Skip to main content
Log in

Eosinophil Cationic Protein Stimulates TGF-β1 Release by Human Lung Fibroblasts In Vitro

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Eosinophilic inflammation and airway remodeling are features of asthma. Eosinophil cationic protein (ECP) is released by activated eosinophils and transforming growth factor (TGF)-β1 has major functions in the fibrotic process. We therefore hypothesized that ECP stimulates TGF-β1 release by human lung fibroblasts. Fibroblasts in monolayer displayed a constitutive release of TGF-β1, which increased in presence of ECP (436 ± 60 vs. 365 ± 48 pg/ml at 48 h; P < 0.01). mRNA expression of TGF-β1 was almost twofold in ECP-stimulated fibroblasts. ECP in three-dimensional cultures stimulated both TGF-β1 release (180 ± 61 vs. 137 ± 54 pg/ml; P < 0.01) and fibroblast-mediated collagen gel contraction (28 vs. 39% of initial gel area at 48 h; P < 0.001). ECP stimulates TGF-β1-release by human lung fibroblasts, suggesting a potential mechanism for eosinophils in the fibrotic response. This may be an important mechanism by which ECP promotes remodeling of extra cellular matrix leading to airway fibrosis in asthmatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilson, J. W., and T. L. Bamford. 2001. Assessing the evidence for remodelling of the airway in asthma. Pulm. Pharmacol. Ther. 14:229–247.

    Article  PubMed  CAS  Google Scholar 

  2. Venge, P., J. Bystrom, M. Carlson, L. Hakansson, M. Karawacjzyk, C. Peterson, L. Seveus, and A. Trulson. 1999. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin. Exp. Allergy 29:1172–1186.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, L. B., H. Kita, K. M. Leiferman, and G. J. Gleich. 1996. Eosinophils in allergy: role in disease, degranulation, and cytokines. Int. Arch. Allergy Immunol. 109:207–215.

    Article  PubMed  CAS  Google Scholar 

  4. Venge, P. 2004. Monitoring the allergic inflammation. Allergy 59:26–32.

    Article  PubMed  CAS  Google Scholar 

  5. Sime, P., G. Tremblay, Z. Xing, B. Sarnstrand, J. Gauldie. 1997. Asthma, A. Woolcock ed. Lippincott-Raven Publishers, Philadelphia, pp. 475–489.

    Google Scholar 

  6. Diegelmann, R. F., and M. C. Evans. 2004. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9:283–289.

    Article  PubMed  CAS  Google Scholar 

  7. Zagai U, C. M. Skold, A. Trulson, P. Venge, and J. Lundahl. 2004. The effect of eosinophils on collagen gel contraction and implications for tissue remodelling. Clin. Exp. Immunol. 135:427–433.

    Article  PubMed  CAS  Google Scholar 

  8. Bell, E., B. Ivarsson, and C. Merrill. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. U.S.A. 76:1274–1278.

    Article  PubMed  CAS  Google Scholar 

  9. Grinnell, F. 1994. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124:401–404.

    Article  PubMed  CAS  Google Scholar 

  10. Adachi, Y., T. Mio, K. Takigawa, I. Striz, D. J. Romberger, J. R. Spurzem, and S. I. Rennard. 1998. Fibronectin production by cultured human lung fibroblasts in three-dimensional collagen gel culture. In Vitro Cell Dev. Biol. Anim. 34:203–210.

    Article  PubMed  CAS  Google Scholar 

  11. Ohga, E., T. Matsuse, S. Teramoto, and Y. Ouchi. 2000. Activin receptors are expressed on human lung fibroblast and activin A facilitates fibroblast-mediated collagen gel contraction. Life Sci. 66:1603–1613.

    Article  PubMed  CAS  Google Scholar 

  12. Mio, T., X. Liu, M. L. Toews, Y. Adachi, D. J. Romberger, J. R. Spurzem, and S. I. Rennard. 2001. Bradykinin augments fibroblast-mediated contraction of released collagen gels. Am. J. Physiol. Lung. Cell Mol. Physiol. 281:L164–L171.

    Google Scholar 

  13. Liu, X., T. Kohyama, H. Wang, Y. K. Zhu, F. Q. Wen, H. J. Kim, D. J. Romberger, and S. I. Rennard. 2002. Th2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells. Am. J. Physiol. Lung. Cell Mol. Physiol. 282:L1049–L1056.

    Google Scholar 

  14. Peterson, C. G., H. Jornvall, and P. Venge. 1988. Purification and characterization of eosinophil cationic protein from normal human eosinophils. Eur. J. Haematol. 40:415–423.

    Article  PubMed  CAS  Google Scholar 

  15. Elsdale, T., J. Bard. 1972. Collagen substrata for studies on cell behavior. J. Cell Biol. 54:626–637.

    Article  PubMed  CAS  Google Scholar 

  16. Zagai, U., K. Fredriksson, S. I. Rennard, J. Lundahl, and C. M. Skold. 2003. Platelets stimulate fibroblast-mediated contraction of collagen gels. Respir. Res. 4:13.

    Article  PubMed  Google Scholar 

  17. Abe, M., J. G. Harpel, C. N. Metz, I. Nunes, D. J. Loskutoff, and D. B. Rifkin. 1994. An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal. Biochem. 216:276–284.

    Article  PubMed  CAS  Google Scholar 

  18. Haagmans, B. L., J. W. Hoogerbrugge, A. P. Themmen, and K. J. Teerds. 2003. Rat testicular germ cells and sertoli cells release different types of bioactive transforming growth factor beta in vitro. Reprod. Biol. Endocrinol. 1:3.

    Article  PubMed  Google Scholar 

  19. Mio, T., Y. Adachi, D. J. Romberger, R. F. Ertl, and S. I. Rennard. 1996. Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. In Vitro Cell Dev. Biol. Anim. 32:427–433.

    PubMed  CAS  Google Scholar 

  20. Montgomery, D. C. 1991. Design and Analysis of Experiments. John Wiley & Sons, New York.

    Google Scholar 

  21. Daniel, W. W. 1995. Biostatistics: A Foundation for Analysis in the Health Sciences. John Wiley & Sons, New York.

    Google Scholar 

  22. Claeys, S., H. Van Hoecke, G. Holtappels, P. Gevaert, T. De Belder, B. Verhasselt, P. Van Cauwenberge, and C. Bachert. 2005. Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin. Exp. Allergy 35:467–472.

    Article  PubMed  CAS  Google Scholar 

  23. Hernnas, J., B. Sarnstrand, P. Lindroth, C. G. Peterson, P. Venge, and A. Malmstrom. 1992. Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur. J. Cell Biol. 59:352–363.

    PubMed  CAS  Google Scholar 

  24. Bartram, U., and C. P. Speer. 2004. The role of transforming growth factor beta in lung development and disease. Chest 125:754–765.

    Article  PubMed  Google Scholar 

  25. Chapman, H. A. 2004. Disorders of lung matrix remodeling. J. Clin. Invest. 113:148–57.

    Article  PubMed  CAS  Google Scholar 

  26. Kunz-Schughart, L. A., S. Wenninger, T. Neumeier, P. Seidl, and R. Knuechel. 2003. Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-beta 1. Am. J. Physiol. Cell Physiol. 284:C209–C219.

    Google Scholar 

  27. Gaissmaier, C., J. Fritz, T. Krackhardt, I. Flesch, W. K. Aicher, and N. Ashammakhi. 2005. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials 26:1953–1960.

    Article  PubMed  CAS  Google Scholar 

  28. Fukamizu, H, and F. Grinnell. 1990. Spatial organization of extracellular matrix and fibroblast activity: effects of serum, transforming growth factor beta, and fibronectin. Exp. Cell Res. 190:276–282.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, Y. M., S. S. Kim, H. A. Kim, Y. J. Suh, S. K. Lee, D. H. Nahm, and H. S. Park. 2003. Eosinophil inflammation of nasal polyp tissue: relationships with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta1. J. Korean Med. Sci. 18:97–102.

    PubMed  CAS  Google Scholar 

  30. Buron, E., J. A. Garrote, E. Arranz, P. Oyaguez, J. L. Fernandez Calvo, and A. Blanco Quiros. 1999. Markers of pulmonary inflammation in tracheobronchial fluid of premature infants with respiratory distress syndrome. Allergol. Immunopathol. (Madr). 27:11–17.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Rolf Lewensohn at the Cancer Centrum Karolinska, for letting us use equipment for DNA analysis and Per Näsman at the Royal Institute of Technology, for assistance with statistical analysis. For the preparation and characterization of ECP the work of Lena Moberg and Agneta Trulson is greatly appreciated. The financial support from the Swedish Heart–Lung Foundation, Cancer and Allergy Foundation, Swedish Foundation for Health Care Science and Allergy Research, Hesselman Foundation, Boehringer-Ingelheim/Pfizer, the Swedish Research Council and Karolinska Institutet is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrika Zagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagai, U., Dadfar, E., Lundahl, J. et al. Eosinophil Cationic Protein Stimulates TGF-β1 Release by Human Lung Fibroblasts In Vitro. Inflammation 30, 153–160 (2007). https://doi.org/10.1007/s10753-007-9032-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-007-9032-4

Key words

Navigation