Skip to main content
Log in

Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms. In this study, we investigated whether CaSR induces the proliferation of PASMCs in small pulmonary arteries from both rats and human with PAH. PAH was induced by exposing rats to hypoxia for 7–21 days. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVI), the percentage of medial wall thickness to the external diameter (WT %), and cross-sectional total vessel wall area to the total area (WA %) of small pulmonary arteries were determined by hematoxylin and eosin (HE), masson trichrome and Weigert’s staining. The protein expressions of matrix metalloproteinase (MMP)-2 and MMP-9, the tissue inhibitors of metalloproteinase (TIMP)-3, CaSR, proliferating cell nuclear antigen (PCNA), phosphorylated extracellular signal-regulated kinase (p-ERK), and smooth muscle cell (SMC) phenotype marker proteins in rat small pulmonary arteries, including calponin, SMα-actin (SMAα), and osteopontin (OPN), were analyzed by immunohistochemistry and Western blotting, respectively. In addition, immunohistochemistry was applied to paraffin-embedded human tissues from lungs of normal human and PAH patients with chronic heart failure (PAH/CHF). Compared with the control group, mPAP, RVI, WT % and WA % in PAH rats were gradually increased with the prolonged hypoxia. At the same time, the expressions of CaSR, MMP-2, MMP-9, TIMP-3, PCNA, OPN, and p-ERK were markedly increased, while the expressions of SMAα and calponin were significantly reduced in lung tissues or small pulmonary arteries of PAH rats. Neomycin (an agonist of CaSR) enhanced but NPS2390 (an antagonist of CaSR) weakened these hypoxic effects. We further found that the expression change of CaSR, PCNA, and SMC phenotypic marker proteins in PAH/CHF lungs was similar to those in PAH rats. Our data suggest that CaSR is involved in the pulmonary vascular remodeling and PAH by promoting phenotypic modulation of small pulmonary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8:443–455. doi:10.1038/nrcardio.2011.87

    Article  PubMed  CAS  Google Scholar 

  2. Guo Q, Huang JA, Yamamura A, Yamamura H, Zimnicka AM, Fernandez R, Yuan JX (2014) Inhibition of the Ca(2+)-sensing receptor rescues pulmonary hypertension in rats and mice. Hypertens Res 37:116–124. doi:10.1038/hr.2013.129

    Article  PubMed  CAS  Google Scholar 

  3. Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066. doi:10.1161/CIRCULATIONAHA.108.847707

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jie W, Guo J, Shen Z, Wang X, Zheng S, Wang G, Ao Q (2010) Contribution of myocardin in the hypoxia-induced phenotypic switching of rat pulmonary arterial smooth muscle cells. Exp Mol Pathol 89:301–306. doi:10.1016/j.yexmp.2010.06.010

    Article  PubMed  CAS  Google Scholar 

  5. Frid MG, Moiseeva EP, Stenmark KR (1994) Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circ Res 75:669–681

    Article  PubMed  CAS  Google Scholar 

  6. House SJ, Ginnan RG, Armstrong SE, Singer HA (2007) Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 292:C2276–C2287. doi:10.1152/ajpcell.00606.2006

    Article  PubMed  CAS  Google Scholar 

  7. Song MY, Makino A, Yuan JX (2011) STIM2 Contributes to enhanced store-operated ca entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Pulm Circ 1:84–94. doi:10.4103/2045-8932.78106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Fuchs B, Dietrich A, Gudermann T, Kalwa H, Grimminger F, Weissmann N (2010) The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. Adv Exp Med Biol 661:187–200. doi:10.1007/978-1-60761-500-2_12

    Article  PubMed  CAS  Google Scholar 

  9. Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505. doi:10.1161/01.RES.0000138952.16382.ad

    Article  PubMed  CAS  Google Scholar 

  10. Magno AL, Ward BK, Ratajczak T (2010) The calcium-sensing receptor: a molecular perspective. Endocr Rev 32:3–30

    Article  PubMed  Google Scholar 

  11. Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4:530–538

    Article  PubMed  CAS  Google Scholar 

  12. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    PubMed  CAS  Google Scholar 

  13. Wang R, Xu C, Zhao W, Zhang J, Cao K, Yang B, Wu L (2003) Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur J Biochem 270:2680–2688

    Article  PubMed  CAS  Google Scholar 

  14. Li GW, Wang QS, Hao JH, Xing WJ, Guo J, Li HZ, Bai SZ, Li HX, Zhang WH, Yang BF, Yang GD, Wu LY, Wang R, Xu CQ (2011) The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells. J Biomed Sci 18:16. doi:10.1186/1423-0127-18-16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chow JY, Estrema C, Orneles T, Dong X, Barrett KE, Dong H (2011) Calcium-sensing receptor modulates extracellular Ca2+ entry via TRPC-encoded receptor-operated channels in human aortic smooth muscle cells. Am J Physiol Cell Physiol 301:C461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Weston AH, Absi M, Ward DT, Ohanian J, Dodd RH, Dauban P, Petrel C, Ruat M, Edwards G (2005) Evidence in favor of a calcium-sensing receptor in arterial endothelial cells studies with calindol and calhex 231. Circ Res 97:391–398

    Article  PubMed  CAS  Google Scholar 

  17. Zhang J, Zhou J, Cai L, Lu Y, Wang T, Zhu L, Hu Q (2012) Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxid Redox Signal 17:471–484. doi:10.1089/ars.2011.4168

    Article  PubMed  CAS  Google Scholar 

  18. Yamamura A, Guo Q, Yamamura H, Zimnicka AM, Pohl NM, Smith KA, Fernandez RA, Zeifman A, Makino A, Dong H, Yuan JX (2012) Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ Res 111:469–481. doi:10.1161/CIRCRESAHA.112.266361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA (2005) Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. Am J Physiol Lung Cell Mol Physiol 288:L1049–L1058. doi:10.1152/ajplung.00379.2004

    Article  PubMed  CAS  Google Scholar 

  20. Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, Feghali-Bostwick C, Ryter SW, Kim HP, Rabinovitch M, Choi AM (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183:649–658. doi:10.1164/rccm.201005-0746OC

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Liu Y, Tian XY, Mao G, Fang X, Fung ML, Shyy JY, Huang Y, Wang N (2012) Peroxisome proliferator-activated receptor-gamma ameliorates pulmonary arterial hypertension by inhibiting 5-hydroxytryptamine 2B receptor. Hypertension 60:1471–1478. doi:10.1161/HYPERTENSIONAHA.112.198887

    Article  PubMed  CAS  Google Scholar 

  22. Sun Y, Tian Y, Prabha M, Liu D, Chen S, Zhang R, Liu X, Tang C, Tang X, Jin H, Du J (2010) Effects of sulfur dioxide on hypoxic pulmonary vascular structural remodeling. Lab Invest 90:68–82. doi:10.1038/labinvest.2009.102

    Article  PubMed  CAS  Google Scholar 

  23. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658. doi:10.1172/JCI24134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Huang X, Fan R, Lu Y, Yu C, Xu X, Zhang X, Liu P, Yan S, Chen C, Wang L (2014) Regulatory effect of AMP-activated protein kinase on pulmonary hypertension induced by chronic hypoxia in rats: in vivo and in vitro studies. Mol Biol Rep. doi:10.1007/s11033-014-3272-9

    Google Scholar 

  25. Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69:614–624. doi:10.1016/j.cardiores.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  26. Daniel JM, Sedding DG (2011) Circulating smooth muscle progenitor cells in arterial remodeling. J Mol Cell Cardiol 50:273–279. doi:10.1016/j.yjmcc.2010.10.030

    Article  PubMed  CAS  Google Scholar 

  27. Lepetit H, Eddahibi S, Fadel E, Frisdal E, Munaut C, Noel A, Humbert M, Adnot S, D’Ortho MP, Lafuma C (2005) Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir J 25:834–842. doi:10.1183/09031936.05.00072504

    Article  PubMed  CAS  Google Scholar 

  28. Fernandez RA, Sundivakkam P, Smith KA, Zeifman AS, Drennan AR, Yuan JX (2012) Pathogenic role of store-operated and receptor-operated ca(2+) channels in pulmonary arterial hypertension. J Signal Transduct 2012:951497. doi:10.1155/2012/951497

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX (2012) New mechanisms of pulmonary arterial hypertension: role of Ca(2+) signaling. Am J Physiol Heart Circ Physiol 302:H1546–H1562. doi:10.1152/ajpheart.00944.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Riccardi D (2012) Parathyroid hormone-independent role for the calcium-sensing receptor in the control of urinary calcium excretion. J Am Soc Nephrol 23:1766–1768. doi:10.1681/ASN.2012090955

    Article  PubMed  Google Scholar 

  31. Guo Q, Huang JA, Yamamura A, Yamamura H, Zimnicka AM, Fernandez R, Yuan JX (2013) Inhibition of the Ca-sensing receptor rescues pulmonary hypertension in rats and mice. Hypertens Res. doi:10.1038/hr.2013.129

    PubMed Central  Google Scholar 

  32. Li GW, Xing WJ, Bai SZ, Hao JH, Guo J, Li HZ, Li HX, Zhang WH, Yang BF, Wu LY, Wang R, Yang GD, Xu CQ (2011) The calcium-sensing receptor mediates hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells through MEK1/ERK1,2 and PI3K pathways. Basic Clin Pharmacol Toxicol 108:185–193. doi:10.1111/j.1742-7843.2010.00639.x

    Article  PubMed  CAS  Google Scholar 

  33. Aoshima D, Murata T, Hori M, Ozaki H (2009) Time-dependent phenotypic and contractile changes of pulmonary artery in chronic hypoxia-induced pulmonary hypertension. J Pharmacol Sci 110:182–190

    Article  PubMed  CAS  Google Scholar 

  34. Wang L, Zheng J, Du Y, Huang Y, Li J, Liu B, Liu CJ, Zhu Y, Gao Y, Xu Q, Kong W, Wang X (2010) Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ Res 106:514–525. doi:10.1161/CIRCRESAHA.109.202762

    Article  PubMed  CAS  Google Scholar 

  35. Yi B, Cui J, Ning JN, Wang GS, Qian GS, Lu KZ (2012) Over-expression of PKGIα inhibits hypoxia-induced proliferation, Akt activation, and phenotype modulation of human PASMCs: the role of phenotype modulation of PASMCs in pulmonary vascular remodeling. Gene 492:354–360. doi:10.1016/j.gene.2011.11.010

    Article  PubMed  CAS  Google Scholar 

  36. Zhao Y, Lv M, Lin H, Cui Y, Wei X, Qin Y, Kohama K, Gao Y (2013) Rho-associated protein kinase isoforms stimulate proliferation of vascular smooth muscle cells through ERK and induction of cyclin D1 and PCNA. Biochem Biophys Res Commun 432:488–493. doi:10.1016/j.bbrc.2013.02.009

    Article  PubMed  CAS  Google Scholar 

  37. Reinke C, Bevans-Fonti S, Grigoryev DN, Drager LF, Myers AC, Wise RA, Schwartz AR, Mitzner W, Polotsky VY (2011) Chronic intermittent hypoxia induces lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol 300:L266–L273. doi:10.1152/ajplung.00239.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Rzucidlo EM (2009) Signaling pathways regulating vascular smooth muscle cell differentiation. Vascular 17(Suppl 1):S15–S20

    Article  PubMed  Google Scholar 

  39. Li L, Wang L, Li TT, Li X, Huang XQ, Chen XW, Li ZL, Lv XM, Liu FY, Luo ZW, Liu M, Hu XH, Hu WF, Huang ZX, Yi M, Liu SJ, Liu YZ, Li DW (2013) ERK signaling pathway regulates embryonic survival and eye development in goldfish, Carassius auratus. Curr Mol Med 13:959–967

    Article  PubMed  CAS  Google Scholar 

  40. Avlani VA, Ma W, Mun HC, Leach K, Delbridge L, Christopoulos A, Conigrave AD (2013) Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells. Am J Physiol Endocrinol Metab 304:E1097–E1104. doi:10.1152/ajpendo.00054.2013

    Article  PubMed  CAS  Google Scholar 

  41. Lu FH, Fu SB, Leng X, Zhang X, Dong S, Zhao YJ, Ren H, Li H, Zhong X, Xu CQ, Zhang WH (2013) Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure. Cell Physiol Biochem 31:728–743. doi:10.1159/000350091

    Article  PubMed  Google Scholar 

  42. Molostvov G, Fletcher S, Bland R, Zehnder D (2008) Extracellular calcium-sensing receptor mediated signalling is involved in human vascular smooth muscle cell proliferation and apoptosis. Cell Physiol Biochem 22:413–422. doi:10.1159/000185484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 81070123, 81270311, 81100191, 81270273, 81200160), the Postdoctoral Research Foundation of Heilongjiang Province (LBH-Z12197), and the Foundation of Heilongjiang Educational Committee (12511618).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Qing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Li, HX., Shao, HJ. et al. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries. Mol Cell Biochem 396, 87–98 (2014). https://doi.org/10.1007/s11010-014-2145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2145-9

Keywords

Navigation