Skip to main content
Book cover

Hypoxia pp 39–55Cite as

Oxygen Conformance of Cellular Respiration

A perspective of mitochondrial physiology

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Oxygen pressure declines from normoxic air-level to the microenvironment of mitochondria where cytochromecoxidase (COX) reduces oxygen to water at oxygen levels as low as 0.3 kPa (2 Torr; 3 µM; 1.5% air saturation). Intracellular hypoxia is defined as (1) local oxygen pressure below normoxic reference states, or (2) limitation of mitochondrial respiration by oxygen levels below kinetic saturation, resulting in oxyconformance. High-resolution respirometry provides the methodology to measure mitochondrial and cellular oxygen kinetics in the relevant low oxygen range <1 kPa (7.5 mmHg; 9–10 µM; 5% air saturation). Respiration of isolated heart mitochondria follows hyperbolic oxygen kinetics with half-saturating oxygen pressure,p 50, of 0.04 kPa (0.3 Torr; 0.4 µM) in ADP-stimulated state 3. Thus mitochondrial respiration proceeds at 90% of its hyperbolic maximum at thep 50of myoglobin, suggesting the possibility of a small but significant oxygen limitation even under normoxia in active muscle. Any impairment of oxygen delivery, therefore, induces oxyconformance. In addition, a shift of mitochondrial oxygen kinetics to the right, particularly by competitive inhibition of COX by NO, causes a further depression of respiration and a compensatory increase of local oxygen pressure. Above 1 kPa, mitochondrial oxygen uptake increases above hyperbolic saturation, which is probably due to oxygen radical production rather than the kinetics of COX. In cultured cells, the pronounced oxygen uptake above mitochondrial saturation at air-level oxygen pressure cannot be inhibited by rotenone and antimycin A, amounting to >20% of routine respiration in fibroblasts. Biochemical models of oxyconformance of COX are evaluated relative to patterns of intracellular oxygen distribution in the tissue and enzyme turnoverinv/vo, considering the kinetic effects of COX excess capacity on flux through the mitochondrial electron transport chain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas PA, Otterlei M, Faines PO, Vagbo CB, Skorpen F, Akbari M, Sundheim O, Bjoras M, Slupphaug G, Seeberg E, and Krokan HE. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA.Nature421: 859–863, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Arthur PG, Giles JJ, and Wakeford CM. Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12. Biochim Biophys Acta 1475: 83–89, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Aw TY, Anderssen BS, and Jones DP. Suppression of mitochondrial respiratory function after short-term anoxia.Am J Physiol252: C362–C368, 1987.

    CAS  PubMed  Google Scholar 

  4. Bernardi P, Petronilli V, Di Lisa F, and Forte M. A mitochondrial perspective on cell death.Trends Biochem Sci26: 112–117, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Boutilier RG, and St-Pierre J. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression.J Exp Biol205: 2287–2296, 2002.

    CAS  PubMed  Google Scholar 

  6. Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. In: Reivich, M., Coburn, R., Lahiri, S., Chance, B. (Eds.).Tissue Hypoxia and Ischemia.Stuttgart: Thieme, p. 67–82, 1977

    Chapter  Google Scholar 

  7. Boveris A, and Cadenas E. Mitochondrial production of hydrogen peroxide. Regulation by nitric oxide and the role of ubisemiquinone.Life50: 245–250, 2000.

    CAS  PubMed  Google Scholar 

  8. Brown G. Regulation of mitochondr ial respiration by nitric oxide inhibition of cytochromecoxidase.Biochim Biophys Acta1504: 46–57, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Budinger GRS, Chandel N, Shao ZH, Li CQ, Melmed A, Becker LB, and Schumacker PT. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes.Am J Physiol270: L44–L53, 1996.

    CAS  PubMed  Google Scholar 

  10. Budinger GRS, Duranteau J, Chandel N, and Schumacker PT. Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem273: 3320–3326, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Casey TM, and Arthur PG. Hibernation in noncontracting mammalian cardiomyocytes.Circulation102: 3124–3129, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Casey TM, Pakay JL, Guppy M, and Arthur PG. Hypoxia causes downregulation of protein and RNA synthesis in noncontracting mammalian cardiomyocytes.Circ Res90: 777–783, 2002.

    Article  CAS  PubMed  Google Scholar 

  13. Cai J, and Jones DP. Superoxide in apoptosis.J Biol Chem273: 11401–11404, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. Chandel NS, Budinger GRS, Choe SH, and Schumacker PT. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes.J Biol Chem272: 18808–18816, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Chandel N, Budinger GRS, Kemp RA, and Schumacker PT. Inhibition of cytochrome-c oxidase activity during prolonged hypoxia. Am J Physiol268: L918–L925, 1995.

    CAS  PubMed  Google Scholar 

  16. Chandel NS, Budinger GRS, and Schumacker PT. Molecular oxygen modulates cytochromecoxidase function. J Biol Chem271: 18672–18677, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Chandel NS; and Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol88: 1880–1889, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Drahota Z, Chowdhury SKR, Floryk D, Mrácek T, Wilhelm J, Rauchova H, Lenaz G, and Houstek J. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembr34: 105–113, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Erecinska M, and Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol128: 263–276, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol201: 1203–1209, 1998.

    CAS  PubMed  Google Scholar 

  21. Gnaiger E. Homeostatic and microxic regulation of respiration in transitions to anaerobic metabolism. In: Bicudo J.E.P.W. (ed.) The vertebrate gas transport cascade: Adaptations to environment and mode of life.Boca Raton, Ann Arbor, London, Tokyo: CRC Press, 358–370, 1993.

    Google Scholar 

  22. Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol128: 277–297, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Gnaiger E, and Kuznetsov AV. Mitochondrial respiration at low levels of oxygen and cytochrome c. Biochem Soc Trans30: 252–258, 2002.

    Article  CAS  Google Scholar 

  24. Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, and Margreiter R. Mitochondria in the cold. In: Heldmaier G., Klingenspor M. (eds) Life in the Cold.Heiderlberg, Berlin, New York: Springer, 2000, p. 431–442

    Chapter  Google Scholar 

  25. Gnaiger E, Lassnig B, Kuznetsov AV, and Margreiter R. Mitochondrial respiration in the low oxygen environment of the cell: Effect of ADP on oxygen kinetics. Biochim Biophys Acta1365:249–254, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Gnaiger E, Lassnig B, Kuznetsov AV, Rieger G, and Margreiter R. Mitochondrial oxygen affinity, respiratory flux control, and excess capacity of cytochrome coxidase. J Exp Biol201: 1129–1139, 1998.

    CAS  PubMed  Google Scholar 

  27. Gnaiger E, Méndez G, and Hand SC. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA97: 11080– 11085, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gnaiger E, Steinlechner R, Méndez G, Eberl T, and Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr27: 583–596, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Heerlein K, Schulze A, Bärtsch P, and Mairbäurl H. Hypoxia reduces cellular oxygen consumption and Na/K-ATPase activity of alveolar epithelial cells. High Altitude Med Biol3:449, 2002.

    Google Scholar 

  30. Helmlinger G, Yuan F, Dellian M, and Jain RK. Interstitial pH andpO2gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nature Medicine3: 177–182, 1997.

    Article  CAS  PubMed  Google Scholar 

  31. Hochachka PW, Buck LT, Doll CJ, and Land SC. Unifying theory of hypoxia tolerance: Molecular/ metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA93: 9493–9498, 1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hochachka PW, Lutz PL, Sick T, Rosenthal M, and Van den Thillart G. (eds) Surviving Hypoxia: Mechanisms of Control and Adaptation. Boca Raton, Ann Arbor, London, Tokyo: CRC Press, 1993.

    Google Scholar 

  33. Hütter E, Renner K, Jansen-Dürr P, and Gnaiger E. Biphasic oxygen kinetics of cellular respiration and linear oxygen dependence of antimycin A inhibited oxygen consumption. Molec Biol Rep29: 83–87, 2002.

    Article  Google Scholar 

  34. Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, Flier J, Griffiths HR, Heales S, Hoist B, Lorusso M, Lund E, Moskaug JO, Moser U, Di Paola M, Polidori MC, Signorile A, Stahl W, Vina-Ribes J, and Astley SB. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function.Molec Aspects Med23: 209–285, 2002.

    Article  CAS  Google Scholar 

  35. Jones DP, and Kennedy FG. Analysis of intracellular oxygenation of isolated adult cardiac myocytes. Am J Physiol250: C384–C390, 1986.

    CAS  PubMed  Google Scholar 

  36. Kennedy FG, and Jones DP. Oxygen dependence of mitochondrial function in isolated rat cardiac myocytes. Am J Physiol250: C374–C383, 1986.

    CAS  PubMed  Google Scholar 

  37. Kietzmann T, Fandrey J, and Acker H. Oxygen radicals as messengers in oxygen-dependent gene expression. News Physiol Sci15: 202–208, 2000.

    CAS  PubMed  Google Scholar 

  38. Kongas O, Yuen TL, Wagner MJ, van Beek JHGM, and Krab K. HighK mof oxidative phosphorylation for ADP in skinned muscle fibers: where does it stem from? Am J Physiol 283: C743–C751, 2002.

    CAS  Google Scholar 

  39. Kuznetsov AV, Lassnig B, Margreiter R, and Gnaiger E. Diffusion limitation of oxygen versus ADP in permeabilized muscle fibers. In: Larsson C, Påhlman I.-L, and Gustafsson L, (eds) BioThermoKinetics in the Post Genomic Era. Göteborg: Chalmers Reproservice, 1998, p.273–276

    Google Scholar 

  40. Lassnig B, Kuznetsov AV, Margreiter R, and Gnaiger E. Aerobic-anoxic transitions and regulation of mitochondrial oxygen flux. In: Larsson C, Påhlman I.-L, and Gustafsson L, (eds) BioThermoKinetics in the Post Genomic Era.Göteborg: Chalmers Reproservice, 1998, p.312–316

    Google Scholar 

  41. Lefebvre VHL, Steenbrugge MV, Beckers V, Roberfroid M, and Buc-Calderon VHL. Adenine nucleotides and inhibition of protein synthesis in isolated hepatocytes incubated under differentpO2levels. Arch Biochem Biophys 304: 322–331, 1993.

    Article  CAS  PubMed  Google Scholar 

  42. Lemasters JJ, and Nieminen A-L. Mitochondrial oxygen radical formation during reductive and oxidative stress to intact hepatocytes. Biosci Rep17: 281–291, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Metzen E, Wolff M, Fandrey J, and Jelkmann W. PericellularpO2and O2consumption in monolayer cultures. Respir Physiol100: 101–106, 1995.

    Article  CAS  PubMed  Google Scholar 

  44. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, and Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res90: 1307–1315, 2002.

    Article  CAS  PubMed  Google Scholar 

  45. Miller WM, Wilke CR, and Blanch HW. Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture. J Cell Physiol132: 524–530, 1987.

    Article  CAS  PubMed  Google Scholar 

  46. Mootha VK, Arai AE, and Balaban RS. Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Physiol272: H769–H775, 1997.

    CAS  PubMed  Google Scholar 

  47. Noll T, Koop A, and Piper HM. Mitochondrial ATP-synthase activity in cardiomyocytes after aerobic-anaerobic metabolic transitions. Am J Physiol262: C1297–C1303, 1992.

    CAS  PubMed  Google Scholar 

  48. Renner K, Kofler R, and Gnaiger E. Mitochondrial function in glucocorticoid triggered T-ALL cells with transgenic Bcl-2 expression. Molec Biol Rep29: 97–101, 2002.

    Article  CAS  Google Scholar 

  49. Rich P. Chemiosmotic coupling: The cost of living. Nature241: 583, 2003.

    Article  Google Scholar 

  50. Rolfe DFS, and Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.Physiol Rev71: 731–758, 1997.

    Google Scholar 

  51. Rumsey WL, Schlosser C, Nuutinen EM, Robiolio M, and Wilson DF. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. J Biol Chem265: 15392–15402, 1990.

    CAS  PubMed  Google Scholar 

  52. Saks VA, Belikova YO, and Kuznetsov AV.In vivoregulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta1074:302–311, 1991.

    Article  CAS  PubMed  Google Scholar 

  53. Sarkela TM, Berthiaume J, Elfering S, Gybina AA, and Giulivi C. The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem 276: 6945–6949, 2001.

    Article  CAS  PubMed  Google Scholar 

  54. Schumacker PT, Chandel N, and Agusti AGN. Oxygen conformance of cellular respiration in hepatocytes.Am J Physiol265: L395–L402, 1993.

    CAS  PubMed  Google Scholar 

  55. Sedmera D, Kucera P, and Raddatz E. Developmental changes in cardiac recovery from anoxia-reoxygenation. Am J Physiol 283: R379–R388, 2002.

    CAS  Google Scholar 

  56. Sies H. Oxygen gradients during hypoxic steady states in liver. Hoppe Seylers Z Physiol Chem358: 1021–1032, 1977.

    Article  CAS  PubMed  Google Scholar 

  57. Silverman HS, Wei S-K, Haigney MCP, Ocampo CJ, and Stern MD. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia. Circ Res80: 699–707, 1997.

    Article  CAS  PubMed  Google Scholar 

  58. Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Quart Rev Biophys29: 169–202, 1996.

    Article  CAS  Google Scholar 

  59. Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, and Gnaiger E. H2O2- mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation74: 1800–1803, 2002.

    Article  CAS  PubMed  Google Scholar 

  60. Stary CM, and Hogan MC. Effect of varied extracellularpO2on muscle performance inXenopussingle skeletal muscle fibers. JAppl Physiol86: 1812–1816, 1999.

    CAS  Google Scholar 

  61. Steinlechner-Maran R, Eberl T, Kunc M, Margreiter R, and Gnaiger E. Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol271: C2053–C2061, 1996.

    CAS  PubMed  Google Scholar 

  62. Stumpe T, and Schrader J. Phosphorylation potential, adenosine formation, and criticalpO2in stimulated rat cardiomyocytes. Am J Physiol273: H756–H766, 1997.

    CAS  PubMed  Google Scholar 

  63. Stumpe T, and Schrader J. Short-term hibernation in adult cardiomyocytes ispO2dependent and Ca2+mediated. Am J Physiol 280: H42–H50, 2001.

    CAS  Google Scholar 

  64. Takahashi E, Endoh H, and Doi K. Visualization of myoglobin-facilitated mitochondrial O2delivery in a single isolated cardiomyocyte.Biophys J78: 3252–3259, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Taylor DE, Kantrow SP, and Piantadosi CA. Mitochondrial respiration after sepsis and prolonged hypoxia. Am J Physiol275: L139–L144, 1998.

    CAS  PubMed  Google Scholar 

  66. Taylor WG, and Camalier RF. Modulation of epithelial cell proliferation in culture by dissolved oxygen. J Cell Physiol111:21–27, 1982.

    Article  CAS  PubMed  Google Scholar 

  67. Tiivel T, Kadaya L, Kuznetsov A, Kaambre T, Peet N, Sikk P, Braun U, Ventura-Clapier R, Saks V, Seppet EK. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo. Mol Cell Biochem208: 119–128, 2000.

    Article  CAS  PubMed  Google Scholar 

  68. Vanderkooi JM, Erecinska M, and Silver IA. Oxygen in mammalien tissue: methods of measurement and affinities of various reactions.Am J Physiol260: C1131–C1150, 1991.

    CAS  PubMed  Google Scholar 

  69. Verkhovsky MI, Morgan JE, Puustinen A., and Wikstrom M. Kinetic trapping of oxygen in cell respiration. Nature380: 268–270, 1996.

    Article  CAS  PubMed  Google Scholar 

  70. Wikstrom M, and Verkhovsky MI. Proton translocation by cytochromecoxidase in different phases of the catalytic cycle. Biochim Biophys Acta1555: 128–132, 2002.

    Article  CAS  PubMed  Google Scholar 

  71. Wittenberg BA, and Wittenberg JB. Oxygen pressure gradients in isolated cardiac myocytes. J Biol Chem260: 6548–6554, 1985.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Gnaiger, E. (2003). Oxygen Conformance of Cellular Respiration. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics