TY - JOUR T1 - Development of lung diffusion to adulthood following extremely preterm birth JF - European Respiratory Journal JO - Eur Respir J DO - 10.1183/13993003.04103-2020 VL - 59 IS - 5 SP - 2004103 AU - Emma Satrell AU - Hege Clemm AU - Ola Drange Røksund AU - Karl Ove Hufthammer AU - Einar Thorsen AU - Thomas Halvorsen AU - Maria Vollsæter Y1 - 2022/05/01 UR - http://erj.ersjournals.com/content/59/5/2004103.abstract N2 - Background Gas exchange in extremely preterm (EP) infants must take place in fetal lungs. Childhood lung diffusing capacity of the lung for carbon monoxide (DLCO) is reduced; however, longitudinal development has not been investigated. We describe the growth of DLCO and its subcomponents to adulthood in EP compared with term-born subjects.Methods Two area-based cohorts born at gestational age ≤28 weeks or birthweight ≤1000 g in 1982–1985 (n=48) and 1991–1992 (n=35) were examined twice, at ages 18 and 25 years and 10 and 18 years, respectively, and compared with matched term-born controls. Single-breath DLCO was measured at two oxygen pressures, with subcomponents (membrane diffusion (DM) and pulmonary capillary blood volume (VC)) calculated using the Roughton–Forster equation.Results Age-, sex- and height-standardised transfer coefficients for carbon monoxide (KCO) and DLCO were reduced in EP compared with term-born subjects, and remained so during puberty and early adulthood (p-values for all time-points and both cohorts ≤0.04), whereas alveolar volume (VA) was similar. Development occurred in parallel to term-born controls, with no signs of pubertal catch-up growth nor decline at age 25 years (p-values for lack of parallelism within cohorts 0.99, 0.65, 0.71, 0.94 and 0.44 for z-DLCO, z-VA, z-KCO, DM and VC, respectively). Split by membrane and blood volume components, findings were less clear; however, membrane diffusion seemed most affected.Conclusions Pulmonary diffusing capacity was reduced in EP compared with term-born subjects, and development from childhood to adulthood tracked in parallel to term-born subjects, with no signs of catch-up growth nor decline at age 25 years.Pulmonary diffusing capacity following extremely preterm (EP) birth was reduced compared with term-born subjects. From mid-childhood to adulthood, development tracked in parallel in the EP and term-born groups, with preterms following lower trajectories. https://bit.ly/3ARPD7D ER -