Skip to main content

Lactate, with Oxygen, Incites Angiogenesis

  • Conference paper
Book cover Oxygen Transport to Tissue XXIX

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 614))

Abstract

Lactate has been reconsidered! As we now know, most is produced aerobically We report that lactate accumulation commonly occurs in the presence of oxygen and is sufficient to instigate signals for angiogenesis and connective tissue deposition. These include vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF beta), interleukin-1 (IL-1), and hypoxia-inducible factor (hif-1alpha). This paper, a mini-review, is occasioned by new data showing increased presence of VEGF and angiogenesis in an oxygenated site by adding a slow-release source of lactate into Matrigel® and implanting the Matrigel subcutaneously in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Q. P. Ghani, S. Wagner, H. D. Becker, T. K. Hunt, M. Z. Hussain. Regulatory role of lactate in wound repair. Methods Enzymol. 2004; 381:565–75.

    Article  PubMed  CAS  Google Scholar 

  2. J. S. Constant, J. J. Feng, D. D. Zabel, H. Yuan, D. Y. Suh, H. Scheuenstuhl, T. K. Hunt, M. Z. Hussain. Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen. 2000 Sep–Oct; 8(5):353–60.

    Google Scholar 

  3. S. Beckert, F. Farrahi, R. S. Aslam, H. Scheuenstuhl, A. Konigsrainer, M. Z. Hussain, T. K. Hunt. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006 May–Jun; 14(3):321–4.

    Google Scholar 

  4. B. Formby, R. Stern. Lactate-sensitive response elements in genes involved in hyaluronan catabolism. Biochem Biophys Res Commun. 2003 May 23; 305(1):203–8.

    Google Scholar 

  5. L. B. Gladden. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004 Jul 1; 558(Pt 1):5–30. Review.

    Google Scholar 

  6. J. E. Albina, B. Mastrofrancesco, J. A. Vessella, C. A. Louis, W. L. Henry, Jr., J. S. Reichner. HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha. Am J Cell Physiology. 2001 Dec; 281(6):C1971–7.

    Google Scholar 

  7. S. Biswas, M. Ray, S. Misra, D. P. Dutta, S. Ray. Is absence of pyruvate dehydrogenase complex in mitochondria a possible explanation of significant aerobic glycolysis by normal human leukocytes? FEBS Lett. 1998 Apr 3; 425(3):411–4.

    Google Scholar 

  8. O. Trabold, W. Wagner, C. Wicke, H. Scheuenstuhl, M. Z. Hussain, N. Rosen, A. Seremetiev, H. D. Becker, T. K. Hunt. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen. 2003 Nov–Dec;11(6):504–9.

    Google Scholar 

  9. Q. Liu, U. Berchner-Pfannschmidt, U. Moller, M. Brecht, C. Wotzlaw, H. Acker, K. Jungermann, T. A. Kietzmann. Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4302–7.

    Google Scholar 

  10. H. W. Hopf, J. J. Gibson, A. P. Angeles, J. S. Constant, J.J. Feng, M. D. Rollins, M. Z. Hussain, T. K. Hunt. Hyperoxia and angiogenesis. Wound Repair Regen. 2005 Nov–Dec;13(6):558–64.

    Google Scholar 

  11. A. Y. Sheikh, J. J. Gibson, M. D. Rollins, H. W. Hopf, Z. Hussain, T. K. Hunt. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000 Nov; 135(11):1293–7

    Google Scholar 

  12. M.A. Ali, F. Yasui, S. Matsugo, T. Konishi. The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radic Res. 2000 May;32(5):429–38.

    Google Scholar 

  13. H. Lu, C. L. Dalgard, A. Mohyeldin, T. McFate, A. S. Tait, A. Verma. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem. 2005 Dec 23;280(51):41928–39.

    Google Scholar 

  14. C. K. Sen, S. Khanna, B. M. Babior, T. K. Hunt, E. C. Ellison, S. Roy. Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem. 2002 Sep 6;277(36):33284–90.

    Google Scholar 

  15. D. D. Zabel, J. J. Feng, H. Scheuenstuhl, T. K. Hunt, M. Z. Hussain. Lactate stimulation of macrophage-derived angiogenic activity is associated with inhibition of Poly (ADP-ribose) synthesis. Lab Invest. 1996; 74:644–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hunt, T.K., Aslam, R., Hussain, Z., Beckert, S. (2008). Lactate, with Oxygen, Incites Angiogenesis. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_9

Download citation

Publish with us

Policies and ethics