Skip to main content

Advertisement

Log in

Cells move when ions and water flow

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cell migration is a process that plays an important role throughout the entire life span. It starts early on during embryogenesis and contributes to shaping our body. Migrating cells are involved in maintaining the integrity of our body, for instance, by defending it against invading pathogens. On the other side, migration of tumor cells may have lethal consequences when tumors spread metastatically. Thus, there is a strong interest in unraveling the cellular mechanisms underlying cell migration. The purpose of this review is to illustrate the functional importance of ion and water channels as part of the cellular migration machinery. Ion and water flow is required for optimal migration, and the inhibition or genetic ablation of channels leads to a marked impairment of migration. We briefly touch cytoskeletal mechanisms of migration as well as cell–matrix interactions. We then present some general principles by which channels can affect cell migration before we discuss each channel group separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abercrombie M, Heaysman JE, Pegrum SM (1971) The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 67:359–367

    PubMed  CAS  Google Scholar 

  2. Aguado-Velasco C, Bretscher MS (1999) Circulation of the plasma membrane in dictyostelium. Mol Biol Cell 10:4419–4427

    PubMed  CAS  Google Scholar 

  3. Aiyar J (1999) Potassium channels in leukocytes and toxins that block them: structure, function and therapeutic implications. Perspect Drug Discov Des 15/16:257–280

    CAS  Google Scholar 

  4. Arcangeli A, Becchetti A, Del Bene MR, Wanke E, Olivotto M (1991) Fibronectin–integrin binding promotes hyperpolarization of murine erythroleukemia cells. Biochem Biophys Res Commun 177:1266–1272

    PubMed  CAS  Google Scholar 

  5. Artym VV, Petty HR (2002) Molecular proximity of Kv1.3 voltage-gated potassium channels and β1-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J Gen Physiol 120:29–37

    PubMed  CAS  Google Scholar 

  6. Basu S, Srivastava P (2005) Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc Natl Acad Sci USA 102:5120–5125

    PubMed  CAS  Google Scholar 

  7. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E (2001) Selective blockade of T-lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 98:13942–13947

    PubMed  CAS  Google Scholar 

  8. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461

    PubMed  CAS  Google Scholar 

  9. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153:881–888

    PubMed  CAS  Google Scholar 

  10. Brakebusch C, Fassler R (2003) The integrin–actin connection, an eternal love affair. EMBO J 22:2324–2333

    PubMed  CAS  Google Scholar 

  11. Bray D (2001) Cell movements—from molecules to motility. Garland Publishing, New York

    Google Scholar 

  12. Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254:703–706

    PubMed  CAS  Google Scholar 

  13. Cai S, Fatherazi S, Presland RB, Belton CM, Roberts FA, Goodwin PC, Schubert MM, Izutsu KT (2006) Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Arch 452:43–52

    PubMed  CAS  Google Scholar 

  14. Carragher NO, Walker SM, Scott Carragher LA, Harris F, Sawyer TK, Brunton VG, Ozanne BW, Frame MC (2006) Calpain 2 and src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene DOI 10.1038/sj.onc.1209582

  15. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301

    PubMed  CAS  Google Scholar 

  16. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    PubMed  CAS  Google Scholar 

  17. Danker T, Gassner B, Oberleithner H, Schwab A (1996) Extracellular detection of K+ release during migration of transformed Madin–Darby canine kidney cells. Pflugers Arch 433:71–76

    PubMed  CAS  Google Scholar 

  18. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na–H exchanger NHE1. J Cell Biol 159:1087–1096

    PubMed  CAS  Google Scholar 

  19. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell 6:1425–1436

    PubMed  CAS  Google Scholar 

  20. Dignass AU (2001) Mechanisms and modulation of intestinal epithelial repair. Inflamm Bowel Dis 7:68–77

    PubMed  CAS  Google Scholar 

  21. Doyle A, Marganski W, Lee J (2004) Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes. J Cell Sci 117:2203–2214

    PubMed  CAS  Google Scholar 

  22. Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118:369–379

    PubMed  CAS  Google Scholar 

  23. Dreval V, Dieterich P, Stock C, Schwab A (2005) The role of Ca2+ transport across the plasma membrane for cell migration. Cell Physiol Biochem 16:119–126

    PubMed  CAS  Google Scholar 

  24. Eddy RJ, Pierini LM, Matsumura F, Maxfield FR (2000) Ca2+-dependent myosin ii activation is required for uropod retraction during neutrophil migration. J Cell Sci 113:1287–1298

    PubMed  CAS  Google Scholar 

  25. Eder C (1998) Ion channels in microglia (brain macrophages). Am J Physiol 275:C327–C342

    PubMed  CAS  Google Scholar 

  26. Espinosa L, Paret L, Ojeda C, Tourneur Y, Delmas PD, Chenu C (2002) Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current. J Cell Sci 115:3837–3848

    PubMed  CAS  Google Scholar 

  27. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    PubMed  CAS  Google Scholar 

  28. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6:977–983

    PubMed  CAS  Google Scholar 

  29. Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, Berridge RJ, Djamgoz MB (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195:479–487

    PubMed  CAS  Google Scholar 

  30. Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni AM, George AJ, Djamgoz MB (2004) T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEBS Lett 569:191–194

    PubMed  CAS  Google Scholar 

  31. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS, Coombes RC, Djamgoz MB (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11:5381–5389

    PubMed  CAS  Google Scholar 

  32. Fulgenzi G, Graciotti L, Faronato M, Soldovieri MV, Miceli F, Amoroso S, Annunziato L, Procopio A, Taglialatela M (2006) Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol 38:1146–1159

    PubMed  CAS  Google Scholar 

  33. Goswami C, Dreger M, Otto H, Schwappach B, Hucho F (2006) Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96:254–266

    PubMed  CAS  Google Scholar 

  34. Grinstein S, Woodside M, Waddell TK, Downey GP, Orlowski J, Pouyssegur J, Wong DC, Foskett JK (1993) Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular ph. EMBO J 12:5209–5218

    PubMed  CAS  Google Scholar 

  35. Grunnet M, MacAulay N, Jorgensen NK, Jensen S, Olesen SP, Klaerke DA (2002) Regulation of cloned, Ca2+-activated K+ channels by cell volume changes. Pflugers Arch 444:167–177

    PubMed  CAS  Google Scholar 

  36. Hahn K, DeBiasio R, Taylor DL (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359:736–738

    PubMed  CAS  Google Scholar 

  37. Hallows KR, Packman CH, Knauf PA (1991) Acute cell volume changes in anisotonic media affect F-actin content of HL-60 cells. Am J Physiol 261:C1154–C1161

    PubMed  CAS  Google Scholar 

  38. Hara-Chikuma M, Verkman AS (2006) Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 17:39–45

    PubMed  CAS  Google Scholar 

  39. Heiner I, Radukina N, Eisfeld J, Kuhn F, Luckhoff A (2005) Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target. Naunyn Schmiedebergs Arch Pharmacol 371:325–333

    PubMed  CAS  Google Scholar 

  40. Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Luckhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232

    PubMed  CAS  Google Scholar 

  41. Henley J, Poo MM (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320–330

    PubMed  CAS  Google Scholar 

  42. Hess AR, Hendrix MJ (2006) Focal adhesion kinase signaling and the aggressive melanoma phenotype. Cell Cycle 5:478–480

    PubMed  CAS  Google Scholar 

  43. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    PubMed  CAS  Google Scholar 

  44. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    PubMed  CAS  Google Scholar 

  45. Ito T, Zaner KS, Stossel TP (1987) Nonideality of volume flows and phase transitions of f-actin solutions in response to osmotic stress. Biophys J 51:745–753

    PubMed  CAS  Google Scholar 

  46. Jaeger M, Carin M, Medale M, Tryggvason G (1999) The osmotic migration of cells in a solute gradient. Biophys J 77:1257–1267

    PubMed  CAS  Google Scholar 

  47. Jager H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638

    PubMed  Google Scholar 

  48. Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ecm) ligands. Proc Natl Acad Sci USA 98:1042–1046

    PubMed  CAS  Google Scholar 

  49. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  50. Jin M, Defoe DM, Wondergem R (2003) Hepatocyte growth factor/scatter factor stimulates Ca2+-activated membrane K+ current and migration of MDCK II cells. J Membr Biol 191:77–86

    PubMed  CAS  Google Scholar 

  51. Kim MJ, Cheng G, Agrawal DK (2004) Cl channels are expressed in human normal monocytes: a functional role in migration, adhesion and volume change. Clin Exp Immunol 138:453–459

    PubMed  CAS  Google Scholar 

  52. Kindzelskii AL, Petty HR (2005) Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. Eur Biophys J 35:1–26

    PubMed  CAS  Google Scholar 

  53. Kindzelskii AL, Sitrin RG, Petty HR (2004) Cutting edge: optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: apparent role in calcium signaling. J Immunol 172:4681–4685

    PubMed  CAS  Google Scholar 

  54. Klein M, Seeger P, Schuricht B, Alper SL, Schwab A (2000) Polarization of Na+/H+ and Cl/HCO3 exchangers in migrating renal epithelial cells. J Gen Physiol 115:599–608

    PubMed  CAS  Google Scholar 

  55. Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125

    PubMed  Google Scholar 

  56. Komuro H, Kumada T (2005) Ca2+ transients control CNS neuronal migration. Cell Calcium 37:387–393

    PubMed  CAS  Google Scholar 

  57. Komuro H, Rakic P (1992) Selective role of N-type calcium channels in neuronal migration. Science 257:806–809

    PubMed  CAS  Google Scholar 

  58. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    PubMed  CAS  Google Scholar 

  59. Komuro H, Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17:275–285

    PubMed  CAS  Google Scholar 

  60. Komuro H, Rakic P (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37:110–130

    PubMed  CAS  Google Scholar 

  61. Kraft R, Krause P, Jung S, Basrai D, Liebmann L, Bolz J, Patt S (2003) BK channel openers inhibit migration of human glioma cells. Pflugers Arch 446:248–255

    PubMed  CAS  Google Scholar 

  62. Kumada T, Komuro H (2004) Completion of neuronal migration regulated by loss of Ca2+ transients. Proc Natl Acad Sci USA 101:8479–8484

    PubMed  CAS  Google Scholar 

  63. Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J (2000) Regulation of the formation of tumor cell pseudopodia by the Na+/H+ exchanger NHE1. J Cell Sci 113:3649–3662

    PubMed  CAS  Google Scholar 

  64. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  65. Lawson MA, Maxfield FR (1995) Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377:75–79

    PubMed  CAS  Google Scholar 

  66. Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–386

    PubMed  CAS  Google Scholar 

  67. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O (2000) Extracellular K+ and opening of voltage-gated potassium channels activate T-cell integrin function: physical and functional association between Kv1.3 channels and β1 integrins. J Exp Med 191:1167–1176

    PubMed  CAS  Google Scholar 

  68. Liedtke W (2005) TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 451:176–180

    PubMed  CAS  Google Scholar 

  69. Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:4835–4843

    PubMed  CAS  Google Scholar 

  70. Liu X, Bandyopadhyay B, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    PubMed  CAS  Google Scholar 

  71. Lohr C, Heil JE, Deitmer JW (2005) Blockage of voltage-gated calcium signaling impairs migration of glial cells in vivo. Glia 50:198–211

    PubMed  Google Scholar 

  72. Loitto VM, Forslund T, Sundqvist T, Magnusson KE, Gustafsson M (2002) Neutrophil leukocyte motility requires directed water influx. J Leukoc Biol 71:212–222

    PubMed  CAS  Google Scholar 

  73. Mandeville JT, Maxfield FR (1997) Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices. J Cell Physiol 171:168–178

    PubMed  CAS  Google Scholar 

  74. Manent JB, Demarque M, Jorquera I, Pellegrino C, Ben-Ari Y, Aniksztejn L, Represa A (2005) A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci 25:4755–4765

    PubMed  CAS  Google Scholar 

  75. Manes S, Gomez-Mouton C, Lacalle RA, Jimenez-Baranda S, Mira E, Martinez AC (2005) Mastering time and space: immune cell polarization and chemotaxis. Semin Immunol 17:77–86

    PubMed  CAS  Google Scholar 

  76. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    PubMed  CAS  Google Scholar 

  77. Mazzochi C, Bubien JK, Smith PR, Benos DJ (2006) The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281:6528–6538

    PubMed  CAS  Google Scholar 

  78. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    PubMed  Google Scholar 

  79. McFerrin MB, Sontheimer H (2006) A role for ion channels in glioma cell invasion. Neuron Glia Biol 2:39–49

    PubMed  Google Scholar 

  80. Merlot S, Firtel RA (2003) Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci 116:3471–3478

    PubMed  CAS  Google Scholar 

  81. Meyer R, Schonherr R, Gavrilova-Ruch O, Wohlrab W, Heinemann SH (1999) Identification of ether a go-go and calcium-activated potassium channels in human melanoma cells. J Membr Biol 171:107–115

    PubMed  CAS  Google Scholar 

  82. Mogilner A, Oster G (2003) Polymer motors: pushing out the front and pulling up the back. Curr Biol 13:R721–R733

    PubMed  CAS  Google Scholar 

  83. Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS (2006) Anion channels, including ClC3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281:12277–12288

    PubMed  CAS  Google Scholar 

  84. Munevar S, Wang YL, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117:85–92

    PubMed  CAS  Google Scholar 

  85. Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639

    PubMed  CAS  Google Scholar 

  86. Nabi IR (1999) The polarization of the motile cell. J Cell Sci 112:1803–1811

    PubMed  CAS  Google Scholar 

  87. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    PubMed  CAS  Google Scholar 

  88. Nilius B, Voets T (2005) TRP channels: a TR(i)P through a world of multifunctional cation channels. Pflugers Arch 451:1–10

    PubMed  CAS  Google Scholar 

  89. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    PubMed  CAS  Google Scholar 

  90. Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T-cell activation. Curr Biol 16:24–34

    PubMed  CAS  Google Scholar 

  91. Nuccitelli R (2003) A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58:1–26

    PubMed  Google Scholar 

  92. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol 287:C125–C134

    PubMed  CAS  Google Scholar 

  93. Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164

    PubMed  CAS  Google Scholar 

  94. Patel H, Barber DL (2005) A developmentally regulated Na–H exchanger in dictyostelium discoideum is necessary for cell polarity during chemotaxis. J Cell Biol 169:321–329

    PubMed  CAS  Google Scholar 

  95. Pedersen SF, Hoffmann EK, Mills JW (2001) The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol 130:385–399

    PubMed  CAS  Google Scholar 

  96. Pettit EJ, Fay FS (1998) Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 78:949–967

    PubMed  CAS  Google Scholar 

  97. Pettit EJ, Hallett MB (1996) Localised and global cytosolic Ca2+ changes in neutrophils during engagement of cd11b/cd18 integrin visualised using confocal laser scanning reconstruction. J Cell Sci 109 (Pt 7):1689–1694

    PubMed  CAS  Google Scholar 

  98. Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE (1995) Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 6:1349–1365

    PubMed  CAS  Google Scholar 

  99. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32

    PubMed  CAS  Google Scholar 

  100. Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21:7674–7683

    PubMed  CAS  Google Scholar 

  101. Rao JN, Platoshyn O, Li L, Guo X, Golovina VA, Yuan JX, Wang JY (2002) Activation of K+ channels and increased migration of differentiated intestinal epithelial cells after wounding. Am J Physiol Cell Physiol 282:C885–C898

    PubMed  CAS  Google Scholar 

  102. Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290:G782–G792

    PubMed  CAS  Google Scholar 

  103. Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    PubMed  CAS  Google Scholar 

  104. Reid B, Song B, McCaig CD, Zhao M (2005) Wound healing in rat cornea: the role of electric currents. FASEB J 19:379–386

    PubMed  CAS  Google Scholar 

  105. Reinhardt J, Golenhofen N, Pongs O, Oberleithner H, Schwab A (1998) Migrating transformed MDCK cells are able to structurally polarize a voltage-activated K+ channel. Proc Natl Acad Sci USA 95:5378–5382

    PubMed  CAS  Google Scholar 

  106. Rico M, Egelhoff TT (2003) Myosin heavy chain kinase b participates in the regulation of myosin assembly into the cytoskeleton. J Cell Biochem 88:521–532

    PubMed  CAS  Google Scholar 

  107. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between n-WASP and the Arp2/3 complex links cdc42-dependent signals to actin assembly. Cell 97:221–231

    PubMed  CAS  Google Scholar 

  108. Runnels LW, Yue L, Clapham DE (2001) TRP-plik, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    PubMed  CAS  Google Scholar 

  109. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  110. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    PubMed  CAS  Google Scholar 

  111. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    PubMed  CAS  Google Scholar 

  112. Salaycik KJ, Fagerstrom CJ, Murthy K, Tulu US, Wadsworth P (2005) Quantification of microtubule nucleation, growth and dynamics in wound-edge cells. J Cell Sci 118:4113–4122

    PubMed  CAS  Google Scholar 

  113. Schilling T, Stock C, Schwab A, Eder C (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 19:1469–1474

    PubMed  Google Scholar 

  114. Schneider SW, Pagel P, Rotsch C, Danker T, Oberleithner H, Radmacher M, Schwab A (2000) Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch 439:297–303

    PubMed  CAS  Google Scholar 

  115. Schwab A, Westphale HJ, Wojnowski L, Wunsch S, Oberleithner H (1993) Spontaneously oscillating K+ channel activity in transformed Madin–Darby canine kidney cells. J Clin Invest 92:218–223

    PubMed  CAS  Google Scholar 

  116. Schwab A, Wojnowski L, Gabriel K, Oberleithner H (1994) Oscillating activity of a Ca2+-sensitive K+ channel. A prerequisite for migration of transformed Madin–Darby canine kidney focus cells. J Clin Invest 93:1631–1636

    PubMed  CAS  Google Scholar 

  117. Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, Kramer A, Oberleithner H (1995) Polarized ion transport during migration of transformed Madin–Darby canine kidney cells. Pflugers Arch 430:802–807

    PubMed  CAS  Google Scholar 

  118. Schwab A, Finsterwalder F, Kersting U, Danker T, Oberleithner H (1997) Intracellular Ca2+ distribution in migrating transformed epithelial cells. Pflugers Arch 434:70–76

    PubMed  CAS  Google Scholar 

  119. Schwab A, Reinhardt J, Schneider SW, Gassner B, Schuricht B (1999) K+ channel-dependent migration of fibroblasts and human melanoma cells. Cell Physiol Biochem 9:126–132

    PubMed  CAS  Google Scholar 

  120. Schwab A, Schuricht B, Seeger P, Reinhardt J, Dartsch PC (1999) Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflugers Arch 438:330–337

    PubMed  CAS  Google Scholar 

  121. Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U (2005) Functional role of Na+-HCO3-cotransport in migration of transformed renal epithelial cells. J Physiol 568:445–458

    PubMed  CAS  Google Scholar 

  122. Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk-Zloy V, Romer M, Reinhardt J, Weinhold D, Dieterich P, Stock C, Hebert SC (2006) Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206:86–94

    PubMed  CAS  Google Scholar 

  123. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8:730–735

    PubMed  CAS  Google Scholar 

  124. Soroceanu L, Manning TJ Jr, Sontheimer H (1999) Modulation of glioma cell migration and invasion using Cl and K+ ion channel blockers. J Neurosci 19:5942–5954

    PubMed  CAS  Google Scholar 

  125. Stock C, Schwab A (2006) Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol 187:149–157

    CAS  Google Scholar 

  126. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238

    PubMed  CAS  Google Scholar 

  127. Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238

    PubMed  CAS  Google Scholar 

  128. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, Runnels LW (2006) TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem 281:11260–11270

    PubMed  CAS  Google Scholar 

  129. Tajima N, Schonherr K, Niedling S, Kaatz M, Kanno H, Schonherr R, Heinemann SH (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel–Lindau protein. J Physiol 571:349–359

    PubMed  CAS  Google Scholar 

  130. Tam T, Mathews E, Snutch TP, Schafer WR (2000) Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans. Dev Biol 226:104–117

    PubMed  CAS  Google Scholar 

  131. Valverde P, Kawai T, Taubman MA (2005) Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 84:488–499

    Article  PubMed  CAS  Google Scholar 

  132. van Leeuwen FN, van Delft S, Kain HE, van der Kammen RA, Collard JG (1999) Rac regulates phosphorylation of the myosin-ii heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1:242–248

    PubMed  Google Scholar 

  133. Verkman AS (2005). More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    PubMed  CAS  Google Scholar 

  134. Vila-Carriles WH, Kovacs GG, Jovov B, Zhou ZH, Pahwa AK, Colby G, Esimai O, Gillespie GY, Mapstone TB, Markert JM, Fuller CM, Bubien JK, Benos DJ (2006) Surface expression of ASIC2 inhibits the amiloride sensitive current and migration of glioma cells. J Biol Chem

  135. Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R (2004) TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 36:19–28

    PubMed  CAS  Google Scholar 

  136. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434:898–904

    PubMed  CAS  Google Scholar 

  137. Wang YL (1985) Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J Cell Biol 101:597–602

    PubMed  CAS  Google Scholar 

  138. Wanning J, Vriens J, Owsianik G, Stüwe L, Mally S, Frippiat C, Nilius B, Schwab A (2006) Involvement of TRPV1 channels in migration of HepG2 hepatoblastoma cells. Acta Physiol 186(Suppl 1):98

    Google Scholar 

  139. Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4:E97–E100

    PubMed  CAS  Google Scholar 

  140. Weihua Z, Tsan R, Schroit AJ, Fidler IJ (2005) Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Res 65:11529–11535

    PubMed  CAS  Google Scholar 

  141. Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118:651–654

    PubMed  CAS  Google Scholar 

  142. Wulf A, Schwab A (2002) Regulation of a calcium-sensitive K+ channel (cIK1) by protein kinase C. J Membr Biol 187:71–79

    PubMed  CAS  Google Scholar 

  143. Wulff H, Knaus HG, Pennington M, Chandy KG (2004) K+ channel expression during B-cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173:776–786

    PubMed  CAS  Google Scholar 

  144. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564

    PubMed  CAS  Google Scholar 

  145. Yang S, Huang XY (2005) Ca2+ influx through L-type Ca2+ channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. J Biol Chem 280:27130–27137

    PubMed  CAS  Google Scholar 

  146. Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65:761–789

    PubMed  CAS  Google Scholar 

  147. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell–matrix adhesions. J Cell Sci 114:3583–3590

    PubMed  CAS  Google Scholar 

  148. Zigmond SH (2004) Beginning and ending an actin filament: control at the barbed end. Curr Top Dev Biol 63:145–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the contributions of former and present members of our laboratory. Work from our laboratory was supported by Deutsche Forschungsgemeinschaft grants SCHW 407/9-1,-2, 407/10-1, RE 1284/2-1, -2, and by the fund Innovative Medical Research of the University of Münster Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Schwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, A., Nechyporuk-Zloy, V., Fabian, A. et al. Cells move when ions and water flow. Pflugers Arch - Eur J Physiol 453, 421–432 (2007). https://doi.org/10.1007/s00424-006-0138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0138-6

Keywords

Navigation