%0 Journal Article %A CM Salome %A NJ Brown %A GB Marks %A AJ Woolcock %A GM Johnson %A PC Nancarrow %A S Quigley %A J Tiong %T Effect of nitrogen dioxide and other combustion products on asthmatic subjects in a home-like environment %D 1996 %R 10.1183/09031936.96.09050910 %J European Respiratory Journal %P 910-918 %V 9 %N 5 %X Nitrogen dioxide (NO2) is one of a number of nitrogen compounds that are by-products of combustion and occur in domestic environments following the use of gas or other fuels for heating and cooking. In this study, we examined the effect of two levels of NO2 on symptoms, lung function and airway hyperresponsiveness (AHR) in asthmatic adults and children. In addition, in the same subjects, we examined the effects of the same levels of NO2 mixed with combustion by-products from a gas space heater. The subjects were nine adults, aged 19-65 yrs, and 11 children, aged 7-15 yrs, with diagnosed asthma which was severe enough to require daily medication. All subjects had demonstrable AHR to histamine. Exposures were for 1 h on five separate occasions, 1 week apart, to: 1) ambient air, drawn from outside the building; 2) 0.3 parts per million (ppm) NO2 in ambient air; 3) 0.6 ppm NO2 in ambient air; 4) ambient air+combustion by-products+NO2 to give a total of 0.3 ppm; and 5) ambient air+combustion by-products+NO2 to give a total of 0.6 ppm. Effects were measured as changes in lung function and symptoms during and 1 h after exposure, in AHR 1 h and 1 week after exposure, and in lung function and symptoms during the week following exposure. Exposure to NO2 either in ambient air or mixed with combustion by-products from a gas heater, had no significant effect on symptoms or lung function in adults or in children. There was a small, but statistically significant, increase in AHR after exposure to 0.6 ppm NO2 in ambient air. However, there was no effect of 0.6 ppm NO2 on AHR when the combustion by-products were included in the test atmosphere nor of 0.3 ppm NO2 under either exposure condition. We conclude that a 1 h exposure to 0.3 or 0.6 ppm NO2 has no clinically important effect on the airways of asthmatic adults or children, but that 0.6 ppm may cause a slight increase in airway hyperresponsiveness. %U https://erj.ersjournals.com/content/erj/9/5/910.full.pdf