Skip to main content

Advertisement

Log in

Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The molecular definition of tumor antigens recognized by cytolytic T lymphocytes (CTL) started in the late 1980s, at a time when the MHC class I antigen processing field was in its infancy. Born together, these two fields of science evolved together and provided each other with critical insights. Over the years, stimulated by the potential interest of tumor antigens for cancer immunotherapy, scientists have identified and characterized numerous antigens recognized by CTL on human tumors. These studies have provided a wealth of information relevant to the mode of production of antigenic peptides presented by MHC class I molecules. A number of tumor antigenic peptides were found to result from unusual mechanisms occurring at the level of transcription, translation or processing. Although many of these mechanisms occur in the cell at very low level, they are relevant to the immune system as they determine the killing of tumor cells by CTL, which are sensitive to low levels of peptide/MHC complexes. Moreover, these unusual mechanisms were found to occur not only in tumor cells but also in normal cells. Thereby, the study of tumor antigens has illuminated many aspects of MHC class I processing. We review here those insights into the MHC I antigen processing pathway that result from the characterization of human tumor antigens recognized by CTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Townsend AR, Gotch FM, Davey J (1985) Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42(2):457–467

    PubMed  CAS  Google Scholar 

  2. Lurquin C, Van Pel A, Mariame B et al (1989) Structure of the gene of tum—transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58(2):293–303

    PubMed  CAS  Google Scholar 

  3. Falk K, Rotzschke O, Stevanovic S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324):290–296

    PubMed  CAS  Google Scholar 

  4. Marchand M, van Baren N, Weynants P et al (1999) Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Intl J Cancer 80(2):219–230

    CAS  Google Scholar 

  5. Rosenberg SA, Yang JC, Schwartzentruber DJ et al (2003) Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res 9(8):2973–2980

    PubMed  CAS  Google Scholar 

  6. van Baren N, Bonnet MC, Dreno B et al (2005) Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J Clin Oncol 23(35):9008–9021

    PubMed  Google Scholar 

  7. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    PubMed  CAS  Google Scholar 

  8. Kawakami Y, Eliyahu S, Jennings C et al (1995) Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 154(8):3961–3968

    PubMed  CAS  Google Scholar 

  9. Zarour H, De Smet C, Lehmann F et al (1996) The majority of autologous cytolytic T-lymphocyte clones derived from peripheral blood lymphocytes of a melanoma patient recognize an antigenic peptide derived from gene Pmel17/gp100. J Invest Dermatol 107(1):63–67

    PubMed  CAS  Google Scholar 

  10. Germeau C, Ma W, Schiavetti F et al (2005) High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 201(2):241–248

    PubMed  CAS  Google Scholar 

  11. van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647

    PubMed  Google Scholar 

  12. Brichard V, Van Pel A, Wolfel T et al (1993) The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 178(2):489–495

    PubMed  CAS  Google Scholar 

  13. Coulie PG, Brichard V, Van Pel A et al (1994) A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 180(1):35–42

    PubMed  CAS  Google Scholar 

  14. Van den Eynde B, Peeters O, De Backer O et al (1995) A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 182(3):689–698

    PubMed  Google Scholar 

  15. Boel P, Wildmann C, Sensi ML et al (1995) BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 2(2):167–175

    PubMed  CAS  Google Scholar 

  16. Coulie PG, Lehmann F, Lethe B et al (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92(17):7976–7980

    PubMed  CAS  Google Scholar 

  17. Ikeda H, Lethe B, Lehmann F et al (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6(2):199–208

    PubMed  CAS  Google Scholar 

  18. Gaugler B, Van den Eynde B, van der Bruggen P et al (1994) Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179(3):921–930

    PubMed  CAS  Google Scholar 

  19. De Backer O, Arden KC, Boretti M et al (1999) Characterization of the GAGE genes that are expressed in various human cancers and in normal testis. Cancer Res 59(13):3157–3165

    PubMed  Google Scholar 

  20. Henderson RA, Michel H, Sakaguchi K et al (1992) HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255(5049):1264–1266

    PubMed  CAS  Google Scholar 

  21. Cox AL, Skipper J, Chen Y et al (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264(5159):716–719

    PubMed  CAS  Google Scholar 

  22. Schirle M, Keilholz W, Weber B et al (2000) Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 30(8):2216–2225

    PubMed  CAS  Google Scholar 

  23. Zarling AL, Polefrone JM, Evans AM et al (2006) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci USA 103(40):14889–14894

    PubMed  CAS  Google Scholar 

  24. Skipper JC, Hendrickson RC, Gulden PH et al (1996) An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 183(2):527–534

    PubMed  CAS  Google Scholar 

  25. Celis E, Tsai V, Crimi C et al (1994) Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 91(6):2105–2109

    PubMed  CAS  Google Scholar 

  26. van der Bruggen P, Bastin J, Gajewski T et al (1994) A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24(12):3038–3043

    PubMed  Google Scholar 

  27. Herman J, van der Bruggen P, Luescher IF et al (1996) A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 43(6):377–383

    PubMed  CAS  Google Scholar 

  28. Sahin U, Tureci O, Schmitt H et al (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92(25):11810–11813

    PubMed  CAS  Google Scholar 

  29. Tureci O, Sahin U, Schobert I et al (1996) The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 56(20):4766–4772

    PubMed  CAS  Google Scholar 

  30. Chen YT, Scanlan MJ, Sahin U et al (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94(5):1914–1918

    PubMed  CAS  Google Scholar 

  31. Tureci O, Sahin U, Zwick C et al (1998) Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens. Proc Natl Acad Sci USA 95(9):5211–5216

    PubMed  CAS  Google Scholar 

  32. Chen YT, Gure AO, Tsang S et al (1998) Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc Natl Acad Sci USA 95(12):6919–6923

    PubMed  CAS  Google Scholar 

  33. Lucas S, De Smet C, Arden KC et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58(4):743–752

    PubMed  CAS  Google Scholar 

  34. Lethe B, Lucas S, Michaux L et al (1998) LAGE-1, a new gene with tumor specificity. Intl J Cancer 76(6):903–908

    CAS  Google Scholar 

  35. Martelange V, De Smet C, De Plaen E et al (2000) Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res 60(14):3848–3855

    PubMed  CAS  Google Scholar 

  36. Lin C, Mak S, Meitner PA et al (2002) Cancer/testis antigen CSAGE is concurrently expressed with MAGE in chondrosarcoma. Gene 285(1–2):269–278

    PubMed  CAS  Google Scholar 

  37. De Plaen E, Arden K, Traversari C et al (1994) Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40(5):360–369

    PubMed  CAS  Google Scholar 

  38. Chaux P, Luiten R, Demotte N et al (1999) Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol 163(5):2928–2936

    PubMed  CAS  Google Scholar 

  39. Luiten R, van der Bruggen P (2000) A MAGE-A1 peptide is recognized on HLA-B7 human tumors by cytolytic T lymphocytes. Tissue Antigens 55(2):149–152

    PubMed  CAS  Google Scholar 

  40. Luiten RM, Demotte N, Tine J, van der Bruggen P (2000) A MAGE-A1 peptide presented to cytolytic T lymphocytes by both HLA-B35 and HLA-A1 molecules. Tissue Antigens 56(1):77–81

    PubMed  CAS  Google Scholar 

  41. van der Bruggen P, Stroobant V, Van Pel A et al. (2010) Peptide database of T-cell defined tumor antigens. Cancer Immunity. http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm

  42. Haas GG Jr, D’Cruz OJ, De Bault LE (1988) Distribution of human leukocyte antigen-ABC and -D/DR antigens in the unfixed human testis. Am J Reprod Immunol Microbiol 18(2):47–51

    PubMed  Google Scholar 

  43. Lurquin C, De Smet C, Brasseur F et al (1997) Two members of the human MAGEB gene family located in Xp21.3 are expressed in tumors of various histological origins. Genomics 46(3):397–408

    PubMed  CAS  Google Scholar 

  44. Chomez P, De Backer O, Bertrand M et al (2001) An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 61(14):5544–5551

    PubMed  CAS  Google Scholar 

  45. Ehrlich M, Gama-Sosa MA, Huang LH et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10(8):2709–2721

    PubMed  CAS  Google Scholar 

  46. Gama-Sosa MA, Slagel VA, Trewyn RW et al (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894

    PubMed  CAS  Google Scholar 

  47. Diala ES, Cheah MS, Rowitch D, Hoffman RM (1983) Extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71(4):755–764

    PubMed  CAS  Google Scholar 

  48. Weber J, Salgaller M, Samid D et al (1994) Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54(7):1766–1771

    PubMed  CAS  Google Scholar 

  49. De Smet C, Lurquin C, Lethe B et al (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19(11):7327–7335

    PubMed  Google Scholar 

  50. Lucas S, Brasseur F, Boon T (1999) A new MAGE gene with ubiquitous expression does not code for known MAGE antigens recognized by T cells. Cancer Res 59(16):4100–4103

    PubMed  CAS  Google Scholar 

  51. Gure AO, Tureci O, Sahin U et al (1997) SSX: a multigene family with several members transcribed in normal testis and human cancer. Intl J Cancer 72(6):965–971

    CAS  Google Scholar 

  52. Gure AO, Wei IJ, Old LJ, Chen YT (2002) The SSX gene family: characterization of 9 complete genes. Intl J Cancer 101(5):448–453

    CAS  Google Scholar 

  53. Wolfel T, Van Pel A, Brichard V et al (1994) Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 24(3):759–764

    PubMed  CAS  Google Scholar 

  54. Vigneron N, Ooms A, Morel S et al (2005) A peptide derived from melanocytic protein gp100 and presented by HLA-B35 is recognized by autologous cytolytic T lymphocytes on melanoma cells. Tissue Antigens 65(2):156–162

    PubMed  CAS  Google Scholar 

  55. Kawakami Y, Eliyahu S, Sakaguchi K et al (1994) Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180(1):347–352

    PubMed  CAS  Google Scholar 

  56. Wang RF, Parkhurst MR, Kawakami Y et al (1996) Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 183(3):1131–1140

    PubMed  CAS  Google Scholar 

  57. Wang RF, Appella E, Kawakami Y et al (1996) Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 184(6):2207–2216

    PubMed  CAS  Google Scholar 

  58. Visseren MJ, van Elsas A, van der Voort EI et al (1995) CTL specific for the tyrosinase autoantigen can be induced from healthy donor blood to lyse melanoma cells. J Immunol 154(8):3991–3998

    PubMed  CAS  Google Scholar 

  59. Nordlund JJ, Kirkwood JM, Forget BM et al (1983) Vitiligo in patients with metastatic melanoma: a good prognostic sign. J Am Acad Dermatol 9(5):689–696

    PubMed  CAS  Google Scholar 

  60. Rosenberg SA, White DE (1996) Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol 19(1):81–84

    PubMed  CAS  Google Scholar 

  61. Yee C, Thompson JA, Roche P et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 192(11):1637–1644

    PubMed  CAS  Google Scholar 

  62. Wolfel T, Hauer M, Schneider J et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269(5228):1281–1284

    PubMed  CAS  Google Scholar 

  63. Robbins PF, El-Gamil M, Li YF et al (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183(3):1185–1192

    PubMed  CAS  Google Scholar 

  64. Rubinfeld B, Robbins P, El-Gamil M et al (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275(5307):1790–1792

    PubMed  CAS  Google Scholar 

  65. Mandruzzato S, Brasseur F, Andry G et al (1997) A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186(5):785–793

    PubMed  CAS  Google Scholar 

  66. Gjertsen MK, Bjorheim J, Saeterdal I et al (1997) Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Intl J Cancer 72(5):784–790

    CAS  Google Scholar 

  67. Linard B, Bezieau S, Benlalam H et al (2002) A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol 168(9):4802–4808

    PubMed  CAS  Google Scholar 

  68. Ito D, Visus C, Hoffmann TK et al (2007) Immunological characterization of missense mutations occurring within cytotoxic T cell-defined p53 epitopes in HLA-A*0201 + squamous cell carcinomas of the head and neck. Intl J Cancer 120(12):2618–2624

    CAS  Google Scholar 

  69. Linnebacher M, Gebert J, Rudy W et al (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Intl J Cancer 93(1):6–11

    CAS  Google Scholar 

  70. Huang J, El-Gamil M, Dudley ME et al (2004) T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J Immunol 172(10):6057–6064

    PubMed  CAS  Google Scholar 

  71. Yotnda P, Garcia F, Peuchmaur M et al (1998) Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J Clin Invest 102(2):455–462

    PubMed  CAS  Google Scholar 

  72. Yotnda P, Firat H, Garcia-Pons F et al (1998) Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 101(10):2290–2296

    PubMed  CAS  Google Scholar 

  73. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181(6):2109–2117

    PubMed  CAS  Google Scholar 

  74. Kraus MH, Popescu NC, Amsbaugh SC, King CR (1987) Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6(3):605–610

    PubMed  CAS  Google Scholar 

  75. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    PubMed  CAS  Google Scholar 

  76. Gaugler B, Brouwenstijn N, Vantomme V et al (1996) A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics 44(5):323–330

    PubMed  CAS  Google Scholar 

  77. Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54

    PubMed  CAS  Google Scholar 

  78. Griffith TS, Brunner T, Fletcher SM et al (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270(5239):1189–1192

    PubMed  CAS  Google Scholar 

  79. Abi-Hanna D, Wakefield D, Watkins S (1988) HLA antigens in ocular tissues. I. In vivo expression in human eyes. Transplantation 45(3):610–613

    PubMed  CAS  Google Scholar 

  80. Kessler JH, Beekman NJ, Bres-Vloemans SA et al (2001) Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 193(1):73–88

    PubMed  CAS  Google Scholar 

  81. Schmitz M, Diestelkoetter P, Weigle B et al (2000) Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60(17):4845–4849

    PubMed  CAS  Google Scholar 

  82. Schmidt SM, Schag K, Muller MR et al (2003) Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 102(2):571–576

    PubMed  CAS  Google Scholar 

  83. Ropke M, Hald J, Guldberg P et al (1996) Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci USA 93(25):14704–14707

    PubMed  CAS  Google Scholar 

  84. Barfoed AM, Petersen TR, Kirkin AF et al (2000) Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand J Immunol 51(2):128–133

    PubMed  CAS  Google Scholar 

  85. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95(1):286–293

    PubMed  CAS  Google Scholar 

  86. Asemissen AM, Keilholz U, Tenzer S et al (2006) Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 12(24):7476–7482

    PubMed  CAS  Google Scholar 

  87. De Plaen E, Lurquin C, Van Pel A et al (1988) Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum-antigen P91A and identification of the tum-mutation. Proc Natl Acad Sci USA 85(7):2274–2278

    PubMed  Google Scholar 

  88. Sibille C, Chomez P, Wildmann C et al (1990) Structure of the gene of tum-transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 172(1):35–45

    PubMed  CAS  Google Scholar 

  89. Szikora JP, Van Pel A, Brichard V et al (1990) Structure of the gene of tum-transplantation antigen P35B: presence of a point mutation in the antigenic allele. EMBO J 9(4):1041–1050

    PubMed  CAS  Google Scholar 

  90. Boon T, Van Pel A (1989) T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics 29(2):75–79

    PubMed  CAS  Google Scholar 

  91. Guilloux Y, Lucas S, Brichard VG et al (1996) A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 183(3):1173–1183

    PubMed  CAS  Google Scholar 

  92. Van den Eynde BJ, Gaugler B, Probst-Kepper M et al (1999) A new antigen recognized by cytolytic T lymphocytes on a human kidney tumor results from reverse strand transcription. J Exp Med 190(12):1793–1800

    Google Scholar 

  93. Robbins PF, El-Gamil M, Li YF et al (1997) The intronic region of an incompletely spliced gp100 gene transcript encodes an epitope recognized by melanoma-reactive tumor-infiltrating lymphocytes. J Immunol 159(1):303–308

    PubMed  CAS  Google Scholar 

  94. Lupetti R, Pisarra P, Verrecchia A et al (1998) Translation of a retained intron in tyrosinase-related protein (TRP) 2 mRNA generates a new cytotoxic T lymphocyte (CTL)-defined and shared human melanoma antigen not expressed in normal cells of the melanocytic lineage. J Exp Med 188(6):1005–1016

    PubMed  CAS  Google Scholar 

  95. Topalian SL, Solomon D, Avis FP et al (1988) Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol 6(5):839–853

    PubMed  CAS  Google Scholar 

  96. Wang RF, Johnston SL, Zeng G et al (1998) A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol 161(7):3598–3606

    PubMed  CAS  Google Scholar 

  97. Aarnoudse CA, van den Doel PB, Heemskerk B, Schrier PI (1999) Interleukin-2-induced, melanoma-specific T cells recognize CAMEL, an unexpected translation product of LAGE-1. Intl J Cancer 82(3):442–448

    CAS  Google Scholar 

  98. Ronsin C, Chung-Scott V, Poullion I et al (1999) A non-AUG-defined alternative open reading frame of the intestinal carboxyl esterase mRNA generates an epitope recognized by renal cell carcinoma-reactive tumor-infiltrating lymphocytes in situ. J Immunol 163(1):483–490

    PubMed  CAS  Google Scholar 

  99. Probst-Kepper M, Stroobant V, Kridel R et al (2001) An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8 T lymphocytes. J Exp Med 193(10):1189–1198

    PubMed  CAS  Google Scholar 

  100. Probst-Kepper M, Hecht HJ, Herrmann H et al (2004) Conformational restraints and flexibility of 14-meric peptides in complex with HLA-B*3501. J Immunol 173(9):5610–5616

    PubMed  CAS  Google Scholar 

  101. Godet Y, Moreau-Aubry A, Guilloux Y et al (2008) MELOE-1 is a new antigen overexpressed in melanomas and involved in adoptive T cell transfer efficiency. J Exp Med 205(11):2673–2682

    PubMed  CAS  Google Scholar 

  102. Godet Y, Moreau-Aubry A, Mompelat D et al (2010) An additional ORF on meloe cDNA encodes a new melanoma antigen, MELOE-2, recognized by melanoma-specific T cells in the HLA-A2 context. Cancer Immunol Immunother 59(3):431–439

    PubMed  CAS  Google Scholar 

  103. Rosenberg SA, Tong-On P, Li Y et al (2002) Identification of BING-4 cancer antigen translated from an alternative open reading frame of a gene in the extended MHC class II region using lymphocytes from a patient with a durable complete regression following immunotherapy. J Immunol 168(5):2402–2407

    PubMed  CAS  Google Scholar 

  104. Schiavetti F, Thonnard J, Colau D et al (2002) A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res 62(19):5510–5516

    PubMed  CAS  Google Scholar 

  105. Bullock TN, Eisenlohr LC (1996) Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. J Exp Med 184(4):1319–1329

    PubMed  CAS  Google Scholar 

  106. Shastri N, Schwab S, Serwold T (2002) Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 20:463–493

    PubMed  CAS  Google Scholar 

  107. Dolstra H, Fredrix H, Maas F et al (1999) A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J Exp Med 189(2):301–308

    PubMed  CAS  Google Scholar 

  108. Peabody DS (1989) Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem 264(9):5031–5035

    PubMed  CAS  Google Scholar 

  109. Malarkannan S, Horng T, Shih PP et al (1999) Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity 10(6):681–690

    PubMed  CAS  Google Scholar 

  110. Schwab SR, Li KC, Kang C, Shastri N (2003) Constitutive display of cryptic translation products by MHC class I molecules. Science 301(5638):1367–1371

    PubMed  CAS  Google Scholar 

  111. Schwab SR, Shugart JA, Horng T et al (2004) Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2(11):e366

    PubMed  Google Scholar 

  112. Starck SR, Ow Y, Jiang V et al (2008) A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PloS One 3(10):e3460

    PubMed  Google Scholar 

  113. Moreau-Aubry A, Le Guiner S, Labarriere N et al (2000) A processed pseudogene codes for a new antigen recognized by a CD8(+) T cell clone on melanoma. J Exp Med 191(9):1617–1624

    PubMed  CAS  Google Scholar 

  114. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    PubMed  CAS  Google Scholar 

  115. Ghislain M, Udvardy A, Mann C (1993) S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366(6453):358–362

    PubMed  CAS  Google Scholar 

  116. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

    PubMed  CAS  Google Scholar 

  117. Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    PubMed  CAS  Google Scholar 

  118. Groll M, Huber R (2003) Substrate access and processing by the 20S proteasome core particle. Internatl J Biochem Cell Biol 35(5):606–616

    CAS  Google Scholar 

  119. Lowe J, Stock D, Jap B et al (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533–539

    PubMed  CAS  Google Scholar 

  120. Groll M, Ditzel L, Lowe J et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471

    PubMed  CAS  Google Scholar 

  121. Unno M, Mizushima T, Morimoto Y et al (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10(5):609–618

    PubMed  CAS  Google Scholar 

  122. Seemuller E, Lupas A, Stock D et al (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268(5210):579–582

    PubMed  CAS  Google Scholar 

  123. Orlowski M (1990) The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29(45):10289–10297

    PubMed  CAS  Google Scholar 

  124. Heinemeyer W, Gruhler A, Mohrle V et al (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chrymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268(7):5115–5120

    PubMed  CAS  Google Scholar 

  125. Enenkel C, Lehmann H, Kipper J et al (1994) PRE3, highly homologous to the human major histocompatibility complex-linked LMP2 (RING12) gene, codes for a yeast proteasome subunit necessary for the peptidylglutamyl-peptide hydrolyzing activity. FEBS Lett 341(2–3):193–196

    PubMed  CAS  Google Scholar 

  126. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86(6):961–972

    PubMed  CAS  Google Scholar 

  127. Heinemeyer W, Fischer M, Krimmer T et al (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272(40):25200–25209

    PubMed  CAS  Google Scholar 

  128. Dick TP, Nussbaum AK, Deeg M et al (1998) Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273(40):25637–25646

    PubMed  CAS  Google Scholar 

  129. Gueckel R, Enenkel C, Wolf DH, Hilt W (1998) Mutations in the yeast proteasome beta-type subunit Pre3 uncover position-dependent effects on proteasomal peptidase activity and in vivo function. J Biol Chem 273(31):19443–19452

    PubMed  CAS  Google Scholar 

  130. Nussbaum AK, Dick TP, Keilholz W et al (1998) Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci USA 95(21):12504–12509

    PubMed  CAS  Google Scholar 

  131. Toes RE, Nussbaum AK, Degermann S et al (2001) Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 194(1):1–12

    PubMed  CAS  Google Scholar 

  132. Michalek MT, Grant EP, Gramm C et al (1993) A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 363(6429):552–554

    PubMed  CAS  Google Scholar 

  133. Rock KL, Gramm C, Rothstein L et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761–771

    PubMed  CAS  Google Scholar 

  134. Morel S, Levy F, Burlet-Schiltz O et al (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12(1):107–117

    PubMed  CAS  Google Scholar 

  135. Ottaviani S, Zhang Y, Boon T, van der Bruggen P (2005) A MAGE-1 antigenic peptide recognized by human cytolytic T lymphocytes on HLA-A2 tumor cells. Cancer Immunol Immunother 54(12):1214–1220

    PubMed  CAS  Google Scholar 

  136. Parmentier N, Stroobant V, Colau D et al (2010) Production of an antigenic peptide by insulin-degrading enzyme. Nat Immunol 11(5):449–454

    PubMed  CAS  Google Scholar 

  137. Stohwasser R, Standera S, Peters I et al (1997) Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-gamma-modulated proteasome subunits. Eur J Immunol 27(5):1182–1187

    PubMed  CAS  Google Scholar 

  138. Macagno A, Gilliet M, Sallusto F et al (1999) Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 29(12):4037–4042

    PubMed  CAS  Google Scholar 

  139. Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365(6443):262–264

    PubMed  CAS  Google Scholar 

  140. Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365(6443):264–267

    PubMed  CAS  Google Scholar 

  141. Fehling HJ, Swat W, Laplace C et al (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265(5176):1234–1237

    PubMed  CAS  Google Scholar 

  142. Van Kaer L, Ashton-Rickardt PG, Eichelberger M et al (1994) Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1(7):533–541

    PubMed  Google Scholar 

  143. Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13(2):147–153

    PubMed  Google Scholar 

  144. Chapiro J, Claverol S, Piette F et al (2006) Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J Immunol 176(2):1053–1061

    PubMed  CAS  Google Scholar 

  145. Schultz ES, Chapiro J, Lurquin C et al (2002) The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med 195(4):391–399

    PubMed  CAS  Google Scholar 

  146. Chapatte L, Ayyoub M, Morel S et al (2006) Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res 66(10):5461–5468

    PubMed  CAS  Google Scholar 

  147. Guillaume B, Chapiro J, Stroobant V et al (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107(43):18599–18604

    PubMed  CAS  Google Scholar 

  148. Serwold T, Gonzalez F, Kim J et al (2002) ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419(6906):480–483

    PubMed  CAS  Google Scholar 

  149. Saric T, Chang SC, Hattori A et al (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3(12):1169–1176

    PubMed  CAS  Google Scholar 

  150. York IA, Chang SC, Saric T et al (2002) The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat Immunol 3(12):1177–1184

    PubMed  CAS  Google Scholar 

  151. Saveanu L, Carroll O, Lindo V et al (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6(7):689–697

    PubMed  CAS  Google Scholar 

  152. Hammer GE, Gonzalez F, Champsaur M et al (2006) The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol 7(1):103–112

    PubMed  CAS  Google Scholar 

  153. Hammer GE, Gonzalez F, James E et al (2007) In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat Immunol 8(1):101–108

    PubMed  CAS  Google Scholar 

  154. Geier E, Pfeifer G, Wilm M et al (1999) A giant protease with potential to substitute for some functions of the proteasome. Science 283(5404):978–981

    PubMed  CAS  Google Scholar 

  155. Glas R, Bogyo M, McMaster JS et al (1998) A proteolytic system that compensates for loss of proteasome function. Nature 392(6676):618–622

    PubMed  CAS  Google Scholar 

  156. Princiotta MF, Schubert U, Chen W et al (2001) Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival. Proc Natl Acad Sci USA 98(2):513–518

    PubMed  CAS  Google Scholar 

  157. Kessler B, Hong X, Petrovic J et al (2003) Pathways accessory to proteasomal proteolysis are less efficient in major histocompatibility complex class I antigen production. J Biol Chem 278(12):10013–10021

    PubMed  CAS  Google Scholar 

  158. York IA, Bhutani N, Zendzian S et al (2006) Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J Immunol 177(3):1434–1443

    PubMed  CAS  Google Scholar 

  159. Basler M, Groettrup M (2007) No essential role for tripeptidyl peptidase II for the processing of LCMV-derived T cell epitopes. Eur J Immunol 37(4):896–904

    PubMed  CAS  Google Scholar 

  160. Firat E, Huai J, Saveanu L et al (2007) Analysis of direct and cross-presentation of antigens in TPPII knockout mice. J Immunol 179(12):8137–8145

    PubMed  CAS  Google Scholar 

  161. Marcilla M, Villasevil EM, de Castro JA (2008) Tripeptidyl peptidase II is dispensable for the generation of both proteasome-dependent and proteasome-independent ligands of HLA-B27 and other class I molecules. Eur J Immunol 38(3):631–639

    PubMed  CAS  Google Scholar 

  162. Kawahara M, York IA, Hearn A et al (2009) Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo. J Immunol 183(10):6069–6077

    PubMed  CAS  Google Scholar 

  163. Seifert U, Maranon C, Shmueli A et al (2003) An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat Immunol 4(4):375–379

    PubMed  CAS  Google Scholar 

  164. Guil S, Rodriguez-Castro M, Aguilar F et al (2006) Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J Biol Chem 281(52):39925–39934

    PubMed  CAS  Google Scholar 

  165. Diekmann J, Adamopoulou E, Beck O et al (2009) Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement. J Immunol 183(3):1587–1597

    PubMed  CAS  Google Scholar 

  166. Preta G, Marescotti D, Fortini C et al (2008) Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells. Scand J Immunol 68(6):579–588

    PubMed  CAS  Google Scholar 

  167. Beninga J, Rock KL, Goldberg AL (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 273(30):18734–18742

    PubMed  CAS  Google Scholar 

  168. Stoltze L, Schirle M, Schwarz G et al (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1(5):413–418

    PubMed  CAS  Google Scholar 

  169. Towne CF, York IA, Neijssen J et al (2005) Leucine aminopeptidase is not essential for trimming peptides in the cytosol or generating epitopes for MHC class I antigen presentation. J Immunol 175(10):6605–6614

    PubMed  CAS  Google Scholar 

  170. Towne CF, York IA, Watkin LB et al (2007) Analysis of the role of bleomycin hydrolase in antigen presentation and the generation of CD8 T cell responses. J Immunol 178(11):6923–6930

    PubMed  CAS  Google Scholar 

  171. Towne CF, York IA, Neijssen J et al (2008) Puromycin-sensitive aminopeptidase limits MHC class I presentation in dendritic cells but does not affect CD8 T cell responses during viral infections. J Immunol 180(3):1704–1712

    PubMed  CAS  Google Scholar 

  172. Kim E, Kwak H, Ahn K (2009) Cytosolic aminopeptidases influence MHC class I-mediated antigen presentation in an allele-dependent manner. J Immunol 183(11):7379–7387

    PubMed  CAS  Google Scholar 

  173. Levy F, Burri L, Morel S et al (2002) The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases. J Immunol 169(8):4161–4171

    PubMed  CAS  Google Scholar 

  174. Saric T, Beninga J, Graef CI et al (2001) Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J Biol Chem 276(39):36474–36481

    PubMed  CAS  Google Scholar 

  175. York IA, Mo AX, Lemerise K et al (2003) The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18(3):429–440

    PubMed  CAS  Google Scholar 

  176. Neefjes J, Gottfried E, Roelse J et al (1995) Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur J Immunol 25(4):1133–1136

    PubMed  CAS  Google Scholar 

  177. Geiss-Friedlander R, Parmentier N, Moller U et al (2009) The cytoplasmic peptidase DPP9 is rate-limiting for degradation of proline-containing peptides. J Biol Chem 284(40):27211–27219

    PubMed  CAS  Google Scholar 

  178. Lonchay C, van der Bruggen P, Connerotte T et al (2004) Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA 101(Suppl 2):14631–14638

    PubMed  CAS  Google Scholar 

  179. Fagan JM, Waxman L (1991) Purification of a protease in red blood cells that degrades oxidatively damaged haemoglobin. Biochem J 277(Pt 3):779–786

    PubMed  CAS  Google Scholar 

  180. Kurochkin IV, Goto S (1994) Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345(1):33–37

    PubMed  CAS  Google Scholar 

  181. Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19(5):608–624

    PubMed  CAS  Google Scholar 

  182. Morita M, Kurochkin IV, Motojima K et al (2000) Insulin-degrading enzyme exists inside of rat liver peroxisomes and degrades oxidized proteins. Cell Struct Funct 25(5):309–315

    PubMed  CAS  Google Scholar 

  183. Kirschner RJ, Goldberg AL (1983) A high molecular weight metalloendoprotease from the cytosol of mammalian cells. J Biol Chem 258(2):967–976

    PubMed  CAS  Google Scholar 

  184. Hanada K, Yewdell JW, Yang JC (2004) Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427(6971):252–256

    PubMed  CAS  Google Scholar 

  185. Vigneron N, Stroobant V, Chapiro J et al (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304(5670):587–590

    PubMed  CAS  Google Scholar 

  186. Warren EH, Vigneron NJ, Gavin MA et al (2006) An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313(5792):1444–1447

    PubMed  CAS  Google Scholar 

  187. Dalet A, Vigneron N, Stroobant V et al (2010) Splicing of distant peptide fragments occurs in the proteasome by transpeptidation and produces the spliced antigenic peptide derived from fibroblast growth factor-5. J Immunol 184(6):3016–3024

    PubMed  CAS  Google Scholar 

  188. Dalet A, Stroobant V, Vigneron N, Van den Eynde BJ (2011) Differences in the production of spliced antigenic peptides by the standard proteasome and the immunoproteasome. Eur J Immunol 41(1):39–46

    PubMed  CAS  Google Scholar 

  189. Kageyama S, Tsomides TJ, Sykulev Y, Eisen HN (1995) Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol 154(2):567–576

    PubMed  CAS  Google Scholar 

  190. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM (2002) Direct observation of ligand recognition by T cells. Nature 419(6909):845–849

    PubMed  CAS  Google Scholar 

  191. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785

    PubMed  CAS  Google Scholar 

  192. Mosse CA, Meadows L, Luckey CJ et al (1998) The class I antigen-processing pathway for the membrane protein tyrosinase involves translation in the endoplasmic reticulum and processing in the cytosol. J Exp Med 187(1):37–48

    PubMed  CAS  Google Scholar 

  193. Mosse CA, Hsu W, Engelhard VH (2001) Tyrosinase degradation via two pathways during reverse translocation to the cytosol. Biochem Biophys Res Commun 285(2):313–319

    PubMed  CAS  Google Scholar 

  194. Altrich-VanLith ML, Ostankovitch M, Polefrone JM et al (2006) Processing of a class I-restricted epitope from tyrosinase requires peptide N-glycanase and the cooperative action of endoplasmic reticulum aminopeptidase 1 and cytosolic proteases. J Immunol 177(8):5440–5450

    PubMed  CAS  Google Scholar 

  195. Ostankovitch M, Altrich-Vanlith M, Robila V, Engelhard VH (2009) N-glycosylation enhances presentation of a MHC class I-restricted epitope from tyrosinase. J Immunol 182(8):4830–4835

    PubMed  CAS  Google Scholar 

  196. Godefroy E, Moreau-Aubry A, Diez E et al (2005) alpha v beta3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. J Exp Med 202(1):61–72

    PubMed  CAS  Google Scholar 

  197. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev 2(3):161–174

    CAS  Google Scholar 

  198. Khasigov PZ, Podobed OV, Ktzoeva SA et al (2001) Matrix metalloproteinases of normal human tissues. Biochemistry (Mosc) 66(2):130–140

    CAS  Google Scholar 

  199. Renaud V, Godefroy E, Larrieu P et al (2010) Folding of matrix metalloproteinase-2 prevents endogenous generation of MHC class-I restricted epitope. PloS One 5(7):e11894

    PubMed  Google Scholar 

  200. Fruh K, Ahn K, Djaballah H et al (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375(6530):415–418

    PubMed  CAS  Google Scholar 

  201. Hill A, Jugovic P, York I et al (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375(6530):411–415

    PubMed  CAS  Google Scholar 

  202. Ahn K, Gruhler A, Galocha B et al (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6(5):613–621

    PubMed  CAS  Google Scholar 

  203. van Hall T, Laban S, Koppers-Lalic D et al (2007) The varicellovirus-encoded TAP inhibitor UL49.5 regulates the presentation of CTL epitopes by Qa-1b1. J Immunol 178(2):657–662

    PubMed  Google Scholar 

  204. Wei ML, Cresswell P (1992) HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356(6368):443–446

    PubMed  CAS  Google Scholar 

  205. Hunt DF, Henderson RA, Shabanowitz J et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255(5049):1261–1263

    PubMed  CAS  Google Scholar 

  206. Weinzierl AO, Rudolf D, Hillen N et al (2008) Features of TAP-independent MHC class I ligands revealed by quantitative mass spectrometry. Eur J Immunol 38(6):1503–1510

    PubMed  CAS  Google Scholar 

  207. Wolfel C, Drexler I, Van Pel A et al (2000) Transporter (TAP)- and proteasome-independent presentation of a melanoma-associated tyrosinase epitope. Internatl J Cancer 88(3):432–438

    CAS  Google Scholar 

  208. El Hage F, Stroobant V, Vergnon I et al (2008) Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway. Proc Natl Acad Sci USA 105(29):10119–10124

    PubMed  CAS  Google Scholar 

  209. Lee N, Goodlett DR, Ishitani A et al (1998) HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol 160(10):4951–4960

    PubMed  CAS  Google Scholar 

  210. Lemberg MK, Bland FA, Weihofen A et al (2001) Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J Immunol 167(11):6441–6446

    PubMed  CAS  Google Scholar 

  211. Lemberg MK, Martoglio B (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10(4):735–744

    PubMed  CAS  Google Scholar 

  212. Wearsch PA, Cresswell P (2008) The quality control of MHC class I peptide loading. Curr Opin Cell Biol 20(6):624–631

    PubMed  CAS  Google Scholar 

  213. Lehner PJ, Surman MJ, Cresswell P (1998) Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line 220. Immunity 8(2):221–231

    PubMed  CAS  Google Scholar 

  214. Sadasivan B, Lehner PJ, Ortmann B et al (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5(2):103–114

    PubMed  CAS  Google Scholar 

  215. Williams AP, Peh CA, Purcell AW et al (2002) Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16(4):509–520

    PubMed  CAS  Google Scholar 

  216. Ortmann B, Copeman J, Lehner PJ et al (1997) A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277(5330):1306–1309

    PubMed  CAS  Google Scholar 

  217. Wearsch PA, Cresswell P (2007) Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol 8(8):873–881

    PubMed  CAS  Google Scholar 

  218. Zernich D, Purcell AW, Macdonald WA et al (2004) Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J Exp Med 200(1):13–24

    PubMed  CAS  Google Scholar 

  219. Purcell AW, Gorman JJ, Garcia-Peydro M et al (2001) Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J Immunol 166(2):1016–1027

    PubMed  CAS  Google Scholar 

  220. Vigneron N, Peaper DR, Leonhardt RM, Cresswell P (2009) Functional significance of tapasin membrane association and disulfide linkage to ERp57 in MHC class I presentation. Eur J Immunol 39(9):2371–2376

    PubMed  CAS  Google Scholar 

  221. Chen M, Bouvier M (2007) Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. EMBO J 26(6):1681–1690

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Depelchin and J. Klein for editorial assistance. N.V. is a post-doctoral researcher with the Fonds National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît J. Van den Eynde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigneron, N., Van den Eynde, B.J. Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell. Mol. Life Sci. 68, 1503–1520 (2011). https://doi.org/10.1007/s00018-011-0658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0658-x

Keywords

Navigation