Skip to main content
Log in

Increased Sympathetic Nerve Activity in COPD is Associated with Morbidity and Mortality

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Chronic obstructive lung disease (COPD) is a major cause of comorbidity and mortality. Systemic effects, such as sympathetic activation, might contribute to progression and severity of the disease.

Objectives

This study investigated whether increased sympathetic activity is associated with increased long-term morbidity and mortality with COPD.

Methods

Following a baseline registration of muscle sympathetic nerve activity (MSNA), 21 COPD patients and 21 matched healthy control subjects were contacted after a mean follow-up period of 7 years. Information about the number of hospitalizations during follow-up was obtained from patients who were still alive. Information about the time of death was collected from relatives of the deceased and local registration offices. The primary endpoint was the comparison of MSNA in living patients without hospitalizations versus MSNA in the patients who died or had at least one hospitalization due to exacerbation of COPD.

Results

At baseline, MSNA was significantly increased, whereas forced expiratory volume in 1 s and arterial oxygen tension (PaO2) were significantly decreased in patients compared with controls. MSNA was significantly higher in COPD patients who had reached the combined endpoint of hospitalization or death during follow-up (n = 12) compared with patients who were still alive at follow-up and had not been hospitalized (n = 8): 60.3 ± 15.8 (SD) bursts/min versus 40.5 ± 17.5 bursts/min; p = 0.022.

Conclusions

Our data suggest that sympathetic activation is related to adverse outcome in COPD. Although this finding has to be replicated in larger studies, it implies that neurohumoral activation could be a potential therapeutic target in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

% pred:

% predicted

BMI:

Body mass index

COPD:

Chronic obstructive pulmonary disease

FEV1:

Forced expiratory volume in 1 s

MSNA:

Muscle sympathetic nerve activity

PaCO2 :

Arterial carbon dioxide tension

PaO2 :

Arterial oxygen tension

References

  1. Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379:1341–1351

    Article  PubMed  Google Scholar 

  2. Sin DD, MacNee W (2013) Chronic obstructive pulmonary disease and cardiovascular diseases: a “vulnerable” relationship. Am J Respir Crit Care Med 187:2–4

    Article  PubMed  Google Scholar 

  3. Stone IS, Barnes NC, Petersen SE (2012) Chronic obstructive pulmonary disease: a modifiable risk factor for cardiovascular disease? Heart 98:1055–1062

    Article  PubMed  Google Scholar 

  4. Fabbri LM, Luppi F, Beghe B et al (2008) Complex chronic comorbidities of COPD. Eur Respir J 31:204–212

    Article  CAS  PubMed  Google Scholar 

  5. Raupach T, Bahr F, Herrmann P et al (2008) Slow breathing reduces sympathoexcitation in COPD. Eur Respir J 32:387–392

    Article  CAS  PubMed  Google Scholar 

  6. Andreas S, Anker SD, Scanlon PD et al (2005) Neurohumoral activation as a link to systemic manifestation of chronic lung disease. Chest 128:3618–3624

    Article  PubMed  Google Scholar 

  7. Macnee W, Maclay J, McAllister D (2008) Cardiovascular injury and repair in chronic obstructive pulmonary disease. Proc Am Thorac Soc 5:824–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fatouleh R, Macefield VG (2011) Respiratory modulation of muscle sympathetic nerve activity is not increased in essential hypertension or chronic obstructive pulmonary disease. J Physiol 589:4997–5006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54:375–385

    Article  CAS  PubMed  Google Scholar 

  10. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  11. Swedberg K, Eneroth P, Kjekshus J et al (1990) Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 82:1730–1736

    Article  CAS  PubMed  Google Scholar 

  12. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    Article  PubMed  Google Scholar 

  13. Heindl S, Lehnert M, Criée CP et al (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597–601

    Article  CAS  PubMed  Google Scholar 

  14. Pauwels RA, Buist AS, Ma P et al (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization global initiative for chronic obstructive lung disease (GOLD): executive summary. Respir Care 46:798–825

    CAS  PubMed  Google Scholar 

  15. Ferguson DW, Berg WJ, Sanders JS (1990) Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol 16:1125–1134

    Article  CAS  PubMed  Google Scholar 

  16. Wallin BG, Esler M, Dorward P et al (1992) Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol Lond 453:45–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Heindl S, Dodt C, Krahwinkel M et al (2001) Short term effect of continuous positive airway pressure on muscle sympathetic nerve activity in patients with chronic heart failure. Heart 85:185–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Andreas S, Reiter H, Luthje L et al (2004) Differential effects of theophylline on sympathetic excitation, hemodynamics, and breathing in congestive heart failure. Circulation 110:2157–2162

    Article  CAS  PubMed  Google Scholar 

  19. Shih HT, Webb CR, Conway WA et al (1988) Frequency and significance of cardiac arrhythmias in chronic obstructive lung disease. Chest 94:44–48

    Article  CAS  PubMed  Google Scholar 

  20. Jensen MT, Marott JL, Lange P et al (2012) Resting heart rate is a predictor of mortality in chronic obstructive pulmonary disease. Eur Respir J 42(2):341–349

    Article  PubMed  Google Scholar 

  21. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341:577–585

    Article  CAS  PubMed  Google Scholar 

  22. Jouven X, Empana JP, Escolano S et al (2009) Relation of heart rate at rest and long-term (>20 years) death rate in initially healthy middle-aged men. Am J Cardiol 103:279–283

    Article  PubMed  Google Scholar 

  23. Calverley PM, Anderson JA, Celli B et al (2007) Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 356:775–789

    Article  CAS  PubMed  Google Scholar 

  24. Tashkin DP, Celli B, Senn S et al (2008) A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 359:1543–1554

    Article  CAS  PubMed  Google Scholar 

  25. Rutten FH, Hoes AW (2012) Chronic obstructive pulmonary disease: a slowly progressive cardiovascular disease masked by its pulmonary effects? Eur J Heart Fail 14:348–350

    Article  PubMed  Google Scholar 

  26. Van Eeden S, Leipsic J, Paul Man SF et al (2012) The relationship between lung inflammation and cardiovascular disease. Am J Respir Crit Care Med 186:11–16

    Article  PubMed  Google Scholar 

  27. Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  28. Barretto AC, Santos AC, Munhoz R et al (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307

    Article  PubMed  Google Scholar 

  29. Munhoz RT, Negrao CE, Barretto AC et al (2009) Microneurography and venous occlusion plethysmography in heart failure: correlation with prognosis. Arq Bras Cardiol 92:46–53

    Article  PubMed  Google Scholar 

  30. Heistad DD, Wheeler RC, Mark AL et al (1956) Effects of adrenergic stimulation on ventilation in man. Clin Invest 51(6):1469–1475

    Article  Google Scholar 

  31. Coats AJ, Adamopoulos S, Radaelli A et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

    Article  CAS  PubMed  Google Scholar 

  32. Anker SD, Coats AJ (1999) Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 115:836–847

    Article  CAS  PubMed  Google Scholar 

  33. Packer M (1992) The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  34. Somers VK, Anderson EA, Mark AL (1993) Sympathetic neural mechanisms in human hypertension. Curr Opin Nephrol Hypertens 2:96–105

    Article  CAS  PubMed  Google Scholar 

  35. Hofford JM, Milakofsky L, Vogel WH et al (1990) The nutritional status in advanced emphysema associated with chronic bronchitis. A study of amino acid and catecholamine levels. Am Rev Respir Dis 141:902–908

    Article  CAS  PubMed  Google Scholar 

  36. Francis GS, McDonald KM, Cohn JN (1993) Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation 87:IV90–IV96

    CAS  PubMed  Google Scholar 

  37. Dinenno FA, Jones PP, Seals DR et al (2000) Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Heart Circ Physiol 278:H1205–H1210

    CAS  PubMed  Google Scholar 

  38. Swierblewska E, Hering D, Kara T et al (2010) An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J Hypertens 28:979–984

    Article  CAS  PubMed  Google Scholar 

  39. Laurent S, Cockcroft J, Van Bortel L et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  40. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  41. McAllister DA, Maclay JD, Mills NL et al (2007) Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176:1208–1214

    Article  PubMed Central  PubMed  Google Scholar 

  42. Maclay JD, McAllister DA, Mills NL et al (2009) Vascular dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180:513–520

    Article  PubMed  Google Scholar 

  43. Sabit R, Bolton CE, Edwards PH et al (2007) Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175:1259–1265

    Article  PubMed  Google Scholar 

  44. Etminan M, Jafari S, Carleton B et al (2012) Beta-blocker use and COPD mortality: a systematic review and meta-analysis. BMC Pulm Med 12:48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Yucha CB (2000) Use of microneurography to evaluate sympathetic activity in hypertension: a brief review. Appl Psychophysiol Biofeedback 25:55–63

    Article  CAS  PubMed  Google Scholar 

  46. Jennings GL (1998) Noradrenaline spillover and microneurography measurements in patients with primary hypertension. J Hypertens Suppl 16:S35–S38

    CAS  PubMed  Google Scholar 

  47. Hagbarth KE (2002) Microelectrode recordings from human peripheral nerves (microneurography). Muscle Nerve Suppl 11:S28–S35

    Article  PubMed  Google Scholar 

  48. Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the German Research Foundation (DFG) An 260/1-2 and An 260/6-1 as well as the Oskar Helene-Medizinpreis 2010.

Conflict of interest

All authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Andreas.

Additional information

Stefan Andreas and Helge Haarmann have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreas, S., Haarmann, H., Klarner, S. et al. Increased Sympathetic Nerve Activity in COPD is Associated with Morbidity and Mortality. Lung 192, 235–241 (2014). https://doi.org/10.1007/s00408-013-9544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9544-7

Keywords

Navigation