TY - JOUR T1 - Ventilatory responses to chemosensory stimuli in quadriplegic subjects JF - European Respiratory Journal JO - Eur Respir J SP - 891 LP - 900 DO - 10.1183/09031936.93.03080891 VL - 3 IS - 8 AU - M Pokorski AU - T Morikawa AU - S Takaishi AU - A Masuda AU - B Ahn AU - Y Honda Y1 - 1990/09/01 UR - http://erj.ersjournals.com/content/3/8/891.abstract N2 - We tested the hypothesis that interruption of motor traffic running down the spinal cord to respiratory muscle motoneurons suppresses the ventilatory response to increased chemical drive. We compared the hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses, based on the rebreathing technique, before and during inspiratory flow-resistive loading in 17 quadriplegic patients with low cervical spinal cord transection and in 17 normal subjects. The ventilatory response was evaluated from minute ventilation (VE) and mouth occlusion pressure (P0.2) slopes on arterial oxygen saturation (SaO2) or on end-tidal PCO2 (PACO2), and from absolute VE values at SaO2 80% or at PACO2 55 mmHg. We found no difference in the unloaded HVR or HCVR between the quadriplegic and normal subjects. In the loaded HVR, the delta VE/delta SaO2 slope tended to decrease similarly in both groups of subjects. The delta P0.2/delta SaO2 slope was shifted upwards in normal subjects, yielding a significantly higher P0.2 at a given SaO2. In contrast, this rise in the P0.2 level during loaded HVR was absent in quadriplegics. Loaded HCVR yielded qualitatively similar results in both groups of subjects; delta VE/delta PACO2 decreased and delta P0.2/delta PACO2 increased significantly. The results show that the ventilatory chemosensory responses were unsuppressed in quadriplegics, although they displayed a disturbance in load-compensation, as reflected by occlusion pressure, in hypoxia. We conclude that the descending drive to respiratory muscle motoneurons is not germane to the operation of the chemosensory reflexes. ER -