Skip to main content

Immunization Strategies Against Pulmonary Tuberculosis: Considerations of T Cell Geography

  • Chapter
  • First Online:
Book cover The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

Pulmonary tuberculosis (TB) remains a global health concern with an astounding 9 million new cases and 2 million deaths per year. This leading infectious cause of death remains highly prevalent with one third of the world’s population latently infected with Mycobacterium tuberculosis (M.tb) despite routine vaccination against TB in endemic areas. The only approved TB vaccine is the Bacille Calmette-Guerin (BCG), which provides protection against childhood miliary tuberculosis and has been administered intradermally in humans for almost a century. While effective in preventing disseminated forms of TB, the BCG has variable efficacy in providing protection against pulmonary TB. Therefore, the BCG has been unable to control the instance of adult pulmonary TB which constitutes the global disease burden. Despite the fact that mechanisms underlying the lack of pulmonary protection provided by the BCG remain poorly understood, it remains the “Gold Standard” for vaccine-mediated protection against M.tb and will continue to be used for the foreseeable future. Therefore, continued effort has been placed on understanding the mechanisms behind the failure of BCG to provide sufficient protection against M.tb in the lung and to design new vaccines to be used in conjunction with the BCG as boost strategies to install protective immunity at the site of infection. Growing evidence supports that the route of immunization dictates the geographical location of TB-reactive T cells, and it is this distribution which predicts the protective outcome of such vaccine-elicited immunity. Such vaccines that are able to localize TB-reactive T cells to the lung and airway mucosa are thought to fill the “immunological gap” in the lung that is required for enhanced protection against M.tb infection. This chapter focuses on the critical importance of T cell geography when designing new immunization strategies against pulmonary TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2009) Global tuberculosis control. World Health Organization, Geneva

    Google Scholar 

  2. Cooper AM (2009) T cells in mycobacterial infection and disease. Curr Opin Immunol 21(4):378–384

    Article  PubMed  CAS  Google Scholar 

  3. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27(1):393–422

    Article  PubMed  CAS  Google Scholar 

  4. Jeyanathan M, Heriazon A, Xing Z (2010) Airway luminal T cells: a newcomer on the stage of TB vaccination strategies. Trends Immunol 31(7):247–252

    Article  PubMed  CAS  Google Scholar 

  5. Xing Z (2009) Importance of T-cell location rekindled: Implication for tuberculosis vaccination strategies. Expert Rev Vaccines 8(11):1465–1468

    Article  PubMed  Google Scholar 

  6. Ly LH, McMurray DN (2008) Tuberculosis: vaccines in the pipeline. Expert Rev Vaccines 7(5):635–650

    Article  PubMed  CAS  Google Scholar 

  7. Xing Z, Charters TJ (2007) Heterologous boost vaccines for bacillus Calmette-Guerin prime immunization against tuberculosis. Expert Rev Vaccines 6(4):539–546

    Article  PubMed  CAS  Google Scholar 

  8. Parida SK, Kaufmann SH (2010) Novel tuberculosis vaccines on the horizon. Curr Opin Immunol 22(3):374–384

    Article  PubMed  CAS  Google Scholar 

  9. Shaler C, Horvath C, Lai R, Xing Z (2012) Understanding delayed T cell priming, lung recruitment and airway luminal T cell responses in host defense against pulmonary tuberculosis. Clin Dev Immunol 2012:628293

    Google Scholar 

  10. Horvath C, Shaler CR, Jeyanathan M, Zganiacz A, Xing Z (2012) Mechanisms of delayed anti-tuberculosis protection in the lung of parenteral-BCG vaccinated hosts: a critical role of airway luminal T cells. Mucosal Immunol 5(4):420–431

    Google Scholar 

  11. Begum D et al (2009) Accelerated induction of mycobacterial antigen-specific CD8+ T cells in the Mycobacterium tuberculosis-infected lung by subcutaneous vaccination with Mycobacterium bovis bacille Calmette–Guérin. Immunology 128(4):556–563

    Article  PubMed  CAS  Google Scholar 

  12. McShane H et al (2001) Enhanced immunogenicity of CD4(+) t-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect Immun 69(2):681–686

    Article  PubMed  CAS  Google Scholar 

  13. Huygen K (2006) DNA vaccines against mycobacterial diseases. Future Microbiol 1(1):63–73

    Article  PubMed  CAS  Google Scholar 

  14. Doherty TM et al (2004) Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis. J Infect Dis 190(12):2146–2153

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X et al (2007) Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 25(7):1342–1352

    Article  PubMed  CAS  Google Scholar 

  16. Wang J et al (2004) Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 173(10):6357–6365

    PubMed  CAS  Google Scholar 

  17. Goonetilleke NP et al (2003) Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol 171(3):1602–1609

    PubMed  CAS  Google Scholar 

  18. Jeyanathan M et al (2008) Airway delivery of soluble mycobacterial antigens restores protective mucosal immunity by single intramuscular plasmid DNA tuberculosis vaccination: role of proinflammatory signals in the lung. J Immunol 181(8):5618–5626

    PubMed  CAS  Google Scholar 

  19. Radosevic K et al (2007) Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect Immun 75(8):4105–4115

    Article  PubMed  CAS  Google Scholar 

  20. Chen L et al (2004) Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun 72(1):238–246

    Article  PubMed  CAS  Google Scholar 

  21. Giri PK, Verma I, Khuller GK (2006) Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J Infect 53(5):350–356

    Article  PubMed  Google Scholar 

  22. Garcia-Contreras L et al (2008) Immunization by a bacterial aerosol. Proc Nat Acad Sci U S A 105(12):4656–4660

    Article  CAS  Google Scholar 

  23. Hubbard RD, Flory CM, Collins FM (1992) Immunization of mice with mycobacterial culture filtrate proteins. Clin Exp Immunol 87(1):94–98

    Article  PubMed  CAS  Google Scholar 

  24. Coler RN et al (2001) Vaccination with the T cell antigen Mtb 8.4 protects against challenge with Mycobacterium tuberculosis. J immunol 166(10):6227–6235

    PubMed  CAS  Google Scholar 

  25. Giri PK et al (2005) Comparative evaluation of intranasal and subcutaneous route of immunization for development of mucosal vaccine against experimental tuberculosis. FEMS Immunol Med Microbiol 45(1):87–93

    Article  PubMed  CAS  Google Scholar 

  26. Xing Z, Lichty BD (2006) Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis 86(3–4):211–217

    Article  PubMed  CAS  Google Scholar 

  27. Lasaro MO, Ertl HC (2009) New insights on adenovirus as vaccine vectors. Mol Ther 17(8):1333–1339

    Article  PubMed  CAS  Google Scholar 

  28. Santosuosso M et al (2005) Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J Immunol 174(12):7986–7994

    PubMed  CAS  Google Scholar 

  29. Jeyanathan M et al (2010) Murine airway luminal antituberculosis memory CD8 T cells by mucosal immunization are maintained via antigen-driven in situ proliferation, independent of peripheral T cell recruitment. Am J Respir Crit Care Med 181(8):862–872

    Article  PubMed  CAS  Google Scholar 

  30. Mu J, Jeyanathan M, Shaler CR, Horvath C, Damjanovic D, Zganiacz A, Kugathasan K, McCormick S, Xing Z (2010) Respiratory mucosal immunization with adenovirus gene transfer vector induces helper CD4 T cell-independent protective immunity. J Gene Med 12:693–704

    Article  PubMed  CAS  Google Scholar 

  31. Radosevic K, Wieland CW, Rodriguez A, Weverling GJ, Mintardjo R, Gillissen G, Vogels R, Skeiky YA, Hone DM, Sadoff JC, van der Poll T, Havenga M, Goudsmit J (2007) Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect Immun 75(8):4105–4115

    Article  PubMed  CAS  Google Scholar 

  32. Roediger EK, Kugathasan K, Zhang X, Lichty BD, Xing Z (2008) Heterologous boosting of recombinant adenoviral prime immunization with a novel vesicular stomatitis virus vectored vaccine for pulmonary tuberculosis. Mol Ther 16:1161–1169

    Article  PubMed  CAS  Google Scholar 

  33. Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P (2006) Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J Immunol 177(9):6353–6360

    PubMed  CAS  Google Scholar 

  34. Andersen CS, Dietrich J, Agger EM, Lycke NY, Lövgren K, Andersen P (2007) The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect Immun 75(1):408–416

    Article  PubMed  CAS  Google Scholar 

  35. Haile M et al (2005) Nasal boost with adjuvanted heat-killed BCG or arabinomannan-protein conjugate improves primary BCG-induced protection in C57BL/6 mice. Tuberculosis 85(1–2):107–114

    Article  PubMed  CAS  Google Scholar 

  36. Gilbert SC et al (2006) Synergistic DNA-MVA prime-boost vaccination regimes for malaria and tuberculosis. Vaccine 24(21):4554–4561

    Article  PubMed  CAS  Google Scholar 

  37. Santosuosso M et al (2006) Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun 74(8):4634–4643

    Article  PubMed  CAS  Google Scholar 

  38. Forbes EK et al (2008) Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J Immunol 181(7):4955–4964

    PubMed  CAS  Google Scholar 

  39. Ronan EO, Lee LN, Beverley PC, Tchilian EZ (2009) Immunization of mice with a recombinant adenovirus vaccine inhibits the early growth of Mycobacterium tuberculosis after infection. PLoS ONE 4(12):e8235

    Article  PubMed  Google Scholar 

  40. Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN (2009) Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed uinea pigs against pulmonary tuberculosis. PLoS ONE 4(6):e5856

    Article  PubMed  Google Scholar 

  41. Tchilian EZ, Ronan EO, de Lara C, Lee LN, Franken KL, Vordermeier MH, Ottenhoff TH, Beverley PC (2011) Simultaneous immunization against tuberculosis. PLoS ONE 6(11):e27477

    Article  PubMed  CAS  Google Scholar 

  42. Santosuosso M et al (2007) Mucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization. J Immunol 178(4):2387–2395

    PubMed  CAS  Google Scholar 

  43. Wooley J (2011) Tuberculosis vaccine candidates—2011. Stop TB Partnership. Available via Tuberculosis Vaccine Initiative. http://www.tbvi.eu/fileadmin/user_upload/Documenten/News/TB_Vaccine_Pipeline_2011_FINAL03042012.pdf. Accessed August 2012

Download references

Acknowledgments

The work from authors’ laboratory is supported by funds from the Canadian Institutes for Health Research. Authors are grateful to Christopher Shaler for his assistance in graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horvath, C.N., Xing, Z. (2013). Immunization Strategies Against Pulmonary Tuberculosis: Considerations of T Cell Geography. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_14

Download citation

Publish with us

Policies and ethics