Skip to main content

Advertisement

Log in

Angiotensin II, sympathetic nerve activity and chronic heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Sympathetic nerve activity has been reported to be increased in both humans and animals with chronic heart failure. One of the mechanisms believed to be responsible for this phenomenon is increased systemic and cerebral angiotensin II signaling. Plasma angiotensin II is increased in humans and animals with chronic heart failure. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic heart failure. Angiotensin II signaling is enhanced in different brain sites such as the paraventricular nucleus, the rostral ventrolateral medulla and the area postrema. Blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the paraventricular nucleus. Injection of an angiotensin receptor blocker into the area postrema activates the sympathoinhibitory baroreflex. In peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity seen in chronic heart failure. Increased circulating angiotensin II during chronic heart failure may enhance the sympathoexcitatory chemoreflex and inhibit the sympathoinhibitory baroreflex. In addition, increased circulating angiotensin II can directly act on the central nervous system via the subfornical organ and the area postrema to increase sympathetic outflow. Inhibition of angiotensin II formation and its type 1 receptor has been shown to have beneficial effects in chronic heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

AngII:

Angiotensin II

AT1R:

Angiotensin II type 1 receptor

BP:

Blood pressure

CHF:

Chronic heart failure

CSAR:

Cardiac sympathetic afferent reflex

eNOS:

Endothelial nitric oxide synthase

GABA:

γ-Aminobutyric acid

IML:

Intermediolateral cell column

i.v.:

Intravenous

MAP:

Mean arterial pressure

NE:

Norepinephrine

nNOS:

Neuronal nitric oxide synthase

NOS:

Nitric oxide synthase

NTS:

Nucleus of the solitary tract

PVN:

Paraventricular nucleus

RVLM:

Rostral ventrolateral medulla

SFO:

Subfornical organ

SNA:

Sympathetic nerve activity

References

  1. Penne EL, Neumann J, Klein IH, Oey PL, Bots ML, Blankestijn PJ (2009) Sympathetic hyperactivity and clinical outcome in chronic kidney disease patients during standard treatment. J Nephrol 22:208–215

    PubMed  Google Scholar 

  2. Zhou Y, Xie G, Wang J, Yang S (2012) Cardiovascular risk factors significantly correlate with autonomic nervous system activity in children. Can J Cardiol 28:477–482

    PubMed  Google Scholar 

  3. Akutsu Y, Kaneko K, Kodama Y et al (2008) Cardiac sympathetic nerve abnormality predicts ventricular tachyarrhythmic events in patients without conventional risk of sudden death. Eur J Nucl Med Mol Imaging 35:2066–2073

    PubMed  Google Scholar 

  4. Malpas SC, Ramchandra R, Guild SJ, McBryde F, Barrett CJ (2006) Renal sympathetic nerve activity in the development of hypertension. Curr Hypertens Rep 8:242–248

    PubMed  Google Scholar 

  5. Hogarth AJ, Mackintosh AF, Mary DA (2007) The effect of gender on the sympathetic nerve hyperactivity of essential hypertension. J Hum Hypertens 21:239–245

    CAS  PubMed  Google Scholar 

  6. Weck M (2007) Treatment of hypertension in patients with diabetes mellitus: relevance of sympathovagal balance and renal function. Clin Res Cardiol 96:707–718

    CAS  PubMed  Google Scholar 

  7. Blankestijn PJ (2007) Sympathetic hyperactivity—a hidden enemy in chronic kidney disease patients. Perit Dial Int 27(Suppl 2):S293–S297

    PubMed  Google Scholar 

  8. Blankestijn PJ (2004) Sympathetic hyperactivity in chronic kidney disease. Nephrol Dial Transplant 19:1354–1357

    PubMed  Google Scholar 

  9. Joles JA, Koomans HA (2004) Causes and consequences of increased sympathetic activity in renal disease. Hypertension 43:699–706

    CAS  PubMed  Google Scholar 

  10. Koomans HA, Blankestijn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15:524–537

    PubMed  Google Scholar 

  11. Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ (2004) Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int 65:1568–1576

    PubMed  Google Scholar 

  12. Augustyniak RA, Tuncel M, Zhang W, Toto RD, Victor RG (2002) Sympathetic overactivity as a cause of hypertension in chronic renal failure. J Hypertens 20:3–9

    CAS  PubMed  Google Scholar 

  13. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    CAS  PubMed  Google Scholar 

  14. Eisenhofer G, Friberg P, Rundqvist B et al (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676

    CAS  PubMed  Google Scholar 

  15. Narkiewicz K, Pesek CA, van de Borne PJ, Kato M, Somers VK (1999) Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation 100:262–267

    CAS  PubMed  Google Scholar 

  16. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL (1986) Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73:913–919

    PubMed  Google Scholar 

  17. Esler M, Kaye D, Lambert G, Esler D, Jennings G (1997) Adrenergic nervous system in heart failure. Am J Cardiol 80:7L–14L

    CAS  PubMed  Google Scholar 

  18. Floras JS (1993) Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 22:72A–84A

    CAS  PubMed  Google Scholar 

  19. Zucker IH, Wang W, Brandle M, Schultz HD, Patel KP (1995) Neural regulation of sympathetic nerve activity in heart failure. Prog Cardiovasc Dis 37:397–414

    CAS  PubMed  Google Scholar 

  20. Reid IA (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 262:E763–E778

    CAS  PubMed  Google Scholar 

  21. DiBona GF (2000) Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension 36:1083–1088

    CAS  PubMed  Google Scholar 

  22. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B (2005) Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 26:906–913

    PubMed  Google Scholar 

  23. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD (1995) Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26:1257–1263

    CAS  PubMed  Google Scholar 

  24. Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285:877–883

    CAS  PubMed  Google Scholar 

  25. Packer M, Bristow MR, Cohn JN et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334:1349–1355

    CAS  PubMed  Google Scholar 

  26. Packer M, Coats AJ, Fowler MB et al (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658

    CAS  PubMed  Google Scholar 

  27. Ramchandra R, Hood SG, Watson AM, Allen AM, May CN (2012) Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension 59:634–641

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Ding Y, Li YL, Zimmerman MC, Davisson RL, Schultz HD (2009) Role of CuZn superoxide dismutase on carotid body function in heart failure rabbits. Cardiovasc Res 81:678–685

    CAS  PubMed  Google Scholar 

  29. Sun SY, Wang W, Zucker IH, Schultz HD (1999) Enhanced peripheral chemoreflex function in conscious rabbits with pacing-induced heart failure. J Appl Physiol 86:1264–1272

    CAS  PubMed  Google Scholar 

  30. Kang YM, Gao F, Li HH et al (2011) NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Res Cardiol 106:1087–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ma X, Abboud FM, Chapleau MW (2001) A novel effect of angiotensin on renal sympathetic nerve activity in mice. J Hypertens 19:609–618

    CAS  PubMed  Google Scholar 

  32. Kang YM, He RL, Yang LM et al (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746

    CAS  PubMed  Google Scholar 

  33. Gomes da Silva AQ, Xavier CH, Campagnole-Santos MJ et al (2012) Cardiovascular responses evoked by activation or blockade of GABA(A) receptors in the hypothalamic PVN are attenuated in transgenic rats with low brain angiotensinogen. Brain Res 1448:101–110

    CAS  PubMed  Google Scholar 

  34. Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM (2005) Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 32:419–425

    CAS  PubMed  Google Scholar 

  35. Llewellyn T, Zheng H, Liu X, Xu B, Patel KP (2012) Median preoptic nucleus and subfornical organ drive renal sympathetic nerve activity via a glutamatergic mechanism within the paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 302:R424–R432

    CAS  PubMed  Google Scholar 

  36. Shafton AD, Ryan A, Badoer E (1998) Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res 801:239–243

    CAS  PubMed  Google Scholar 

  37. Tagawa T, Dampney RA (1999) AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension 34:1301–1307

    CAS  PubMed  Google Scholar 

  38. Kumagai H, Oshima N, Matsuura T et al (2012) Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res 35:132–141

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    CAS  PubMed  Google Scholar 

  40. Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    CAS  PubMed  Google Scholar 

  41. Watson AM, Hood SG, May CN (2006) Mechanisms of sympathetic activation in heart failure. Clin Exp Pharmacol Physiol 33:1269–1274

    CAS  PubMed  Google Scholar 

  42. Zucker IH, Schultz HD, Li YF, Wang Y, Wang W, Patel KP (2004) The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide. Prog Biophys Mol Biol 84:217–232

    CAS  PubMed  Google Scholar 

  43. Zucker IH, Pliquett RU (2002) Novel mechanisms of sympatho-excitation in chronic heart failure. Heart Fail Monit 3:2–7

    CAS  PubMed  Google Scholar 

  44. Wang W, Chen JS, Zucker IH (1991) Carotid sinus baroreceptor reflex in dogs with experimental heart failure. Circ Res 68:1294–1301

    CAS  PubMed  Google Scholar 

  45. Dibner-Dunlap ME, Thames MD (1989) Baroreflex control of renal sympathetic nerve activity is preserved in heart failure despite reduced arterial baroreceptor sensitivity. Circ Res 65:1526–1535

    CAS  PubMed  Google Scholar 

  46. Liu JL, Murakami H, Sanderford M, Bishop VS, Zucker IH (1999) ANG II and baroreflex function in rabbits with CHF and lesions of the area postrema. Am J Physiol 277:H342–H350

    CAS  PubMed  Google Scholar 

  47. Wang W, Zhu GQ, Gao L, Tan W, Qian ZM (2004) Baroreceptor reflex in heart failure. Sheng Li Xue Bao 56:269–281

    PubMed  Google Scholar 

  48. Chua TP, Ponikowski P, Webb-Peploe K et al (1997) Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur Heart J 18:480–486

    CAS  PubMed  Google Scholar 

  49. Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH, Wang W (2004) AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 287:H1828–H1835

    CAS  PubMed  Google Scholar 

  50. Wang WZ, Gao L, Wang HJ, Zucker IH, Wang W (2008) Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am J Physiol Heart Circ Physiol 295:H1216–H1226

    CAS  PubMed  Google Scholar 

  51. Zhu GQ, Zucker IH, Wang W (2002) Central AT1 receptors are involved in the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Basic Res Cardiol 97:320–326

    CAS  PubMed  Google Scholar 

  52. Wang W, Ma R (2000) Cardiac sympathetic afferent reflexes in heart failure. Heart Fail Rev 5:57–71

    CAS  PubMed  Google Scholar 

  53. Wang W, Schultz HD, Ma R (1999) Cardiac sympathetic afferent sensitivity is enhanced in heart failure. Am J Physiol 277:H812–H817

    CAS  PubMed  Google Scholar 

  54. Ma R, Zucker IH, Wang W (1997) Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol 273:H2664–H2671

    CAS  PubMed  Google Scholar 

  55. Wang W, Zucker IH (1996) Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol 271:R751–R756

    CAS  PubMed  Google Scholar 

  56. Wang W (1998) Cardiac sympathetic afferent stimulation by bradykinin in heart failure: role of NO and prostaglandins. Am J Physiol 275:H783–H788

    CAS  PubMed  Google Scholar 

  57. Ma R, Zucker IH, Wang W (1999) Reduced NO enhances the central gain of cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol 276:H19–H26

    CAS  PubMed  Google Scholar 

  58. Li YF, Patel KP (2003) Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand 177:17–26

    CAS  PubMed  Google Scholar 

  59. Chatterjee K (2005) Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95:8B–13B

    CAS  PubMed  Google Scholar 

  60. Goldsmith SR (2006) The role of vasopressin in congestive heart failure. Clevel Clin J Med 73(Suppl 3):S19–S23

    Google Scholar 

  61. Zucker IH, Wang W, Pliquett RU, Liu JL, Patel KP (2001) The regulation of sympathetic outflow in heart failure. The roles of angiotensin II, nitric oxide, and exercise training. Ann N Y Acad Sci 940:431–443

    CAS  PubMed  Google Scholar 

  62. van de Wal RM, Plokker HW, Lok DJ et al (2006) Determinants of increased angiotensin II levels in severe chronic heart failure patients despite ACE inhibition. Int J Cardiol 106:367–372

    PubMed  Google Scholar 

  63. Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: a role for angiotensin II. Circulation 102:1854–1862

    CAS  PubMed  Google Scholar 

  64. Kleiber AC, Zheng H, Sharma NM, Patel KP (2010) Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure. Am J Physiol Heart Circ Physiol 298:H1546–H1555

    CAS  PubMed  Google Scholar 

  65. Roig E, Perez-Villa F, Morales M et al (2000) Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure. Eur Heart J 21:53–57

    CAS  PubMed  Google Scholar 

  66. Liu D, Gao L, Roy SK, Cornish KG, Zucker IH (2006) Neuronal angiotensin II type 1 receptor upregulation in heart failure: activation of activator protein 1 and Jun N-terminal kinase. Circ Res 99:1004–1011

    CAS  PubMed  Google Scholar 

  67. Ganta CK, Lu N, Helwig BG et al (2005) Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am J Physiol Heart Circ Physiol 289:H1683–H1691

    CAS  PubMed  Google Scholar 

  68. Lu N, Helwig BG, Fels RJ, Parimi S, Kenney MJ (2004) Central Tempol alters basal sympathetic nerve discharge and attenuates sympathetic excitation to central ANG II. Am J Physiol Heart Circ Physiol 287:H2626–H2633

    CAS  PubMed  Google Scholar 

  69. Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB (2008) Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats. Hypertension 52:342–350

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Fujisawa Y, Nagai Y, Lei B et al (2011) Roles of central renin-angiotensin system and afferent renal nerve in the control of systemic hemodynamics in rats. Hypertens Res 34:1228–1232

    CAS  PubMed  Google Scholar 

  71. Gao L, Zhu Z, Zucker IH, Wang W (2004) Cardiac sympathetic afferent stimulation impairs baroreflex control of renal sympathetic nerve activity in rats. Am J Physiol Heart Circ Physiol 286:H1706–H1711

    CAS  PubMed  Google Scholar 

  72. Yamazato M, Ohya Y, Nakamoto M et al (2006) Sympathetic hyperreactivity to air-jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. Am J Physiol Regul Integr Comp Physiol 290:R709–R714

    CAS  PubMed  Google Scholar 

  73. Huang C, Yoshimoto M, Miki K, Johns EJ (2006) The contribution of brain angiotensin II to the baroreflex regulation of renal sympathetic nerve activity in conscious normotensive and hypertensive rats. J Physiol 574:597–604

    CAS  PubMed  Google Scholar 

  74. Gao L, Pan YX, Wang WZ et al (2007) Cardiac sympathetic afferent stimulation augments the arterial chemoreceptor reflex in anesthetized rats. J Appl Physiol 102:37–43

    CAS  PubMed  Google Scholar 

  75. DiBona GF, Jones SY, Brooks VL (1995) ANG II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure. Am J Physiol 269:R1189–R1196

    CAS  PubMed  Google Scholar 

  76. Gao L, Schultz HD, Patel KP, Zucker IH, Wang W (2005) Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension 45:1173–1181

    CAS  PubMed  Google Scholar 

  77. Ferguson AV, Washburn DL, Latchford KJ (2001) Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood) 226:85–96

    CAS  Google Scholar 

  78. Li YF, Wang W, Mayhan WG, Patel KP (2006) Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. Am J Physiol Regul Integr Comp Physiol 290:R1035–R1043

    CAS  PubMed  Google Scholar 

  79. Yu Y, Zhong MK, Li J et al (2007) Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity. Pflugers Arch 454:551–557

    CAS  PubMed  Google Scholar 

  80. Zhang Y, Yu Y, Zhang F et al (2006) NAD(P)H oxidase in paraventricular nucleus contributes to the effect of angiotensin II on cardiac sympathetic afferent reflex. Brain Res 1082:132–141

    CAS  PubMed  Google Scholar 

  81. Shi Z, Gan XB, Fan ZD et al (2011) Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 203:289–297

    CAS  Google Scholar 

  82. Zheng H, Sharma NM, Liu X, Patel KP (2012) Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II. Am J Physiol Regul Integr Comp Physiol 303:R387–R394

    Google Scholar 

  83. Silva AQ, Santos RA, Fontes MA (2005) Blockade of endogenous angiotensin-(1–7) in the hypothalamic paraventricular nucleus reduces renal sympathetic tone. Hypertension 46:341–348

    PubMed  Google Scholar 

  84. Zhong MK, Duan YC, Chen AD et al (2008) Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 93:746–753

    PubMed  Google Scholar 

  85. Zheng H, Li YF, Wang W, Patel KP (2009) Enhanced angiotensin-mediated excitation of renal sympathetic nerve activity within the paraventricular nucleus of anesthetized rats with heart failure. Am J Physiol Regul Integr Comp Physiol 297:R1364–R1374

    CAS  PubMed  Google Scholar 

  86. Gan XB, Duan YC, Xiong XQ et al (2011) Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure. PLoS ONE 6:e25784

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Shi Z, Chen AD, Xu Y et al (2009) Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 458:247–257

    CAS  PubMed  Google Scholar 

  88. Wang HJ, Zhang F, Zhang Y, Gao XY, Wang W, Zhu GQ (2005) AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Auton Neurosci 121:56–63

    CAS  PubMed  Google Scholar 

  89. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W (2004) ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol 97:1746–1754

    CAS  PubMed  Google Scholar 

  90. Gao L, Wang WZ, Wang W, Zucker IH (2008) Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure. Hypertension 52:708–714

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Gao L, Wang W, Li YL et al (2004) Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase. Circ Res 95:937–944

    CAS  PubMed  Google Scholar 

  92. Liu D, Gao L, Roy SK, Cornish KG, Zucker IH (2008) Role of oxidant stress on AT1 receptor expression in neurons of rabbits with heart failure and in cultured neurons. Circ Res 103:186–193

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Fahim M, Gao L, Mousa TM, Liu D, Cornish KG, Zucker IH (2012) Abnormal baroreflex function is dissociated from central angiotensin II receptor expression in chronic heart failure. Shock 37:319–324

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Michelini LC, Bonagamba LG (1990) Angiotensin II as a modulator of baroreceptor reflexes in the brainstem of conscious rats. Hypertension 15:I45–I50

    CAS  PubMed  Google Scholar 

  95. Wang WZ, Gao L, Pan YX, Zucker IH, Wang W (2007) AT1 receptors in the nucleus tractus solitarii mediate the interaction between the baroreflex and the cardiac sympathetic afferent reflex in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 292:R1137–R1145

    CAS  PubMed  Google Scholar 

  96. Mangiapane ML, Simpson JB (1980) Subfornical organ lesions reduce the pressor effect of systemic angiotensin II. Neuroendocrinology 31:380–384

    CAS  PubMed  Google Scholar 

  97. Gutman MB, Ciriello J, Mogenson GJ (1988) Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. Am J Physiol 254:R746–R754

    CAS  PubMed  Google Scholar 

  98. Fink GD, Bruner CA, Mangiapane ML (1987) Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension 9:355–361

    CAS  PubMed  Google Scholar 

  99. Matsukawa S, Reid IA (1990) Role of the area postrema in the modulation of the baroreflex control of heart rate by angiotensin II. Circ Res 67:1462–1473

    CAS  PubMed  Google Scholar 

  100. Otsuka A, Barnes KL, Ferrario CM (1986) Contribution of area postrema to pressor actions of angiotensin II in dog. Am J Physiol 251:H538–H546

    CAS  PubMed  Google Scholar 

  101. Davern PJ, Head GA (2007) Fos-related antigen immunoreactivity after acute and chronic angiotensin II-induced hypertension in the rabbit brain. Hypertension 49:1170–1177

    CAS  PubMed  Google Scholar 

  102. Ferguson AV, Bains JS (1997) Actions of angiotensin in the subfornical organ and area postrema: implications for long term control of autonomic output. Clin Exp Pharmacol Physiol 24:96–101

    CAS  PubMed  Google Scholar 

  103. Moretti JL, Burke SL, Davern PJ, Evans RG, Lambert GW, Head GA (2012) Renal sympathetic activation from long-term low-dose angiotensin II infusion in rabbits. J Hypertens 30:551–560

    CAS  PubMed  Google Scholar 

  104. Kang YM, Ma Y, Zheng JP et al (2009) Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res 82:503–512

    CAS  PubMed  Google Scholar 

  105. LaGrange LP, Toney GM, Bishop VS (2003) Effect of intravenous angiotensin II infusion on responses to hypothalamic PVN injection of bicuculline. Hypertension 42:1124–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Ramsay DJ, Keil LC, Sharpe MC, Shinsako J (1978) Angiotensin II infusion increases vasopressin, ACTH, and 11-hydroxycorticosteroid secretion. Am J Physiol 234:R66–R71

    CAS  PubMed  Google Scholar 

  107. Brooks VL, Klingbeil CK, Quillen EW, Keil LC, Reid IA (1989) Effect of baroreceptor denervation on vasopressin and cortisol responses to angiotensin II infusion in conscious dogs. Am J Physiol 257:R1175–R1181

    CAS  PubMed  Google Scholar 

  108. Stanley JR, Giammattei CE, Sheikh AU, Green JL, Zehnder T, Rose JC (1997) Effects of chronic infusion of angiotensin II on renin and blood pressure in the late-gestation fetal sheep. Am J Obstet Gynecol 176:931–937

    CAS  PubMed  Google Scholar 

  109. Roth RH (1972) Action of angiotensin on adrenergic nerve endings: enhancement of norepinephrine biosynthesis. Fed Proc 31:1358–1364

    CAS  PubMed  Google Scholar 

  110. Boadle MC, Hughes J, Roth RH (1969) Angiotensin accelerates catecholamine biosynthesis in sympathetically innervated tissues. Nature 222:987–988

    CAS  PubMed  Google Scholar 

  111. Palaic D, Khairallah PA (1967) Inhibition of noradrenaline uptake by angiotensin. J Pharm Pharmacol 19:396–397

    CAS  PubMed  Google Scholar 

  112. Stegbauer J, Kuczka Y, Vonend O et al (2008) Endothelial nitric oxide synthase is predominantly involved in angiotensin II modulation of renal vascular resistance and norepinephrine release. Am J Physiol Regul Integr Comp Physiol 294:R421–R428

    CAS  PubMed  Google Scholar 

  113. Gironacci MM, Lorenzo PS, Adler-Graschinsky E (1997) Possible participation of nitric oxide in the increase of norepinephrine release caused by angiotensin peptides in rat atria. Hypertension 29:1344–1350

    CAS  PubMed  Google Scholar 

  114. Stegbauer J, Vonend O, Habbel S et al (2005) Angiotensin II modulates renal sympathetic neurotransmission through nitric oxide in AT2 receptor knockout mice. J Hypertens 23:1691–1698

    CAS  PubMed  Google Scholar 

  115. Stegbauer J, Oberhauser V, Vonend O, Rump LC (2004) Angiotensin-(1–7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovasc Res 61:352–359

    CAS  PubMed  Google Scholar 

  116. Stegbauer J, Vonend O, Oberhauser V, Sellin L, Rump LC (2005) Angiotensin II receptor modulation of renal vascular resistance and neurotransmission in young and adult spontaneously hypertensive rats. Kidney Blood Press Res 28:20–26

    CAS  PubMed  Google Scholar 

  117. Tanioka H, Nakamura K, Fujimura S et al (2002) Facilitatory role of NO in neural norepinephrine release in the rat kidney. Am J Physiol Regul Integr Comp Physiol 282:R1436–R1442

    CAS  PubMed  Google Scholar 

  118. Clemson B, Gaul L, Gubin SS et al (1994) Prejunctional angiotensin II receptors. Facilitation of norepinephrine release in the human forearm. J Clin Invest 93:684–691

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Li YL, Xia XH, Zheng H et al (2006) Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res 71:129–138

    CAS  PubMed  Google Scholar 

  120. Li YL, Gao L, Zucker IH, Schultz HD (2007) NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 75:546–554

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Li YL, Li YF, Liu D et al (2005) Gene transfer of neuronal nitric oxide synthase to carotid body reverses enhanced chemoreceptor function in heart failure rabbits. Circ Res 97:260–267

    CAS  PubMed  Google Scholar 

  122. Schultz HD, Li YL (2007) Carotid body function in heart failure. Respir Physiol Neurobiol 157:171–185

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Guild SJ, McBryde FD, Malpas SC, Barrett CJ (2012) High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension 59:614–620

    CAS  PubMed  Google Scholar 

  124. Head GA, Saigusa T, Mayorov DN (2002) Angiotensin and baroreflex control of the circulation. Braz J Med Biol Res 35:1047–1059

    CAS  PubMed  Google Scholar 

  125. Turini GA, Brunner HR, Gribic M, Waeber B, Gavras H (1979) Improvement of chronic congestive heart-failure by oral captopril. Lancet 1:1213–1215

    CAS  PubMed  Google Scholar 

  126. Dibner-Dunlap ME, Smith ML, Kinugawa T, Thames MD (1996) Enalaprilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. J Am Coll Cardiol 27:358–364

    CAS  PubMed  Google Scholar 

  127. Dietz R, Waas W, Susselbeck T, Willenbrock R, Osterziel KJ (1993) Improvement of cardiac function by angiotensin converting enzyme inhibition. Sites of action. Circulation 87:IV108–IV116

    CAS  PubMed  Google Scholar 

  128. Gilbert EM, Sandoval A, Larrabee P, Renlund DG, O’Connell JB, Bristow MR (1993) Lisinopril lowers cardiac adrenergic drive and increases beta-receptor density in the failing human heart. Circulation 88:472–480

    CAS  PubMed  Google Scholar 

  129. Hikosaka M, Yuasa F, Yuyama R et al (2002) Candesartan and arterial baroreflex sensitivity and sympathetic nerve activity in patients with mild heart failure. J Cardiovasc Pharmacol 40:875–880

    CAS  PubMed  Google Scholar 

  130. Gottlieb SS, Dickstein K, Fleck E et al (1993) Hemodynamic and neurohormonal effects of the angiotensin II antagonist losartan in patients with congestive heart failure. Circulation 88:1602–1609

    CAS  PubMed  Google Scholar 

  131. Hamroff G, Katz SD, Mancini D et al (1999) Addition of angiotensin II receptor blockade to maximal angiotensin-converting enzyme inhibition improves exercise capacity in patients with severe congestive heart failure. Circulation 99:990–992

    CAS  PubMed  Google Scholar 

  132. Chrysant SG (2008) Angiotensin II receptor blockers in the treatment of the cardiovascular disease continuum. Clin Ther 30(Pt 2):2181–2190

    CAS  PubMed  Google Scholar 

  133. Guthrie R (2009) Recent advances in cardiovascular risk reduction: implications of ONTARGET. Clin Cornerstone 9(Suppl 3):S18–S26

    PubMed  Google Scholar 

  134. Zong WN, Yang XH, Chen XM et al (2011) Regulation of angiotensin-(1–7) and angiotensin II type 1 receptor by telmisartan and losartan in adriamycin-induced rat heart failure. Acta Pharmacol Sin 32:1345–1350

    CAS  PubMed  Google Scholar 

  135. Sharma NM, Zheng H, Mehta PP, Li YF, Patel KP (2011) Decreased nNOS in the PVN leads to increased sympathoexcitation in chronic heart failure: role for CAPON and Ang II. Cardiovasc Res 92:348–357

    CAS  PubMed  Google Scholar 

  136. DiBona GF, Jones SY, Sawin LL (1998) Angiotensin receptor antagonist improves cardiac reflex control of renal sodium handling in heart failure. Am J Physiol 274:H636–H641

    CAS  PubMed  Google Scholar 

  137. Grassi G, Cattaneo BM, Seravalle G et al (1997) Effects of chronic ACE inhibition on sympathetic nerve traffic and baroreflex control of circulation in heart failure. Circulation 96:1173–1179

    CAS  PubMed  Google Scholar 

  138. DiBona GF, Sawin LL (2003) Losartan corrects abnormal frequency response of renal vasculature in congestive heart failure. Am J Physiol Heart Circ Physiol 285:H1857–H1863

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is funded by grants from the National Health and Medical Research Council (540404, 1021416) and the BUPA Foundation. JG holds a Practitioner Fellowship from the National Health and Medical Research Council, Australia (1019921) and a Senior Clinical Research Fellowship from the Queensland Government. SWS is supported by a NHMRC Training Research Fellowship (1016349).

Conflict of interest

Drs. Yutang Wang, Sai-Wang Seto and Jonathan Golledge have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Golledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Seto, SW. & Golledge, J. Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 19, 187–198 (2014). https://doi.org/10.1007/s10741-012-9368-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9368-1

Keywords

Navigation