Skip to main content

Advertisement

Log in

Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the effects of olmesartan, an antagonist for angiotensin II receptor type 1(AT1), on the activation of extracellular signal-regulated kinases (ERK)1/2, tissue remodeling, and pro-inflammatory signals in the right ventricle and lung of mice during the early phase of hypobaric hypoxia. Phosphorylation of ERK1/2 in both tissue types in response to hypoxia peaked at 1–3 days, and declined rapidly in the right ventricle, whereas in the lung it was sustained for at least 8 days. Upregulation of angiotensinogen mRNA was observed in the hypoxic lung at 4–9 days, but not in the hypoxic right ventricle and pulmonary artery. Olmesartan inhibited the hypoxia-induced phosphorylation of ERK1/2 in the lung, but not in the right ventricle. Neither right ventricular hypertrophy nor the thickening of the intrapulmonary arterial wall was ameliorated by olmesartan. However, this drug inhibited the expression of the mRNA for angiotensinogen and several pro-inflammatory factors, including interleukin-6 and inducible nitric oxide synthase in the hypoxic lung. These results suggest that olmesartan blocks a potential positive feedback loop of the angiotensin II-AT1 receptor system, which may lead to attenuate pro-inflammatory signals in the mouse lung, that are associated with hypoxic pulmonary hypertension, without inducing any appreciable effects on the compensatory cardiopulmonary hypertrophy at an early phase of exposure to a hypobaric hypoxic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACE:

angiotensin-converting enzyme

Ang:

angiotensinogen

Ang II:

angiotensin II

AT1 and AT2:

Ang II receptor types 1 and 2

CMC:

carboxymethylcellulose

COX:

cyclooxygenase

ERK:

extracellular signal-regulated protein kinase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HO-1:

heme oxygenase-1

IL-6:

interleukin 6

iNOS:

inducible nitric oxide synthase

KC:

keratinocyte-derived chemokines

MAPK:

mitogen-activated protein kinase

MCP:

monocyte chemoattractant protein

MEK:

MAPK/ERK kinase

MIP:

macrophage inflammatory protein

PDGFR:

platelet-derived growth factor receptor

RT-PCR:

reverse-transcription and polymerase chain reaction

TNF-α:

tumor necrosis factor-α

References

  • Adamy C, Oliviero P, Eddahibi S, Rappaport L, Samuel JL, Teiger E, Chassagne C (2002) Cardiac modulations of ANG II receptor expression in rats with hypoxic pulmonary hypertension. Am J Physiol Heart Circ Physiol 283:H733–H740

    PubMed  CAS  Google Scholar 

  • Bhargava A, Kumar A, Yuan N, Gewitz MH, Mathew R (1999) Monocrotaline induces interleukin-6 mRNA expression in rat lungs. Heart Dis 1:126–132

    PubMed  CAS  Google Scholar 

  • Brasier AR, Recinos A III, Eledrisi MS (2002) Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 22:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Campian ME, Hardziyenka M, Michel MC, Tan HL (2006) How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol [Published online: 24 August 2006] DOI 10.1007/s00210-006-0087-9

  • Chassagne C, Eddahibi S, Adamy C, Rideau D, Marotte F, Dubois-Rande JL, Adnot S, Samuel JL, Teiger E (2000) Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 22:323–332

    PubMed  CAS  Google Scholar 

  • Cheng TH, Liu JC, Lin H, Shih NL, Chen YL, Huang MT, Chan P, Cheng CF, Chen JJ (2004) Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 369:239–244

    Article  PubMed  CAS  Google Scholar 

  • Clozel JP, Saunier C, Hartemann D, Fischli W (1991) Effects of cilazapril, a novel angiotensin converting enzyme inhibitor, on the structure of pulmonary arteries of rats exposed to chronic hypoxia. J Cardiovasc Pharmacol 17:36–40

    Article  PubMed  CAS  Google Scholar 

  • Deindl E, Kolar F, Neubauer E, Vogel S, Schaper W, Ostadal B (2003) Effect of intermittent high altitude hypoxia on gene expression in rat heart and lung. Physiol Res 52:147–157

    PubMed  CAS  Google Scholar 

  • Eguchi S, Dempsey PJ, Frank GD, Motley ED, Inagami T (2001) Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem 276:7957–7962

    Article  PubMed  CAS  Google Scholar 

  • Fulton RM, Hutchinson EC, Jones AM (1952) Ventricular weight in cardiac hypertrophy. Br Heart J 14:413–420

    PubMed  CAS  Google Scholar 

  • Fung YC, Liu SQ (1991) Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 70:2455–2470

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Herget J (2000) Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80:1337–1372

    PubMed  CAS  Google Scholar 

  • Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16:249–284

    PubMed  CAS  Google Scholar 

  • Hoshikawa Y, Nana-Sinkam P, Moore MD, Sotto-Santiago S, Phang T, Keith RL, Morris KG, Kondo T, Tuder RM, Voelkel NF, Geraci MW (2003) Hypoxia induces different genes in the lungs of rats compared with mice. Physiol Genomics 12:209–219

    PubMed  CAS  Google Scholar 

  • Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151:1628–1631

    PubMed  CAS  Google Scholar 

  • Jackson CL, Schwartz SM (1992) Pharmacology of smooth muscle cell replication. Hypertension 20:713–736

    PubMed  CAS  Google Scholar 

  • Jeffery TK, Morrell NW (2002) Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 45:173–202

    Article  PubMed  CAS  Google Scholar 

  • Jeffery TK, Wanstall JC (1999) Perindopril, an angiotensin converting enzyme inhibitor, in pulmonary hypertensive rats: comparative effects on pulmonary vascular structure and function. Br J Pharmacol 128:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Karamsetty VS, Kane KA, Wadsworth RM (1995) The effects of chronic hypoxia on the pharmacological responsiveness of the pulmonary artery. Pharmacol Ther 68:233–246

    Article  PubMed  CAS  Google Scholar 

  • Katayose D, Isoyama S, Fujita H, Shibahara S (1993) Separate regulation of heme oxygenase and heat shock protein 70 mRNA expression in the rat heart by hemodynamic stress. Biochem Biophys Res Commun 191:587–594

    Article  PubMed  CAS  Google Scholar 

  • Kentera D, Susic D, Cvetkovic A, Djordjevic G (1981) Effects of SQ 14.225, an orally active inhibitor of angiotensin-converting enzyme, on hypoxic pulmonary hypertension and right ventricular hypertrophy in rats. Basic Res Cardiol 76:344–351

    Article  PubMed  CAS  Google Scholar 

  • Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N, Murakami K, Kadowaki T, Yazaki Y (1998) Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 273:24037–24043

    Article  PubMed  CAS  Google Scholar 

  • Madjdpour C, Jewell UR, Kneller S, Ziegler U, Schwendener R, Booy C, Klausli L, Pasch T, Schimmer RC, Beck-Schimmer B (2003) Decreased alveolar oxygen induces lung inflammation. Am J Physiol Lung Cell Mol Physiol 284:L360–367

    PubMed  CAS  Google Scholar 

  • Meyrick B, Reid L (1978) The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest 38:188–200

    PubMed  CAS  Google Scholar 

  • Meyrick B, Reid L (1979) Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. Am J Pathol 96:51–70

    PubMed  CAS  Google Scholar 

  • Meyrick B, Reid L (1980) Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 100:151–178

    PubMed  CAS  Google Scholar 

  • Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA 98:8798–8803

    Article  PubMed  CAS  Google Scholar 

  • Miyata M, Sakuma F, Yoshimura A, Ishikawa H, Nishimaki T, Kasukawa R (1995) Pulmonary hypertension in rats. 2. Role of interleukin-6. Int Arch Allergy Immunol 108:287–291

    Article  PubMed  CAS  Google Scholar 

  • Miyata M, Ito M, Sasajima T, Ohira H, Kasukawa R (2001) Effect of a serotonin receptor antagonist on interleukin-6-induced pulmonary hypertension in rats. Chest 119:554–561

    Article  PubMed  CAS  Google Scholar 

  • Mizuno M, Sada T, Ikeda M, Fukuda N, Miyamoto M, Yanagisawa H, Koike H (1995) Pharmacology of CS-866, a novel nonpeptide angiotensin II receptor antagonist. Eur J Pharmacol 285:181–188

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW, Morris KG, Stenmark KR (1995) Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol 269:H1186–H1194

    PubMed  CAS  Google Scholar 

  • Morrell NW, Upton PD, Kotecha S, Huntley A, Yacoub MH, Polak JM, Wharton J (1999) Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT1 receptors. Am J Physiol 277:L440–L448

    PubMed  CAS  Google Scholar 

  • Nakamoto T, Harasawa H, Akimoto K, Hirata H, Kaneko H, Kaneko N, Sorimachi K (2005) Effects of olmesartan medoxomil as an angiotensin II-receptor blocker in chronic hypoxic rats. Eur J Pharmacol 528:43–51

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Fukuta Y, Kiyoshi A, Iwatsuki Y, Ishii K, Ishikawa T, Iida M, Iwata H, Enomoto M (1999) (+)−[3H]isradipine and [3H]glyburide bindings to heart and lung membranes from rats with monocrotaline-induced pulmonary hypertension. Jpn J Pharmacol 81:176–184

    Article  PubMed  CAS  Google Scholar 

  • Nong Z, Stassen JM, Moons L, Collen D, Janssens S (1996) Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation 94:1941–1947

    PubMed  CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  • Pelouch V, Kolar F, Ost’adal B, Milerova M, Cihak R, Widimsky J (1997) Regression of chronic hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril. Cardiovasc Drugs Ther 11:177–185

    Article  PubMed  CAS  Google Scholar 

  • Rhodes J (2005) Comparative physiology of hypoxic pulmonary hypertension: historical clues from brisket disease. J Appl Physiol 98:1092–1100

    Article  PubMed  Google Scholar 

  • Rumsey WL, Abbott B, Bertelsen D, Mallamaci M, Hagan K, Nelson D, Erecinska M (1999) Adaptation to hypoxia alters energy metabolism in rat heart. Am J Physiol 276:H71–H80

    PubMed  CAS  Google Scholar 

  • Saito Y, Haendeler J, Hojo Y, Yamamoto K, Berk BC (2001) Receptor heterodimerization: essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol Cell Biol 21:6387–6394

    Article  PubMed  CAS  Google Scholar 

  • Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    Article  PubMed  CAS  Google Scholar 

  • Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T (2002) TGF-β 1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 109:787–796

    Article  PubMed  CAS  Google Scholar 

  • Seta K, Nanamori M, Modrall JG, Neubig RR, Sadoshima J (2002) AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK pathway without nuclear translocation of ERKs. J Biol Chem 277:9268–9277

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Taegtmeyer H, Adrogue J, Razeghi P, Sen S, Ngumbela K, Essop MF (2004) Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 286:H1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Sinn PL, Zhang X, Sigmund CD (1999) JG cell expression and partial regulation of a human renin genomic transgene driven by a minimal renin promoter. Am J Physiol 277:F634–F642

    PubMed  CAS  Google Scholar 

  • Sugino H, Ozono R, Kurisu S, Matsuura H, Ishida M, Oshima T, Kambe M, Teranishi Y, Masaki H, Matsubara H (2001) Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension 37:1394–1398

    PubMed  CAS  Google Scholar 

  • Tanabe Y, Saito M, Ueno A, Nakamura M, Takeishi K, Nakayama K (2000) Mechanical stretch augments PDGF receptor β expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 215:103–113

    Article  PubMed  CAS  Google Scholar 

  • Tuder RM, Voelkel NF (1998) Pulmonary hypertension and inflammation. J Lab Clin Med 132:16–24

    Article  PubMed  CAS  Google Scholar 

  • van Suylen RJ, Aartsen WM, Smits JF, Daemen MJ (2001) Dissociation of pulmonary vascular remodeling and right ventricular pressure in tissue angiotensin-converting enzyme-deficient mice under conditions of chronic alveolar hypoxia. Am J Respir Crit Care Med 163:1241–1245

    PubMed  Google Scholar 

  • Voelkel NF, Tuder RM (2000) Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? J Clin Invest 106:733–738

    Article  PubMed  CAS  Google Scholar 

  • Zakheim RM, Mattioli L, Molteni A, Mullis KB, Bartley J (1975) Prevention of pulmonary vascular changes of chronic alveolar hypoxia by inhibition of angiotensin I-converting enzyme in the rat. Lab Invest 33:57–61

    PubMed  CAS  Google Scholar 

  • Zhao L, al-Tubuly R, Sebkhi A, Owji AA, Nunez DJ, Wilkins MR (1996) Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung. Br J Pharmacol 119:1217–1222

    PubMed  CAS  Google Scholar 

  • Zielinski J (2005) Effects of intermittent hypoxia on pulmonary haemodynamics: animal models versus studies in humans. Eur Respir J 25:173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sankyo, for providing us with the olmesartan. We are also grateful to Mr. Y. Okamoto, Ms. K. Sato, and Mr. T. Kitayama for their technical assistance with the animal handling. This work was supported in part by a Grant-in-Aid for Scientific Research (C) (14572059) from the Ministry of Education, Science, Sports, and Culture of Japan from 2002–2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Nakayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, Y., Morikawa, Y., Kato, T. et al. Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung. Naunyn-Schmied Arch Pharmacol 374, 235–248 (2006). https://doi.org/10.1007/s00210-006-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0110-1

Keywords

Navigation