza A, Ausina V, Cardona PJ: Evolution of foamy macrophages in the granuloma structure of the lungs in the murine Mycobacterium tuberculosis experimental model of aerosol infection. Importance of chemotherapy in the foamy macrophage clearance. Keystone Symposia. Vancouver, pp 20–25. March 2007, Poster no. 218, p 25.

  27. Hall-Stoodley L, Watts G, Crowther JE, Balagopal A, Torrelles JB, Robison-Cox J, et al. Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions. Infect Immun 2006; 74: 3587–3596.

    Article  PubMed  CAS  Google Scholar 

  28. Ko G, First MW, Burge HA: Influence of relativehumidity on particle size and UV sensitivity of Serratiamarcescens and Mycobacterium bovis BCG aerosols. Tuber Lung Dis 2000; 80: 217–228.

    Article  PubMed  CAS  Google Scholar 

  29. Lurie MB. Resistance to tuberculosis: experimental studies in native and acquired defensive mechanisms. Harvard University Press, Cambridge 1964.

    Google Scholar 

  30. Doenhoff MJ: Granulomatous inflammation and the transmission of infection: schistosomiasis-and TB too? Immunol Today 1998; 19: 462–467.

    Article  PubMed  CAS  Google Scholar 

  31. Shaw JB, Wynn-Williams N: Infectivity of pulmonary tuberculosis in relation to sputum status. Am Rev Tuberc 1954; 69: 724–732.

    PubMed  CAS  Google Scholar 

  32. Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR: Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 2002; 148: 2951–2958.

    PubMed  CAS  Google Scholar 

  33. Murphy DJ: The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 2001; 40: 325–438.

    Article  PubMed  CAS  Google Scholar 

  34. Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, Fornes P, Tailleux L, Barris Payan JA, Pivert E, Bordat Y, Aguilar D, Prévost M-C, Petit C, Gicquel B: Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One 2006; 1: 1–9.

    Article  CAS  Google Scholar 

  35. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE 3rd: The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 2007; 189: 2583–2589.

    Article  PubMed  CAS  Google Scholar 

  36. Edwards DA, Man JC, Brand P, Katstra JP, Sommerer K, Stone HA, et al. Inhaling to mitigate exhaled bioaerosols. Proc Natl Acad Sci USA 2004; 101: 17383–17388.

    Article  PubMed  CAS  Google Scholar 

  37. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V: Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLOS Pathol 2005; 1: 55–60.

    CAS  Google Scholar 

  38. Andersen P: Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand J Immunol 1997; 45: 115–131.

    Article  PubMed  CAS  Google Scholar 

  39. Gordillo S, Guirado E, Gil O, Díaz J, Tapia G, Molinos S, Ausina V, Cardona PJ: Genetic expression of Mycobacterium tuberculosis under stressing conditions in “in vitro” and “in vivo” experimental models. Scand J Immunol 2006; 64: 30–39.

    Article  PubMed  CAS  Google Scholar 

  40. Andersen P, Doherty TM, Pai M, Weldingh K: The prognosis of latent tuberculosis: can disease be predicted? Trends Mol Med 2007; 13: 175–182.

    Article  PubMed  Google Scholar 

  41. Hoff ST, Abebe M, Ravn P, Range N, Malenganisho W, Rodriques DS, et al. Evaluation of Mycobacterium tuberculosis-specific antibody responses in populations with different levels of exposure from Tanzania, Ethiopia, Brazil, and Denmark. Clin Infect Dis 2007; 45: 575–582.

    Article  PubMed  CAS  Google Scholar 

  42. Glatman-Freedman A: Advances in antibody-mediated immunity against Mycobacterium tuberculosis: implications for a novel vaccine strategy. FEMS Immunol Med Microbiol 2003; 39: 9–16.

    Article  PubMed  CAS  Google Scholar 

  43. Sanchez-Rodriguez C, Estrada-Chavez C, Garcia-Vigil J, et al. An IgG antibody response to the antigen 85 complex is associated with good outcome in Mexican Totonaca Indians with pulmonary tuberculosis. Int J Tuberc Lung Dis 2002; 6: 706–712.

    PubMed  CAS  Google Scholar 

  44. Guirado E, Amat I, Gil O, Díaz J, Arcos V, Caceres N, Ausina V, Cardona PJ: Passive serum-therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect 2006; 8: 1252–1259.

    Article  PubMed  CAS  Google Scholar 

  45. North RJ, Jung YJ: Immunity to tuberculosis. Annu Rev Immunol 2004; 22: 599–623.

    Article  PubMed  CAS  Google Scholar 

  46. Boros DL: The cellular immunological aspects of the granulomatous response. Granulomatous infections and inflammations. In: Boros DL (ed) Cellular and molecular mechanisms, vol 1. ASM Press, Washington D.C., 2003, pp 1–28.

    Google Scholar 

  47. Cardona PJ, Ruiz-Manzano J: On the nature of Mycobacterium tuberculosis-latent bacilli. Eur Respir J 2004; 24: 1044–1051.

    Article  PubMed  Google Scholar 

  48. World Health Organization. TB/VIH. A clinical manual. Report no. WHO/HTM/TB/2004.329. WHO, Geneva 2004.

    Google Scholar 

  49. Peyron P, Vaubourgeix J, Poquet Y, Botanch C, Levillain F, Bardou F, Daffe M, Emile JF, Cardona PJ, de Chastellier C, Altare F: Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathogens 2008; 4(11)e 1000204.

    Article  CAS  Google Scholar 

  50. Cepelak I, Dodig S: Exhaled breath condensate: a new method for lung disease diagnosis. Clin Chem Lab Med 2007; 45: 945–952.

    Article  PubMed  CAS  Google Scholar 

  51. Gormus BJ, Blanchard JL, Alvarez XH, Didier PJ: Evidence for a rhesus monkey model of asymptomatic tuberculosis. J Med Primatol 2004; 33: 134–145.

    Article  PubMed  CAS  Google Scholar 

  52. Bolin CA, Whipple DL, Khanna KV, Risdahl JM, Peterson PK, Molitor TW: Infection of swine with Mycobacterium bovis as a model of human tuberculosis. J Infect Dis 1997; 176: 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  53. Gil O, Díaz I, Vilaplana C, Guirado E, Caceres N, Domingo M, Corner LAL, Cardona PJ: Therapeutic effect of the RUTI inoculation against the latent tuberculous infection. new insights crosswise the minipig experimental model. 7th International Conference of Pathogenesis of Mycobacterial Infections, 26–29 June 2008. Saltsjöbaden, Stockholm.

  54. Balasubramanian V, Wiegeshaus EH, Taylor BT, Smith DW: Pathogenesis of tuberculosis: pathway to apical localization. Tuber Lung Dis 1994; 75: 168–178.

    Article  PubMed  CAS  Google Scholar 

  55. Grange JM: Immunophysiology and immunopathology of tuberculosis. In: Davies PDO (ed): Clinical tuberculosis, vol 8. Chapman & Hall, London 1998, pp 113–127.

    Google Scholar 

  56. Nardell E, McInnis B, Thomas B, Weidhaas S: Exogenous reinfection with tuberculosis in a shelter for the homeless. N Engl J Med 1986; 315: 1570–1575.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-J. Cardona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, PJ. A Dynamic Reinfection Hypothesis of Latent Tuberculosis Infection. Infection 37, 80–86 (2009). https://doi.org/10.1007/s15010-008-8087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-008-8087-y

Keywords

Navigation