Skip to main content
Log in

Regeneration of hamster tracheal epithelium after mechanical injury

IV. Histochemical, immunocytochemical and ultrastructural studies

  • Published:
Virchows Archiv B

Summary

All stages of regeneration in hamster tracheal epithelium were studied following a denuding mechanical injury. At 1 h all the cells had sloughed from the wound site leaving a bare and sometimes disrupted basal lamina. Viable cells at the wound margins rapidly changed shape, flattened and migrated to cover the denuded lesion by 12 h. In addition, epithelial cells that remained viable demonstrated sublethal changes that included the rapid discharge of mucous granules from secretory cells, internalization of cilia by ciliated cells and evidence of heterophagy in both cell types.

By 24 h a wave of epithelial cell divisions occurred, primarily by secretory cells. This produced a multilayered epidermoid metaplasia that was best developed at 48 h. The metaplastic epithelium was largely composed of cells with both secretory (mucous granules) and epidermoid (tonofilament bundles and numerous desmosomes) characteristics. The peroxidase-antiperoxidase (PAP) method demonstrated a few keratin-positive cells in the wound as early as 12 h post-wounding and keratin was demonstrated in more cells by 24 h. All cells in the metaplastic wound epithelium were keratin-positive by 48 h.

Following 48 h some of the most superficial keratinized cells sloughed from the epithelium and the keratin content of the remaining cells began to decline. At 72 h pre-ciliated and pre-secretory cells were seen in the wound. Pre-ciliated cells were characterized by an abundant electronlucent cytoplasm, large pale nucleus, filiform apical microvilli and evidence of ciliogenesis, similar to that seen during fetal development. Preciliated cells often contained apical mucous granules, apparently carried over from the parent secretory cells. With the appearance of these columnar cells the normal mucociliary morphology was restored in small wounds by 120 h, but some persistent epidermoid metaplasia remained in the large wounds through 168 h post-wounding.

These data provide further evidence for the important role of secretory cells in the histogenesis of epidermoid metaplasia and the regeneration of normal morphology following injury. The implications of these findings in understanding the histogenesis of other lesions in the tracheobronchial epithelium are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barrett LA, McDowell EM, Frank AL, Harris CC, Trump BF (1976) Long-term organ culture of human bronchial epithelium. Cancer Res 36:1003–1010

    PubMed  CAS  Google Scholar 

  • Becci PJ, McDowell EM, Trump BF (1978a) The respiratory epithelium II. Hamster trachea, bronchus and bronchioles. J Natl Cancer Inst 61:551–561

    PubMed  CAS  Google Scholar 

  • Becci PJ, McDowell EM, Trump BF (1978b) The respiratory epithelium IV. Histogenesis of epidermoid metaplasia and carcinomain situ in the hamster. J Natl Cancer Inst 61:577–686

    PubMed  CAS  Google Scholar 

  • Becci PJ, McDowell EM, Trump BF (1978c) The respiratory epithelium VI. Histogenesis of lung tumors induced by benzo(a)pyrene-ferric oxide in the hamster. J Natl Cancer Inst 61:607–618

    PubMed  CAS  Google Scholar 

  • Bird RC, Zimmerman AM (1980) Induction of tubulin synthesis during cilia regeneration in growing tetrahymena. Exp Cell Res 128:199–205

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood RA (1974) Resorption of organelles containing microtubules. Cytobios 9:143–161

    Google Scholar 

  • Boren HG, Paradise LJ (1978) Cytokinetics of lung. In: Harris CC (ed) Pathogenesis and therapy of lung cancer. Marcel Dekker, New York, pp 369–418

    Google Scholar 

  • Cireli E (1966) Elektronenmikroskopische Analyse der pra- und postnatalen Differenzierung des Epithels der oberen Luftwege der Ratte. Z Mikrosk Anat Forsch 74:132–178

    PubMed  CAS  Google Scholar 

  • Clyde WA (1980) Experimental models for study of common respiratory viruses. Envir Health Persp 35:107–112

    Article  Google Scholar 

  • Correll NO, Beattie EH (1956) The characteristics of regeneration of respiratory epithelium. Surg Gynecol Obstet 103:209–211

    PubMed  Google Scholar 

  • Croft CB, Tarin D (1970) Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour. J Anat 106:63–77

    PubMed  CAS  Google Scholar 

  • Dipasquale A (1975a) Locomotory activity of epithelial cells in culture. Exp Cell Res 94:191–215

    Article  PubMed  CAS  Google Scholar 

  • Dipasquale A (1975b) Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp Cell Res 95:425–439

    Article  PubMed  CAS  Google Scholar 

  • Emura M, Mohr U (1975) Morphological studies on the development of tracheal epithelium in the Syrian golden hamster. 1. Light microscopy. Z Versuchstierk Bd 17:14–26

    CAS  Google Scholar 

  • Emura M, Reznik-Schüller H, Mohr U (1977) Morphological studies on the development of tracheal epithelium in the Syrian golden hamster. III. Electron microscopy. Early ciliogenesis. Z Versuchstierkd 19:47–51

    PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26:263–291

    Article  PubMed  CAS  Google Scholar 

  • Frasca JM, Auerbach O, Parks VR, Stoeckenius W (1967) Electron microscopic observations of bronchial epithelium. II. Filosomes. Exp Mol Pathol 7:92–104

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Montandon D (1977) Reparative processes in mammalian wound healing: The role of contractile phenomena. Int Rev Cytol 48:187–219

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Ryan GB (1974) Development of a contractile apparatus in epithelial cells during epidermal and liver regeneration. J Submicro Cytol 6:143–157

    Google Scholar 

  • Harris CC, Kaufman DG, Jackson F, Smith JM, Dedick P, Saffiotti U (1974) Atypical cilia in the tracheobronchial epithelium of the hamster during respiratory carcinogenesis. J Pathol 114:17–19

    Article  PubMed  CAS  Google Scholar 

  • Harris CC, Frank A, Barrett LA, McDowell EM, Trump BF, Paradise LJ, Boren H (1975) Cytokinetics in the respiratory epithelium of the hamster, cow and man. J Cell Biol 67:158a

    Google Scholar 

  • Hattum AH, James J, Klopper PJ, Muller JH (1979) A model for the study of epithelial migration in wound healing. Virchows Arch [Cell Pathol] 30:221–230

    Google Scholar 

  • Hilding AC (1965) Regeneration of respiratory epithelium after minimal surface trauma. Ann Otol Rhinol Laryngol 74:903–914

    PubMed  CAS  Google Scholar 

  • Hilding DA, Hilding AC (1966) Ultrastructure of tracheal cilia and cells during regeneration. Ann Otol Rhinol Laryngol 75:281–294

    Google Scholar 

  • Jefferey PK, Reid L (1975) New observations of rat airway epithelium. A quantitative and electron microscopic study. J Anat 120:295–320

    Google Scholar 

  • Kalnins VI, Porter KR (1969) Centriole replication during ciliogenesis in the chick tracheal epithelium. Z Zellforsch Mikrosk Anat 100:1–30

    Article  PubMed  CAS  Google Scholar 

  • Keenan KP, Combs JW, McDowell EM (1982a) Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: quantitative morphologic study of cell proliferation. Virchows Arch [Cell Pathol] 41:193–214

    Article  CAS  Google Scholar 

  • Keenan KP, Combs JW, McDowell EM (1982b) Regeneration of hamster tracheal epithelium after mechanical injury. II. Multifocal lesions: stathmokinetic and autoradiographic studies of cell proliferation. Virchows Arch [Cell Pathol] 41:215–229

    CAS  Google Scholar 

  • Keenan KP, Combs JW, McDowell EM (1982c) Regeneration of hamster tracheal epithelium after mechanical injury. III. Large and small lesions: comparative stathmokinetic and single pulse and continuous thymidine labeling autoradiographic studies. Virchows Arch [Cell Pathol] 41:231–252

    CAS  Google Scholar 

  • Kennedy AR, Desrosiers A, Terzaghi M, Little JB (1978) Morphometric and histological analysis of the lungs of Syrian golden hamsters. J Anat 125:527–553

    PubMed  CAS  Google Scholar 

  • Klein-Szanto AJP, Topping DC, Heckman CA, Nettesheim P (1980a) Ultrastructural characteristics of carcinogen-induced non-dysplastic changes in tracheal epithelium. Am J Pathol 98:61–82

    PubMed  CAS  Google Scholar 

  • Klein-Szanto AJP, Topping DC, Heckman CA, Nettesheim P (1980b) Ultrastructural characteristics of carcinogen-induced dysplastic changes in tracheal epithelium. Am J Pathol 98:83–100

    PubMed  CAS  Google Scholar 

  • Lange BP, Gordon R (1974) Regeneration of rat tracheal epithelium after mechanical injury. I. The relationship between mitotic activity and cellular differentiation. Proc Soc Exp Biol Med 145:1139–1144

    Google Scholar 

  • Leeson TS (1961) The development of the trachea in the rabbit with particular reference to the fine structure. Anat Anz 110:214–223

    PubMed  CAS  Google Scholar 

  • Lungarella G, Fonzi L, Pacini E (1980) Atypical cilia in rabbit bronchial epithelial cells induced by elastase: an ultrastructural study. J Pathol 131:379–383

    Article  PubMed  CAS  Google Scholar 

  • Masse R (1980) Histogenesis of lung tumors in rats by inhalation of alpha emitters: an overview. In: Sander CL, Cross FT, Dagle GE, Mahaffey JA (eds). Pulmonary toxicology of respirable particles. DOE Symposium Series 53:498–521

  • Matulionis DH (1975) Light and electron microscopic study of the effect of ZnSO4 on mouse nasal respiratory epithelium and subsequent responses. Anat Rec 183:63–82

    Article  PubMed  CAS  Google Scholar 

  • McDowell EM, Barrett LA, Harris CC, Trump BF (1976) Abnormal cilia in human bronchial epithelium. Arch Pathol Lab Med 100:429–436

    PubMed  CAS  Google Scholar 

  • McDowell EM, Barrett LA, Glavin F, Harris CC, Trump BF (1978a) The respiratory epithelium. I. Human bronchus. J Natl Cancer Inst 61:539–549

    PubMed  CAS  Google Scholar 

  • McDowell EM, Becci PJ, Barrett LA, Trump BF (1978 b) Morphogenesis and classification of lung cancer. In: Harris CC (ed) Pathogenesis and therapy of lung cancer. Lung Biol health dis 10:445–519

  • McDowell EM, McLaughlin JS, Merenyi DK, Kieffer RF, Harris CC, Trump BF (1978c) The respiratory epithelium. V. Histogenesis of lung carcinomas in the human. J Natl Cancer Inst 62:587–606

    Google Scholar 

  • McDowell EM, Becci PJ, Schürch W, Trump BF (1979) The respiratory epithelium VII. Epidermoid metaplasia of hamster tracheal epithelium during regeneration following mechanical injury. J Natl Cancer Inst 62:995–1008

    PubMed  CAS  Google Scholar 

  • McDowell EM, Combs JW, Newkirk C (1983a) A quantitative light and electron microscopic study of hamster tracheal epithelium with special attention to so-called “intermediate cells”. Exp Lung Res 4:205–226

    Article  PubMed  CAS  Google Scholar 

  • McDowell EM, Combs JW, Newkirk C (1983b) Acute changes in secretory cells of lower tracheal epithelium of hamsters in response to sublethal injury: A quantitative study. Exp Lung Res 4:227–243

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DP, Gusterson BA (1982) Simultaneous demonstration of keratin and mucin. J Histochem Cytochem 30:707–709

    PubMed  CAS  Google Scholar 

  • Mowry RW, Winkler CH (1956) Coloration of acidic carbohydrates of bacteria and fungi in tissue sections with special reference to capsules of Cryptococcus neoformans, pneumocococci and staphylococci. Am J Pathol 32:628–629

    Google Scholar 

  • Murphy GF, Brody AR, Craighead JE (1980) Exfoliation of respiratory epithelium in hamster tracheal organ cultures infected with Mycoplasma pneumonia. Virchows Arch [Pathol Anat] 389:93–102

    Article  CAS  Google Scholar 

  • Port CD, Baxter DW, Harris CC (1974) Surface morphology of tracheal epithelium in vitamin A deficiency and reversal. In: Karbe E, Park JF (eds). Experimental lung cancer, carcinogenesis and bioassays. Springer, Berlin Heidelberg New York, pp 256–264

    Google Scholar 

  • Rhodin JAG (1959) Ultrastructure of the tracheal ciliated mucosa in rat and man. Ann Otol Rhinol 68:964–974

    Google Scholar 

  • Richter-Reichhelm HB, Emura M, Althoff J (1980) Scanning electron microscopical investigations on the respiratory epithelium of the Syrian golden hamster. I. Postnatal differentiation. Zbl Bakt Parasit Mikrobiol Hyg B-Umwe 171:424–432

    CAS  Google Scholar 

  • Rodriguez N, Renaud FL (1980) On the possible role of serotonin in the regulation of regeneration of cilia. J Cell Biol 85:242–247

    Article  PubMed  CAS  Google Scholar 

  • Schlegel R, Banks-Schlegel S, Pinkus GS (1980) Immunohistochemical localization of keratin in normal human tissues. Lab Invest 42:91–96

    PubMed  Google Scholar 

  • Schroeder JJM, James J, Muller JH, Everts V, Klopper PJ (1977) The epithelium in healing experimental standard lesions in the gastric mucosa of the rat. A light microscopical and scanning electron microscopical study. Digestion 15:397–410

    Article  PubMed  CAS  Google Scholar 

  • Schiff LJ, Byrne MM, Ketels KN, Brown WT, Graham JA (1979) A scanning electron microscope study of developing hamster tracheal epithelium in organ culture. Differentiatior 15:49–55

    Article  CAS  Google Scholar 

  • Smolich JJ, Stratford BF, Maloney JE, Ritchie BC (1967) Postnatal development of the epithelium of larynx and trachea in the rat: scanning electron microscopy. J Anat 124:657–673

    Google Scholar 

  • Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207–230

    PubMed  CAS  Google Scholar 

  • Spicer SS, Horn RB, Leppi TJ (1966) Histochemistry of connective tissue mucopolysacchaides. In: Wagner BM, Smith DE (eds). The connective tissue. IAP monograph. No. 7. Williams and Wilkins, Baltimore, pp 251–303

    Google Scholar 

  • Steele VE, Nettesheim P (1981) Unstable cellular differentiation in adeno-squamous cell carcinoma. J Natl Cancer Inst 67:149–154

    PubMed  CAS  Google Scholar 

  • Steinman RM (1968) An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo ofXenopus laevis. Am J Anat 122:19–56

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry 2nd ed. John Wiley and Sons, New York pp 122–129

    Google Scholar 

  • Stockinger L, Cireli E (1965) Eine bisher unbekannte Art der Zentriolenvermehrung. Z Zellforsch Mikrosk Anat 68:733–740

    Article  PubMed  CAS  Google Scholar 

  • Sun TT, Shih C, Green H (1979) Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci 76:1213–1217

    Article  Google Scholar 

  • Thiery JP (1967) Mise en evidence des polysaccharides sur coupes fines en microscopie electronique. J Microsc 6:987–1041

    CAS  Google Scholar 

  • Trump BF, McDowell EM, Glavin F, Barrett LA, Becci PJ, Schürch W, Kaiser HE, Harris CC (1978) The respiratory epithelium. III. Histogenesis of epidermoid metaplasia and carcinoma in situ in the human. J Natl Cancer Inst 61:563–575

    PubMed  CAS  Google Scholar 

  • Wilhelm DL (1953) Regeneration of tracheal epithelium. J Pathol Bact 65:543–550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by USPHS NIH Grant HL # 24722 (E.M.McD)

Submitted by K.P. Keenan in partial fulfillment of a Doctor of Philosophy degree from the Department of Pathology, University of Maryland School of Medicine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keenan, K.P., Wilson, T.S. & McDowell, E.M. Regeneration of hamster tracheal epithelium after mechanical injury. Virchows Archiv B Cell Pathol 43, 213–240 (1983). https://doi.org/10.1007/BF02932958

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932958

Key words

Navigation