Skip to main content

Advertisement

Log in

Role of leukotrienes in exercise-induced bronchoconstriction

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Exercise-induced bronchoconstriction (EIB) refers to acute airflow obstruction that is triggered by a period of physical exertion. EIB occurs mainly in individuals with other features of asthma but is especially prominent in a subset of asthmatics with pronounced indirect airway hyperresponsiveness. Leukotrienes (LTs) play a critical role in the pathophysiology of EIB. Asthmatics who are susceptible to EIB have increased levels of cysteinyl LTs (cysLTs [ie, LTs C4, D4, and E4]) in induced sputum and exhaled breath condensate. Exercise challenge in individuals susceptible to this disorder initiates the sustained increase in cysLTs in the airways and an increase in the ratio of cysLTs to prostaglandin E2. The effects of cysLTs leading to secreted mucin release and smooth muscle constriction may be mediated in part through activation of sensory nerves. Therapies that block cysLT production or the cysLT1 receptor effectively reduce the severity of EIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Melo RE, Sole D, Naspitz CK: Exercise-induced bronchoconstriction in children: montelukast attenuates the immediate-phase and late-phase responses. J Allergy Clin Immunol 2003, 111:301–307.

    Article  PubMed  CAS  Google Scholar 

  2. Cabral AL, Conceicao GM, Fonseca-Guedes CH, Martins MA: Exercise-induced bronchospasm in children: effects of asthma severity. Am J Respir Crit Care Med 1999, 159:1819–1823.

    PubMed  CAS  Google Scholar 

  3. Hallstrand TS, Curtis JR, Koepsell TD, et al.: Effectiveness of screening examinations to detect unrecognized exercise-induced bronchoconstriction. J Pediatr 2002, 141:343–348.

    Article  PubMed  Google Scholar 

  4. Jones A: Screening for asthma in children. Br J Gen Pract 1994, 44:179–183.

    PubMed  CAS  Google Scholar 

  5. Hallstrand TS, Curtis JR, Aitken ML, Sullivan SD: Quality of life in adolescents with mild asthma. Pediatr Pulmonol 2003, 36:536–543.

    Article  PubMed  Google Scholar 

  6. Marotel C, Natali F, Heyraud JD, et al.: Severe forms of effort-induced asthma [in French]. Allerg Immunol (Paris) 1989, 21:61–64.

    CAS  Google Scholar 

  7. Samee S, Altes T, Powers P, et al.: Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol 2003, 111:1205–1211.

    Article  PubMed  CAS  Google Scholar 

  8. Becker JM, Rogers J, Rossini G, et al.: Asthma deaths during sports: report of a 7-year experience. J Allergy Clin Immunol 2004, 113:264–267.

    Article  PubMed  Google Scholar 

  9. Joos GF, O’Connor B, Anderson SD, et al.: Indirect airway challenges. Eur Respir J 2003, 21:1050–1068.

    Article  PubMed  CAS  Google Scholar 

  10. Carraro S, Corradi M, Zanconato S, et al.: Exhaled breath condensate cysteinyl leukotrienes are increased in children with exercise-induced bronchoconstriction. J Allergy Clin Immunol 2005, 115:764–770.

    Article  PubMed  CAS  Google Scholar 

  11. Hallstrand TS, Moody MW, Aitken ML, Henderson WR Jr: Airway immunopathology of asthma with exercise-induced bronchoconstriction. J Allergy Clin Immunol 2005, 116:586–593.

    Article  PubMed  CAS  Google Scholar 

  12. Freezer NJ, Croasdell H, Doull IJ, Holgate ST: Effect of regular inhaled beclomethasone on exercise and methacholine airway responses in school children with recurrent wheeze. Eur Respir J 1995, 8:1488–1493.

    PubMed  CAS  Google Scholar 

  13. Holzer K, Anderson SD, Douglass J: Exercise in elite summer athletes: challenges for diagnosis. J Allergy Clin Immunol 2002, 110:374–380.

    Article  PubMed  Google Scholar 

  14. Evans JF, Ferguson AD, Mosley RT, Hutchinson JH: What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sci 2008, 29:72–78.

    Article  PubMed  CAS  Google Scholar 

  15. Scollo M, Zanconato S, Ongaro R, et al.: Exhaled nitric oxide and exercise-induced bronchoconstriction in asthmatic children. Am J Respir Crit Care Med 2000, 161:1047–1050.

    PubMed  CAS  Google Scholar 

  16. Anderson SD, Kippelen P: Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 2008, 122:225–235.

    Article  PubMed  Google Scholar 

  17. Tarran R: Regulation of airway surface liquid volume and mucus transport by active ion transport. Proc Am Thorac Soc 2004, 1:42–46.

    Article  PubMed  CAS  Google Scholar 

  18. Kotaru C, Hejal RB, Finigan JH, et al.: Desiccation and hypertonicity of the airway surface fluid and thermally induced asthma. J Appl Physiol 2003, 94:227–233.

    PubMed  Google Scholar 

  19. Csoma Z, Huszar E, Vizi E, et al.: Adenosine level in exhaled breath increases during exercise-induced bronchoconstriction. Eur Respir J 2005, 25:873–878.

    Article  PubMed  CAS  Google Scholar 

  20. Gulliksson M, Palmberg L, Nilsson G, et al.: Release of prostaglandin D2 and leukotriene C4 in response to hyperosmolar stimulation of mast cells. Allergy 2006, 61:1473–1479.

    Article  PubMed  CAS  Google Scholar 

  21. Hallstrand TS, Moody MW, Wurfel MM, et al.: Inflammatory basis of exercise-induced bronchoconstriction. Am J Respir Crit Care Med 2005, 172:679–686.

    Article  PubMed  Google Scholar 

  22. Mickleborough TD, Lindley MR, Ray S: Dietary salt, airway inflammation, and diffusion capacity in exerciseinduced asthma. Med Sci Sports Exerc 2005, 37:904–914.

    PubMed  CAS  Google Scholar 

  23. Leff JA, Busse WW, Pearlman D, et al.: Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 1998, 339:147–152.

    Article  PubMed  CAS  Google Scholar 

  24. Mickleborough TD, Lindley MR, Ionescu AA, Fly AD: Protective effect of fish oil supplementation on exercise-induced bronchoconstriction in asthma. Chest 2006, 129:39–49.

    Article  PubMed  CAS  Google Scholar 

  25. Mickleborough TD, Murray RL, Ionescu AA, Lindley MR: Fish oil supplementation reduces severity of exerciseinduced bronchoconstriction in elite athletes. Am J Respir Crit Care Med 2003, 168:1181–1189.

    Article  PubMed  Google Scholar 

  26. Duong M, Subbarao P, Adelroth E, et al.: Sputum eosinophils and the response of exercise-induced bronchoconstriction to corticosteroid in asthma. Chest 2008, 133:404–411.

    Article  PubMed  CAS  Google Scholar 

  27. Hallstrand TS, Wurfel MM, Beyer R, et al.: Genome-wide expression profiling in phenotypically distinct groups of asthmatics identifies overexpression of epithelial and mast cell genes in exercise-induced bronchoconstriction. Paper presented at the Aspen Lung Conference. Aspen, CO; June 4–7, 2008.

  28. Currie GP, Haggart K, Lee DK, et al.: Effects of mediator antagonism on mannitol and adenosine monophosphate challenges. Clin Exp Allergy 2003, 33:783–788.

    Article  PubMed  CAS  Google Scholar 

  29. Koskela H, Di Sciascio MB, Anderson SD, et al.: Nasal hyperosmolar challenge with a dry powder of mannitol in patients with allergic rhinitis. Evidence for epithelial cell involvement. Clin Exp Allergy 2000, 30:1627–1636.

    Article  PubMed  CAS  Google Scholar 

  30. Hallstrand TS, Chi EY, Singer AG, et al.: Secreted phospholipase A2 group X overexpression in asthma and bronchial hyperresponsiveness. Am J Respir Crit Care Med 2007, 176:1072–1078.

    Article  PubMed  CAS  Google Scholar 

  31. Trudeau J, Hu H, Chibana K, et al.: Selective downregulation of prostaglandin E2-related pathways by the Th2 cytokine IL-13. J Allergy Clin Immunol 2006, 117:1446–1454.

    Article  PubMed  CAS  Google Scholar 

  32. Wijewickrama GT, Kim JH, Kim YJ, et al.: Systematic evaluation of transcellular activities of secretory phospholipases A2. High activity of group V phospholipases A2 to induce eicosanoid biosynthesis in neighboring inflammatory cells. J Biol Chem 2006, 281:10935–10944.

    Article  PubMed  CAS  Google Scholar 

  33. Henderson WR Jr, Chi EY, Bollinger JG, et al.: Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med 2007, 204:865–877.

    Article  PubMed  CAS  Google Scholar 

  34. Lai YL, Lee SP: Mediators in hyperpnea-induced bronchoconstriction of guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 1999, 360:597–602.

    Article  PubMed  CAS  Google Scholar 

  35. Freed AN, McCulloch S, Meyers T, Suzuki R: Neurokinins modulate hyperventilation-induced bronchoconstriction in canine peripheral airways. Am J Respir Crit Care Med 2003, 167:1102–1108.

    Article  PubMed  Google Scholar 

  36. Hallstrand TS, Debley JS, Farin FM, Henderson WR Jr: Role of MUC5AC in the pathogenesis of exercise-induced bronchoconstriction. J Allergy Clin Immunol 2007, 119:1092–1098.

    Article  PubMed  CAS  Google Scholar 

  37. Makker HK, Lau LC, Thomson HW, et al.: The protective effect of inhaled leukotriene D4 receptor antagonist ICI 204,219 against exercise-induced asthma. Am Rev Respir Dis 1993, 147:1413–1418.

    PubMed  CAS  Google Scholar 

  38. Finnerty JP, Wood-Baker R, Thomson H, Holgate ST: Role of leukotrienes in exercise-induced asthma. Inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 1992, 145:746–749.

    PubMed  CAS  Google Scholar 

  39. Meltzer SS, Hasday JD, Cohn J, Bleecker ER: Inhibition of exercise-induced bronchospasm by zileuton: a 5-lipoxygenase inhibitor. Am J Respir Crit Care Med 1996, 153:931–935.

    PubMed  CAS  Google Scholar 

  40. Pearlman DS, van Adelsberg J, Philip G, et al.: Onset and duration of protection against exercise-induced bronchoconstriction by a single oral dose of montelukast. Ann Allergy Asthma Immunol 2006, 97:98–104.

    Article  PubMed  CAS  Google Scholar 

  41. Philip G, Villaran C, Pearlman DS, et al.: Protection against exercise-induced bronchoconstriction two hours after a single oral dose of montelukast. J Asthma 2007, 44:213–217.

    Article  PubMed  CAS  Google Scholar 

  42. Peroni DG, Piacentini GL, Ress M, et al.: Time efficacy of a single dose of montelukast on exercise-induced asthma in children. Pediatr Allergy Immunol 2002, 13:434–437.

    Article  PubMed  Google Scholar 

  43. Edelman JM, Turpin JA, Bronsky EA, et al.: Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group. Ann Intern Med 2000, 132:97–104.

    PubMed  CAS  Google Scholar 

  44. Villaran C, O’Neill SJ, Helbling A, et al.: Montelukast versus salmeterol in patients with asthma and exercise-induced bronchoconstriction. Montelukast/Salmeterol Exercise Study Group. J Allergy Clin Immunol 1999, 104:547–553.

    Article  PubMed  CAS  Google Scholar 

  45. Raissy HH, Harkins M, Kelly F, Kelly HW: Pretreatment with albuterol versus montelukast for exercise-induced bronchospasm in children. Pharmacotherapy 2008, 28:287–294.

    Article  PubMed  CAS  Google Scholar 

  46. Coreno A, Skowronski M, West E, et al.: Bronchoprotective effects of single doses of salmeterol combined with montelukast in thermally induced bronchospasm. Chest 2005, 127:1572–1578.

    Article  PubMed  CAS  Google Scholar 

  47. Coreno A, Skowronski M, Kotaru C, McFadden ER Jr: Comparative effects of long-acting beta2-agonists, leukotriene receptor antagonists, and a 5-lipoxygenase inhibitor on exercise-induced asthma. J Allergy Clin Immunol 2000, 106:500–506.

    Article  PubMed  CAS  Google Scholar 

  48. Nelson JA, Strauss L, Skowronski M, et al.: Effect of longterm salmeterol treatment on exercise-induced asthma. N Engl J Med 1998, 339:141–146.

    Article  PubMed  CAS  Google Scholar 

  49. Storms W, Chervinsky P, Ghannam AF, et al.: A comparison of the effects of oral montelukast and inhaled salmeterol on response to rescue bronchodilation after challenge. Respir Med 2004, 98:1051–1062.

    Article  PubMed  Google Scholar 

  50. Stelmach I, Grzelewski T, Majak P, et al.: Effect of different antiasthmatic treatments on exercise-induced bronchoconstriction in children with asthma. J Allergy Clin Immunol 2008, 121:383–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teal S. Hallstrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallstrand, T.S., Henderson, W.R. Role of leukotrienes in exercise-induced bronchoconstriction. Curr Allergy Asthma Rep 9, 18–25 (2009). https://doi.org/10.1007/s11882-009-0003-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0003-8

Keywords

Navigation