Skip to main content

Advertisement

Log in

Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Impaired O2 delivery relative to O2 demands at the onset of exercise might influence the response profile of muscle fractional O2 extraction (≅Δ[deoxy-Hb/Mb] by near-infrared spectroscopy) either by accelerating its rate of increase or creating an “overshoot” (OS) in patients with pulmonary arterial hypertension (PAH). We therefore assessed the kinetics of O2 uptake \( \left( {\dot{V}{\text{O}}_{2} } \right), \) Δ[deoxy-Hb/Mb] in the vastus lateralis, and heart rate (HR) at the onset of heavy-intensity exercise in 14 females with PAH (connective tissue disease, IPAH, portal hypertension, and acquired immunodeficiency syndrome) and 11 age- and gender-matched controls. Patients had slower \( \dot{V}{\text{O}}_{2} \) and HR dynamics than controls (τ\( \dot{V}{\text{O}}_{2} \) = 62.7 ± 15.2 s vs. 41.0 ± 13.8 s and t 1/2-HR = 61.3 ± 16.6 s vs. 43.4 ± 8.8 s, respectively; p < 0.01). No study participant had a significant reduction in oxyhemoglobin saturation. In OS(−) subjects (6 patients and 7 controls), the kinetics of Δ[deoxy-Hb/Mb] relative to \( \dot{V}{\text{O}}_{2} \) were faster in patients (p = 0.05). Larger area under the OS and slower kinetics (MRT) of the “downward” component indicated greater O2 delivery-to-utilization mismatch in OS(+) patients versus OS(+) controls (477.4 ± 330.0 vs. 78.1 ± 65.6 a.u. and 74.6 ± 18.8 vs. 46.0 ± 17.0 s, respectively; p < 0.05). Resting pulmonary vascular resistance was higher in OS(+) than OS(−) patients (23.1 ± 12.0 vs. 10.7 ± 4.0 Woods, respectively; p < 0.05). We conclude that microvascular O2 delivery-to-utilization inequalities slowed the rate of adaptation of aerobic metabolism at the start of heavy-intensity exercise in women with PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbosa PB, Bravo DM, Neder JA, Ferreira LF (2010) Kinetics analysis of muscle arterial-venous O2 difference profile during exercise. Respir Physiol Neurobiol 173:51–57

    Article  PubMed  Google Scholar 

  • Bauer TA, Reusch JE, Levi M, Regensteiner JG (2007a) Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 30:2880–2885

    Article  PubMed  Google Scholar 

  • Bauer R, Dehnert C, Schoene P, Filusch A, Bärtsch P, Borst MM, Katus HA, Meyer FJ (2007b) Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respir Med 101:2366–2369

    Article  PubMed  Google Scholar 

  • Chiappa GR, Borghi-Silva A, Ferreira LF, Carrascosa C, Oliveira CC, Maia J, Gimenes AC, Queiroga F Jr, Berton D, Ferreira EM, Nery LE, Neder JA (2008) Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. J Appl Physiol 104:1341–1350

    Article  PubMed  Google Scholar 

  • Ciarka A, Vachièry JL, Houssière A, Gujic M, Stoupel E, Velez-Roa S, Naeije R, van de Borne P (2007) Atrial septostomy decreases sympathetic overactivity in pulmonary arterial hypertension. Chest 131:1831–1837

    Article  PubMed  Google Scholar 

  • Coghlan JG, Pope J, Denton CP (2010) Assessment of endpoints in pulmonary arterial hypertension associated with connective tissue disease. Curr Opin Pulm Med 16(Suppl 1):S27–S34

    Article  PubMed  Google Scholar 

  • Cooper CE, Penfold SM, Elwell CE, Angus C (2010) Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals. Adv Exp Med Biol 662:177–181

    Article  PubMed  Google Scholar 

  • D’Alonzo GE, Gianotti LA, Pohil RL, Reagle RR, DuRee SL, Fuentes F, Dantzker DR (1987) Comparison of progressive exercise performance of normal subjects and patients with primary pulmonary hypertension. Chest 92:57–62

    Article  PubMed  Google Scholar 

  • Dantzker DR, Bower JS (1979) Mechanism of gas exchange abnormality in patients with chronic obliterative pulmonary vascular disease. J Clin Invest 64:1050–1055

    Article  PubMed  CAS  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2005) Adaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults. J Appl Physiol 98:1697–1704

    Article  PubMed  Google Scholar 

  • duManoir GR, DeLorey DS, Kowalchuk JM, Paterson DH (2010) Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. Eur J Appl Physiol 108:607–617

    Article  PubMed  Google Scholar 

  • Fauchier L, Babuty D, Melin A, Bonnet P, Cosnay P, Fauchier JP (2004) Heart rate variability in severe right or left heart failure: the role of pulmonary hypertension and resistances. Eur J Heart Fail 6:181–185

    Article  PubMed  Google Scholar 

  • Ferreira LF, Poole DC, Barstow TJ (2005a) Muscle blood flow–O2 uptake interaction and their relation to on-exercise dynamic of O2 exchange. Respir Physiol Neurobiol. 147:91–103

    Article  PubMed  Google Scholar 

  • Ferreira LF, Townsend DK, Lutjemeier BJ, Barstow TJ (2005b) Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. J Appl Physiol 98:1820–1828

    Article  PubMed  Google Scholar 

  • Ferreira LF, Padilla DJ, Williams JB, Hageman KS, Musch TI, Poole DC (2006) Effects of altered nitric oxide availability on rat muscle microvascular oxygenation during contractions. Acta Physiol 186:223–232

    Article  CAS  Google Scholar 

  • Fisher AB, Chien S, Barakat AI, Nerem RM (2001) Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281:L529–L533

    PubMed  CAS  Google Scholar 

  • Forte S, Carlone S, Vaccaro F, Onorati P, Manfredi F, Serra P, Palange P (1999) Pulmonary gas exchange and exercise capacity in patients with systemic lupus erythematosus. J Rheumatol 26:2591–2594

    PubMed  CAS  Google Scholar 

  • Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD (1996) Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol 80:988–998

    PubMed  CAS  Google Scholar 

  • Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Cerretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95:149–158

    PubMed  Google Scholar 

  • Guazzi M, Casali M, Berti F, Rossoni G, Colonna VD, Guazzi MD (2008) Endothelium-mediated modulation of ergoreflex and improvement in exercise ventilation by acute sildenafil in heart failure patients. Clin Pharmacol Ther 83:336–341

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Burnley M (2009) Oxygen uptake kinetics: an underappreciated determinant of exercise performance. Int J Sports Physiol Perform 4:524–532

    PubMed  Google Scholar 

  • Kindig CA, Musch TI, Basaraba RJ, Poole DC (1999) Impaired capillary hemodynamics in skeletal muscle of rats in chronic heart failure. J Appl Physiol 87:652–660

    PubMed  CAS  Google Scholar 

  • Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2007) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103:2049–2056

    Article  PubMed  Google Scholar 

  • Maehara K, Riley M, Galassetti P, Barstow TJ, Wasserman K (1997) Effect of hypoxia and carbon monoxide on muscle oxygenation during exercise. Am J Respir Crit Care Med 155:229–235

    PubMed  CAS  Google Scholar 

  • Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M, Provencher S (2010) Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax 65:113–117

    Article  PubMed  Google Scholar 

  • Mereles D, Ehlken N, Kreuscher S, Ghofrani S, Hoeper MM, Halank M, Meyer FJ, Karger G, Buss J, Juenger J, Holzapfel N, Opitz C, Winkler J, Herth FF, Wilkens H, Katus HA, Olschewski H, Grunig E (2006) Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 114:1482–1489

    Article  PubMed  Google Scholar 

  • Mohsenifar Z, Jasper AC, Koerner SK (1988) Relationship between oxygen uptake and oxygen delivery in patients with pulmonary hypertension. Am Rev Respir Dis 138:69–73

    PubMed  CAS  Google Scholar 

  • Murias JM, Kowalchuk JM, Paterson DH (2010) Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. J Appl Physiol 108(4):913–922

    Article  PubMed  Google Scholar 

  • Neder JA, Nery LE, Castelo A, Andreoni S, Lerario MC, Sachs A, Silva AC, Whipp BJ (1999) Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. Eur Respir J 14:1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Nootens M, Wolfkiel CJ, Chomka EV, Rich S (1995a) Understanding right and left ventricular systolic function and interactions at rest and with exercise in primary pulmonary hypertension. Am J Cardiol 75:374–377

    Article  PubMed  CAS  Google Scholar 

  • Nootens M, Kaufmann E, Rector T, Toher C, Judd D, Francis GS, Rich S (1995b) Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol 26:1581–1585

    Article  PubMed  CAS  Google Scholar 

  • Peled N, Shitrit D, Fox BD, Shlomi D, Amital A, Bendayan D, Kramer MR (2009) Peripheral arterial stiffness and endothelial dysfunction in idiopathic and scleroderma associated pulmonary arterial hypertension. J Rheumatol 36:970–975

    Article  PubMed  Google Scholar 

  • Poole DC, Ferreira LF, Behnke BJ, Barstow TJ, Jones AM (2007) The final frontier: oxygen flux into muscle at exercise onset. Exerc Sport Sci Rev 35:166–173

    Article  PubMed  Google Scholar 

  • Poole DC, Barstow TJ, McDonough P, Jones AM (2008) Control of oxygen uptake during exercise. Med Sci Sports Exerc 40:462–474

    Article  PubMed  CAS  Google Scholar 

  • Porcelli S, Marzorati M, Lanfranconi F, Vago P, Pisot R, Grassi B (2010) Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest. J Appl Physiol 109(1):101–111

    Article  PubMed  CAS  Google Scholar 

  • Pugh ME, Hemnes AR (2010) Development of pulmonary arterial hypertension in women: interplay of sex hormones and pulmonary vascular disease. Womens Health (Lond Engl) 6:285–296

    Google Scholar 

  • Ranque B, Authier FJ, Berezne A, Guillevin L, Mouthon L (2007) Systemic sclerosis-associated myopathy. Ann NY Acad Sci 1108:268–282

    Article  PubMed  CAS  Google Scholar 

  • Rich S (2009) The effects of vasodilators in pulmonary hypertension: pulmonary vascular or peripheral vascular? Circ Heart Fail 2:145–150

    Article  PubMed  Google Scholar 

  • Riley MS, Pórszász J, Engelen MP, Shapiro SM, Brundage BH, Wasserman K (2000) Responses to constant work rate bicycle ergometry exercise in primary pulmonary hypertension: the effect of inhaled nitric oxide. J Am Coll Cardiol 36:547–556

    Article  PubMed  CAS  Google Scholar 

  • Saltin B (2007) Exercise hyperaemia: magnitude and aspects on regulation in humans. J Physiol 583:819–823

    Article  PubMed  CAS  Google Scholar 

  • Sietsema KE (1992) Oxygen uptake kinetics in response to exercise in patients with pulmonary vascular disease. Am Rev Resp Dis 145:1052–1057

    PubMed  CAS  Google Scholar 

  • Sperandio PA, Borghi-Silva A, Barroco A, Nery LE, Almeida DR, Neder JA (2009) Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF. Am J Physiol Heart Circ Physiol 297:H1720–H1728

    Article  PubMed  CAS  Google Scholar 

  • Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2001) Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 104:429–435

    Article  PubMed  CAS  Google Scholar 

  • Suzuki ST, Ozaki T, Kobayashi Y (1999) A tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE 3597:582–592

    Article  CAS  Google Scholar 

  • Tolle J, Waxman A, Systrom D (2008) Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc 40:3–8

    PubMed  CAS  Google Scholar 

  • Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P (2004) Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110:1308–1312

    Article  PubMed  Google Scholar 

  • Watanabe T, Takeda T, Omiya S, Hikoso S, Yamaguchi O, Nakano Y, Higuchi Y, Nakai A, Abe Y, Aki-Jin Y, Taniike M, Mizote I, Matsumura Y, Shimizu T, Nishida K, Imai K, Hori M, Shirasawa T, Otsu K (2008) Reduction in hemoglobin-oxygen affinity results in the improvement of exercise capacity in mice with chronic heart failure. J Am Coll Cardiol 52:779–786

    Article  PubMed  CAS  Google Scholar 

  • Wensel R, Jilek C, Dörr M, Francis DP, Stadler H, Lange T, Blumberg F, Opitz C, Pfeifer M, Ewert R (2009) Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J 34:895–901

    Article  PubMed  CAS  Google Scholar 

  • Wilson JR, Martin JL, Schwartz D, Ferraro N (1984) Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle. Circulation 69:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Wolf U, Wolf M, Choi JH, Paunescu LA, Safonova LP, Michalos A, Gratton E (2003) Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness. Adv Exp Med Biol 510:225–230

    PubMed  CAS  Google Scholar 

  • Wolff B, Lodziewski S, Bollmann T, Opitz CF, Ewert R (2007) Impaired peripheral endothelial function in severe idiopathic pulmonary hypertension correlates with the pulmonary vascular response to inhaled iloprost. Am Heart J 153(1088):e1–e7

    PubMed  Google Scholar 

  • Yasunobu Y, Oudiz RJ, Sun XG, Hansen JE, Wasserman K (2007) End-tidal PCO2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest 127:1637–1646

    Article  Google Scholar 

  • Zhang YY, Wasserman K, Sietsema KE, Ben-Dov I, Barstow TJ, Mizumoto G, Sullivan CS (1993) O2 uptake kinetics in response to exercise. A measure of tissue anaerobiosis in heart failure. Chest 103:735–741

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Leonardo Ferreira (University of Kentucky, Lexington, USA) for his intellectual input and useful commentaries on the topic. They are also grateful to all colleagues from the Pulmonary Function and Clinical Exercise Physiology Unit [Division of Respiratory Diseases, Department of Medicine, Federal University of Sao Paulo (UNIFESP, Brazil)] for their friendly collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alberto Neder.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, P.B., Ferreira, E.M.V., Arakaki, J.S.O. et al. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur J Appl Physiol 111, 1851–1861 (2011). https://doi.org/10.1007/s00421-010-1799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1799-6

Keywords

Navigation