Skip to main content

Advertisement

Log in

The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent decades have revealed that many bacterial species are capable of communicating with each other, and this observation has been largely responsible for a paradigm shift in microbiology. Whereas it was previously believed that bacteria lived as individual cells, it is now acknowledged that bacteria preferentially live in communities in the form of primitive organisms in which the behavior of individual cells is coordinated by cell–cell communication, known as quorum sensing (QS). Bacteria use QS for regulation of the processes involved in their interaction with each other, their environment, and, particularly, higher organisms We have focused on Pseudomonas aeruginosa, an opportunistic pathogen producing more than 30 QS-regulated virulence factors. P. aeruginosa causes several types of nosocomial infection, and lung infection in cystic fibrosis (CF) patients. We review the role of QS in the protective mechanisms of P. aeruginosa and show how disruption of the QS can be used as an approach to control this cunning aggressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hassett DJ et al (2002) Adv Drug Deliv Rev 54:1425–1443

    Article  CAS  Google Scholar 

  2. Lu CD, Winteler H, Abdelal A, Haas D (1999) J Bacteriol 181:2459–2464

    CAS  Google Scholar 

  3. Stover CK et al (2000) Nature 406:959–964

    Article  CAS  Google Scholar 

  4. Murray PR, Rosenthal KS, Kobayashi GS, Pfaller MA (2002) Medical microbiology. Mosby, Inc., St. Louis

    Google Scholar 

  5. Lyczak JB, Cannon CL, Pier GB (2000) Microbes Infect 2:1051–1060

    Article  CAS  Google Scholar 

  6. van Delden C, Iglewski BH (1998) Emerg Infect Dis 4:551–560

    Article  Google Scholar 

  7. Frederiksen B, Koch C, Hoiby N (1997) Pediatr Pulmonol 23:330–335

    Article  CAS  Google Scholar 

  8. Hoiby N (1974) Acta Pathol Microbiol Scand [B] Microbiol Immunol 82:541–550

    CAS  Google Scholar 

  9. Koch C, Hoiby N (1993) Lancet 341:1065–1069

    Article  CAS  Google Scholar 

  10. Gjødsbøl K et al (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. International Wound Journal Accepted for publication

  11. Costerton JW et al (1994) J Bacteriol 176:2137–2142

    CAS  Google Scholar 

  12. Davies D (2003) Nat Rev Drug Discov 2:114–122

    Article  CAS  Google Scholar 

  13. Donlan RM, Costerton JW (2002) Clin Microbiol Rev 15:167–193

    Article  CAS  Google Scholar 

  14. Drenkard E (2003) Microbes Infect 5:1213–1219

    Article  CAS  Google Scholar 

  15. Rumbaugh KP, Griswold JA, Hamood AN (2000) Microbes Infect 2:1721–1731

    Article  CAS  Google Scholar 

  16. Williams P et al (2000) Philos Trans R Soc Lond B Biol Sci 355:667–680

    Article  CAS  Google Scholar 

  17. McKnight SL, Iglewski BH, Pesci EC (2000) J Bacteriol 182:2702–2708

    Article  CAS  Google Scholar 

  18. Pesci EC et al (1999) Proc Natl Acad Sci USA 96:11229–11234

    Article  CAS  Google Scholar 

  19. Diggle SP, Cornelis P, Williams P, Camara M (2006) Int J Med Microbiol 296:83–91

    Article  CAS  Google Scholar 

  20. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) J Bacteriol 179:3127–3132

    CAS  Google Scholar 

  21. Diggle SP et al (2003) Mol Microbiol 50:29–43

    Article  CAS  Google Scholar 

  22. Davies DG et al (1998) Science 280:295–298

    Article  CAS  Google Scholar 

  23. Bjarnsholt T et al (2005) Microbiology 151:373–383

    Article  CAS  Google Scholar 

  24. Heydorn A et al (2002) Appl Environ Microbiol 68:2008–2017

    Article  CAS  Google Scholar 

  25. Hentzer M, Eberl L, Givskov M (2005) Biofilms 2:37–61

    Article  Google Scholar 

  26. Roberts ME, Stewart PS (2004) Antimicrob Agents Chemother 48:48–52

    Article  CAS  Google Scholar 

  27. Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW (1989) Antimicrob Agents Chemother 33:1824–1826

    CAS  Google Scholar 

  28. Bagge N et al (2004) Antimicrob Agents Chemother 48:1175–1187

    Article  CAS  Google Scholar 

  29. Bagge N et al (2004) Antimicrob Agents Chemother 48:1168–1174

    Article  CAS  Google Scholar 

  30. Mah TF et al (2003) Nature 426:306–310

    Article  CAS  Google Scholar 

  31. Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR (1999) Appl Environ Microbiol 65:4594–4600

    CAS  Google Scholar 

  32. Stewart PS et al (2000) Appl Environ Microbiol 66:836–838

    Article  CAS  Google Scholar 

  33. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  34. Hoyle BD, Costerton JW (1991) Prog Drug Res 37:91–105

    CAS  Google Scholar 

  35. Teitzel GM, Parsek MR (2003) Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  36. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) FEMS Microbiol Lett 230:13–18

    Article  CAS  Google Scholar 

  37. Spoering AL, Lewis K (2001) J Bacteriol 183:6746–6751

    Article  CAS  Google Scholar 

  38. Drenkard E, Ausubel FM (2002) Nature 416:740–743

    Article  CAS  Google Scholar 

  39. Dunne WM Jr (2002) Clin Microbiol Rev 15:155–166

    Article  CAS  Google Scholar 

  40. Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Antimicrob Agents Chemother 47:317–323

    Article  CAS  Google Scholar 

  41. Hentzer M et al (2003) EMBO J 22:3803–3815

    Article  CAS  Google Scholar 

  42. Rasmussen TB et al(2005) Screening for quorum sensing inhibitors using a novel genetic system—the QSI selector. J Bacteriol 187

  43. Shih PC, Huang CT (2002) J Antimicrob Chemother 49:309–314

    Article  CAS  Google Scholar 

  44. Allesen-Holm M et al (2005) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol Online early

  45. Garske LA, Beatson SA, Leech AJ, Walsh SL, Bell SC (2004) Pathology 36:571–575

    Article  CAS  Google Scholar 

  46. Mekalanos JJ (1992) J Bacteriol 174:1–7

    CAS  Google Scholar 

  47. Williams SC et al (2004) J Bacteriol 186:2281–2287

    Article  CAS  Google Scholar 

  48. Li L, Hooi D, Chhabra SR, Pritchard D, Shaw PE (2004) Oncogene 23:4894–4902

    Article  CAS  Google Scholar 

  49. Tang HB et al (1996) Infect Immun 64:37–43

    CAS  Google Scholar 

  50. Smith RS et al (2001) J Immunol 167:366–374

    CAS  Google Scholar 

  51. Chmiel JF, Davis PB (2003) Respir Res 4:8

    Article  Google Scholar 

  52. Smith RS, Harris SG, Phipps R, Iglewski B (2002) J Bacteriol 184:1132–1139

    Article  CAS  Google Scholar 

  53. Bjarnsholt T et al (2005) Microbiology 151:3873–3880

    Article  CAS  Google Scholar 

  54. Telford G et al (1998) Infect Immun 66:36–42

    CAS  Google Scholar 

  55. Moser C et al (2000) APMIS 108:329–335

    Article  CAS  Google Scholar 

  56. Andersen JB et al (2001) Appl Environ Microbiol 67:575–585

    Article  CAS  Google Scholar 

  57. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Proc Natl Acad Sci USA 101:3587–3590

    Article  CAS  Google Scholar 

  58. Tateda K et al (2003) Infect Immun 71:5785–5793

    Article  CAS  Google Scholar 

  59. Pritchard DI et al (2005) Acta Diabetol 42:119–122

    Article  CAS  Google Scholar 

  60. Wu H et al (2001) Microbiology 147:1105–1113

    CAS  Google Scholar 

  61. Hooi DS, Bycroft BW, Chhabra SR, Williams P, Pritchard DI (2004) Infect Immun 72:6463–6470

    Article  CAS  Google Scholar 

  62. Wu L et al (2005) Science 309:774–777

    Article  CAS  Google Scholar 

  63. Eberhard A, Widrig CA, McBath P, Schineller JB (1986) Arch Microbiol 146:35–40

    Article  CAS  Google Scholar 

  64. Pearson JP et al (1994) Proc Natl Acad Sci USA 91:197–201

    Article  CAS  Google Scholar 

  65. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) J Bacteriol 178:2897–2901

    CAS  Google Scholar 

  66. Zhu J et al (1998) J Bacteriol 180:5398–5405

    CAS  Google Scholar 

  67. Smith KM, Bu Y, Suga H (2003) Chem Biol 10:563–571

    Article  CAS  Google Scholar 

  68. Smith KM, Bu Y, Suga H (2003) Chem Biol 10:81–89

    Article  CAS  Google Scholar 

  69. Eberhard A, Schineller JB (2000) Methods Enzymol 305:301–315

    Article  CAS  Google Scholar 

  70. Givskov M et al (1996) J Bacteriol 178:6618–6622

    CAS  Google Scholar 

  71. de Nys R, Wright AD, K”nig GM, Sticher O (1993) Tetrahedron 49:11213–11220

    Article  Google Scholar 

  72. Kjelleberg S et al (1997) Aquat Microb Ecol 13:85–93

    Google Scholar 

  73. Manefield M et al (2002) Microbiology 148:1119–1127

    CAS  Google Scholar 

  74. Rasmussen TB et al (2005) Microbiology 151:1325–1340

    Article  CAS  Google Scholar 

  75. de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg P (2006) Furanones. Prog Mol Subcell Biol

  76. Tateda K et al (2001) Antimicrob Agents Chemother 45:1930–1933

    Article  CAS  Google Scholar 

  77. Nalca Y et al (2006) Antimicrob Agents Chemother 50:1680–1688

    Article  CAS  Google Scholar 

  78. Saiman L (2004) Curr Opin Pulm Med 10:515–523

    Article  Google Scholar 

  79. Southern KW, Barker PM (2004) Eur Respir J 24:834–838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work on QS and biofilm research has received financial support from The Danish Technical research Council and the Villum Kann Rasmussen Foundation to the project: A new approach to the control of microbial activity, and the Biomedical Consortium: Biomed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Givskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjarnsholt, T., Givskov, M. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa . Anal Bioanal Chem 387, 409–414 (2007). https://doi.org/10.1007/s00216-006-0774-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0774-x

Keywords

Navigation