Skip to main content
Log in

Alveolar macrophage cytotoxic activity is inhibited by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a carcinogenic component of cigarette smoke

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic compound of cigarette smoke that generates electrophilic intermediates capable of damaging DNA. Recently, we have shown that NNK can modulate mediator production by alveolar macrophages (AM) and bronchial and alveolar epithelial cells, suggesting that cigarette smoke can alter lung immune response. Thus, we investigated the effect of NNK and cigarette smoke extract (CSE) on AM capacity to eliminate tumoral cells. Rat AM cell line, NR8383, was treated with NNK (500 μM) or CSE (3%) and stimulated with lipopolysaccharide (10 ng/ml). The release of cytotoxic mediators, tumor necrosis factor (TNF) and reactive oxygen species (ROS), was measured in cell-free supernatants using ELISA and superoxide anion production. TNF- and ROS-dependent cytotoxicity were studied using a 51Chromium-release assay and WEHI-164 and P-815 cell lines. Treatment of AM with NNK and CSE for 18 h significantly inhibited AM TNF release. CSE exposure resulted in a significant increase of ROS production, whereas NNK did not. TNF-dependent cytotoxic activity of NR8383 and freshly isolated rat AM was significantly inhibited after treatment with NNK and CSE. Interestingly, although ROS production was stimulated by CSE and not affected by NNK, CSE inhibited AM ROS-dependent cytotoxicity. These results suggest that NNK may be one of the cigarette smoke components responsible for the reduction of pulmonary cytotoxicity. Thus, NNK may have a double pro-carcinogenic effect by contributing to DNA adduct formation and inhibiting AM cytotoxicity against tumoral cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AM:

Alveolar macrophage

COPD:

Chronic obstructive pulmonary disease

CSE:

Cigarette smoke extract

COX:

Cyclooxygenase

FBS:

Fetal bovine serum

IL:

Interleukin

LPS:

Lipopolysaccharide

NNK:

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone

NO:

Nitric oxide

Pen-Strep:

Penicillin–Streptomycin

PGE2 :

Prostaglandin E2

ROS:

Reactive oxygen species

TNF:

Tumor necrosis factor

References

  1. Bidani A, Reisner BS, Haque AK, Wen J, Helmer RE, Tuazon DM, Heming TA (2000) Bactericidal activity of alveolar macrophages is suppressed by V-ATPase inhibition. Lung 178:91–104

    Article  PubMed  CAS  Google Scholar 

  2. Boulven I, Levasseur S, Marois S, Pare G, Rollet-Labelle E, Naccache PH (2006) Class IA phosphatidylinositide 3-kinases, rather than p110 gamma, regulate formyl-methionyl-leucyl-phenylalanine-stimulated chemotaxis and superoxide production in differentiated neutrophil-like PLB-985 cells. J Immunol 176:7621–7627

    PubMed  CAS  Google Scholar 

  3. Bowler RP, Crapo JD (2002) Oxidative stress in airways—is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 166:S38–S43

    Article  PubMed  Google Scholar 

  4. Clerici N, Leyvacobian F, Reboiras S, Demercado PL (1986) Functional-characteristics of human alveolar macrophages in lung cancer. Lung 164:355–364

    PubMed  CAS  Google Scholar 

  5. Cosgrove JP, Borish ET, Church DF, Pryor WA (1985) The metal-mediated formation of hydroxyl radical by aqueous extracts of cigarette tar. Biochem Biophys Res Commun 132:390–396

    Article  PubMed  CAS  Google Scholar 

  6. Cunnick J, Kaur P, Cho Y, Groffen J, Heisterkamp N (2006) Use of bone marrow-derived macrophages to model murine innate immune responses. J Immunol Methods 311:96–105

    Article  PubMed  CAS  Google Scholar 

  7. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  PubMed  CAS  Google Scholar 

  8. Demarest GB, Hudson LD, Altman LC (1979) Impaired alveolar macrophage chemotaxis in patients with acute smoke inhalation. Am Rev Respir Dis 119:279–286

    PubMed  CAS  Google Scholar 

  9. Dery RE, Lin TJ, Befus AD, Milne CD, Moqbel R, Menard G, Bissonnette EY (2000) Redundancy or cell-type-specific regulation? Tumour necrosis factor in alveolar macrophages and mast cells. Immunology 99:427–434

    Article  PubMed  CAS  Google Scholar 

  10. Duchaine C, Thorne PS, Meriaux A, Grimard Y, Whitten P, Cormier Y (2001) Comparison of endotoxin exposure assessment by bioaerosol impinger and filter-sampling methods. Appl Environ Microbiol 67:2775–2780

    Article  PubMed  CAS  Google Scholar 

  11. Fischer S, Castonguay A, Kaiserman M, Spiegelhalder B, Preussmann R (1990) Tobacco-specific nitrosamines in canadian cigarettes. J Cancer Res Clin Oncol 116:563–568

    Article  PubMed  CAS  Google Scholar 

  12. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    Article  PubMed  CAS  Google Scholar 

  13. Higashimoto Y, Fukuchi Y, Ishida K, Shimada Y, Ohata M, Funasako M, Shu C, Teramoto S, Matsuse T, Sudo E, Orimo H (1994) Effect of chronic tobacco-smoke exposure on the function of alveolar macrophages in mice. Respiration 61:23–27

    Article  PubMed  CAS  Google Scholar 

  14. Keller R, Keist R, Groscurth P (1986) Firm persistent binding between activated macrophages and tumor-cells is not a prerequisite for the mediation of cytolysis. Int J Cancer 37:89–95

    Article  PubMed  CAS  Google Scholar 

  15. Kim PM, Wells PG (1996) Genoprotection by UDP-glucuronosyltransferases in peroxidase-dependent, reactive oxygen species-mediated micronucleus initiation by the carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Cancer Res 56:1526–1532

    PubMed  CAS  Google Scholar 

  16. King TE, Savici D, Campbell PA (1988) Phagocytosis and killing of Listeria-Monocytogenes by alveolar macrophages—smokers versus nonsmokers. J Infect Dis 158:1309–1316

    PubMed  Google Scholar 

  17. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  18. Martey CA, Pollock SJ, Turner CK, O’Reilly KMA, Baglole CJ, Phipps RP, Sime PJ (2004) Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E-2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol 287:L981–L991

    Article  PubMed  CAS  Google Scholar 

  19. May KR, Harper GJ (1957) The efficiency of various liquid impinger samplers in bacterial aerosols. Br J Ind Med 14:287–297

    PubMed  CAS  Google Scholar 

  20. Meger M, Richter E, Zwickenpflug W, Oehlmann C, Hargaden MB, Rahim YI, Vesell ES (1999) Metabolism and disposition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in rhesus monkeys. Drug Metab Dispos 27:471–478

    PubMed  CAS  Google Scholar 

  21. Menard G, Bissonnette EY (2000) Priming of alveolar macrophages by leukotriene D-4—potentiation of inflammation. Am J Respir Cell Mol Biol 23:572–577

    PubMed  CAS  Google Scholar 

  22. Monastra G, Cabrelle A, Zambon A, Rosato A, Macino B, Collavo D, Zanovello P (1996) Membrane form of TNF-α induces both cell lysis and apoptosis in susceptible target cells. Cell Immunol 171:102–110

    Article  PubMed  CAS  Google Scholar 

  23. Ohta T, Yamashita N, Maruyama M, Sugiyama E, Kobayashi M (1998) Cigarette smoking decreases interleukin-8 secretion by human alveolar macrophages. Respir Med 92:922–927

    Article  PubMed  CAS  Google Scholar 

  24. Ortega E, Hueso F, Collazos ME, Pedrera MI, Barriga C, Rodriguez AB (1992) Phagocytosis of latex beads by alveolar macrophages from mice exposed to cigarette-smoke. Comp Immunol Microbiol Infect Dis 15:137–142

    Article  PubMed  CAS  Google Scholar 

  25. Ortega E, Barriga C, Rodriguez AB (1994) Decline in the phagocytic function of alveolar macrophages from mice exposed to cigarette-smoke. Comp Immunol Microbiol Infect Dis 17:77–84

    Article  PubMed  CAS  Google Scholar 

  26. Pillai SD, Widmer KW, Dowd SE, Ricke SC (1996) Occurrence of airborne bacteria and pathogen indicators during land application of sewage sludge. Appl Environ Microbiol 62:296–299

    PubMed  CAS  Google Scholar 

  27. Proulx LI, Castonguay A, Bissonnette EY (2004) Cytokine production by alveolar macrophages is down regulated by the alpha-methylhydroxylation pathway of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 25:997–1003

    Article  PubMed  CAS  Google Scholar 

  28. Proulx LI, Gaudreault M, Turmel V, Augusto LA, Castonguay A, Bissonnette EY (2005) 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a component of tobacco smoke, modulates mediator release from human bronchial and alveolar epithelial cells. Clin Exp Immunol 140:46–53

    Article  PubMed  CAS  Google Scholar 

  29. Pryor WA, Stone K (1993) Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann NY Acad Sci 686:12–27

    Article  PubMed  CAS  Google Scholar 

  30. Rioux N, Castonguay A (2000) The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappa B. Carcinogenesis 21:1745–1751

    Article  PubMed  CAS  Google Scholar 

  31. Rubin H (2001) Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22:1903–1930

    Article  PubMed  CAS  Google Scholar 

  32. Sirois J, Menard G, Moses AS, Bissonnette EY (2000) Importance of histamine in the cytokine network in the lung through H-2 and H-3 receptors: stimulation of IL-10 production. J Immunol 164:2964–2970

    PubMed  CAS  Google Scholar 

  33. Soliman DM, Twigg HL (1992) Cigarette-smoking decreases bioactive interleukin-6 secretion by alveolar macrophages. Am J Physiol 263:L471–L478

    PubMed  CAS  Google Scholar 

  34. Taylor R, Cumming R, Woodward A, Black M (2001) Passive smoking and lung cancer: a cumulative meta-analysis. Aust NZ J Public Health 25:203–211

    CAS  Google Scholar 

  35. Teufelhofer O, Weiss RM, Parzefall W, Schulte-Hermann R, Micksche M, Berger W, Elbling L (2003) Promyelocytic HL60 cells express NADPH oxidase and are excellent targets in a rapid spectrophotometric microplate assay for extracellular superoxide. Toxicol Sci 76:376–383

    Article  PubMed  CAS  Google Scholar 

  36. Therriault MJ, Proulx LI, Castonguay A, Bissonnette EY (2003) Immunomodulatory effects of the tobacco-specific carcinogen, NNK, on alveolar macrophages. Clin Exp Immunol 132:232–238

    Article  PubMed  CAS  Google Scholar 

  37. Thomassen MJ, Barna BP, Wiedemann HP, Farmer M, Ahmad M (1988) human alveolar macrophage function—differences between smokers and nonsmokers. J Leukoc Biol 44:313–318

    PubMed  CAS  Google Scholar 

  38. Thomson NM, Kenney PM, Peterson LA (2003) The pyridyloxobutyl DNA adduct, O6-[4-oxo-4-(3-pyridyl)butyl]guanine, is detected in tissues from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-treated A/J mice. Chem Res Toxicol 16:1–6

    Article  PubMed  CAS  Google Scholar 

  39. Wang MY, Cheng G, Sturla SJ, Shi YL, McIntee EJ, Villalta PW, Upadhyaya P, Hecht SS (2003) Identification of adducts formed by pyridyloxobutylation of deoxyguanosine and DNA by 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone, a chemically activated form of tobacco specific carcinogens. Chem Res Toxicol 16:616–626

    PubMed  CAS  Google Scholar 

  40. Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM (1997) Oxidative damage in chemical teratogenesis. Mutat Res 396:65–78

    PubMed  CAS  Google Scholar 

  41. Yamaguchi E, Okazaki N, Itoh A, Abe S, Kawakami Y, Okuyama H (1989) Interleukin-1 production by alveolar macrophages is decreased in smokers. Am Rev Respir Dis 140:397–402

    PubMed  CAS  Google Scholar 

  42. Yang SR, Bauter M, Brookes P, Rahman I (2005) Cigarette smoke induces posttranslational modifications of deacetylase proteins and inflammatory cytokines in macrophages and rat lungs. Free Radic Biol Med 39:S56

    Google Scholar 

  43. Zhang J, Jiang SG, Watson RR (2001) Antioxidant supplementation prevents oxidation and inflammatory responses induced by sidestream cigarette smoke in old mice. Environ Health Perspect 109:1007–1009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Yvon Cormier and Dr. Paul H. Naccache for critical review of the manuscript. This study was supported by the Canadian Institutes of Health Research. L.I.P. has a studentship from FRSQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyse Y. Bissonnette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proulx, LI., Paré, G. & Bissonnette, E.Y. Alveolar macrophage cytotoxic activity is inhibited by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a carcinogenic component of cigarette smoke. Cancer Immunol Immunother 56, 831–838 (2007). https://doi.org/10.1007/s00262-006-0243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0243-6

Keywords

Navigation