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ABSTRACT:  

Background: In vitro, animal model, and clinical evidence suggests that tuberculosis is not a 

monomorphic disease, and that host response to tuberculosis is protean with multiple distinct 

molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate 

tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes.   

Methods: A cohort comprised of microarray gene expression data from microbiologically confirmed 

tuberculosis patients were used to identify putative endotypes. One microarray cohort with 

longitudinal clinical outcomes was reserved for validation, as was two RNA-seq cohorts. Finally, a 

separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify 

stimulated from unstimulated immune responses.  

Results: A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, 

identified two tuberculosis endotypes. Endotype A is characterized by increased expression of genes 

related to inflammation and immunity and decreased metabolism and proliferation; in contrast, 

endotype B has increased activity of metabolism and proliferation pathways.  An independent RNA-

seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery 

results. Gene expression signatures for treatment failure were elevated in endotype A in the 

discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower 

time to culture conversion, and a reduced cure rate. These observations suggest that endotypes 

reflect functional immunity, supported by the observation that tuberculosis patients with a 

hyperinflammatory endotype have less responsive cytokine production upon stimulation.  

Conclusion: These findings provide evidence that metabolic and immune profiling could inform 

optimization of endotype-specific host-directed therapies for tuberculosis.  



INTRODUCTION: 

Molecular host-directed therapies (HDT) could improve the efficacy, shorten the duration of 

treatment regimens, or ameliorate tuberculosis (TB)-induced lung pathology. However, the molecular 

pathology in TB is not homogenous. The fields of asthma, COPD, and most cancers have identified 

biological endotypes, distinct molecular and cellular pathology leading to a similar disease phenotype.  

Consequently, treatment for these diseases depends on the specific molecular pathways that are 

disturbed, with endotype-specific therapies improving clinical outcomes[1]. For example, asthma 

endotypes can generally be divided into neutrophilic versus eosinophilic disease, with the former 

being more responsive to macrolide therapy and the latter being corticosteroid responsive [1]. 

Leprosy is also treated based on immune endotypes, with the cell-mediated and paucibacillary form 

requiring less antibiotics for a shorter duration, while the anergic and multibacillary endotype requires 

more antibiotics for a longer duration. No comparable categorization system is available to guide TB 

HDT.   

Studies have identified incongruous immune responses that can lead to TB[2-6]. To further test 

the premise that there is not a single stereotypical immune response to TB, we sought to provide 

evidence for the diversity of host responses during TB. Mycobacterial immunity requires a balanced, 

well-regulated response from multiple cell types. For example, immune control of Mycobacterium 

tuberculosis (Mtb) requires tightly regulated IFN-γ and TNFɑ with decreased IFN-γ or TNFɑ resulting 

in decreased Mtb intracellular killing capacity[4], but with exuberant IFN-γ or TNFɑ inducing 

macrophage and tissue necrosis with extracellular Mtb survival[2, 3]. To better characterize TB 

endotypes, we implemented an unbiased clustering of publicly available gene expression data, then 

validated the results using two external cohorts, eventually identifying a hyperinflammatory TB 

endotype associated with worse clinical outcomes.   

  



METHODS: 

Study inclusion  

A systematic review and meta-analysis were implemented according to PRISMA guidelines 

(described in detail in supplemental methods). Publicly available data was identified using PubMed 

and the NCBI Gene Expression Omnibus (GEO) repository. Studies without microbiologic 

confirmation, without description of the methods of microbiologic confirmation, or without evaluation of 

whole blood were excluded. Ten transcriptomic (eight using microarray and two using RNA-seq) 

studies using whole blood were identified that included participants with microbiologically confirmed 

pulmonary tuberculosis (Supplemental methods).  Studies or datasets that included only cases 

without controls or evaluated fewer than 10,000 genes were excluded. Studies using microarray were 

used for a discovery cohort and RNA-seq datasets for a validation cohort (Table 1). One microarray 

cohort (GSE147689, GSE147691) was reserved for validation because it contained longitudinal 

clinical outcomes (Table 1-2;). Normalization, processing, clustering, and development of a gene 

expression-based classifier are described in full in the supplemental methods. Clinical outcomes for 

this cohort[7] were defined using the TBNET criteria: cure is defined as culture-negative at 6 months, 

with no positive cultures thereafter and no disease relapse within a year after treatment completion. 

Treatment failure was based on a positive culture 6 months after treatment initiation or disease 

relapse within one year after treatment completion.  

 

Immunology Validation Cohort 

Multiplex ELISA (LegendPlex) was implemented with and without overnight mitogen stimulation in a 

cohort of pulmonary TB patients (n = 40) or their asymptomatic household contacts (n = 39) from 

Eswatini. The study protocol was reviewed by institutional review boards and all participation was 

voluntary and in concordance with the Declaration of Helsinki. TB patients were defined by both the 

presence of symptoms and microbiologic confirmation by MGIT liquid culture and/or Gene Xpert.  

https://www.ncbi.nlm.nih.gov/gds/?term=GSE147689%5bAccession%5d
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.ncbi.nlm.nih.gov_gds_-3Fterm-3DGSE147691-5BAccession-5D&d=DwMFaQ&c=ZQs-KZ8oxEw0p81sqgiaRA&r=RzIYlkTIVHsPkJNC_opyYyaiOnWa9uHQF5U0QYN7DoI&m=Y9HXl9bVi4kGt1y5_W3gsQiVeU1xKczGbuH1EmWOosM&s=Is5A5XDXMpaAJPYQGzEPSgZZl5go6hTYc77_Rjp8sVk&e=


Twenty-two (55%) of the TB cases and nine (23%) of the household contacts were HIV co-infected, 

respectively.  

 

Statistics and Clustering 

Chi-squared test with a one-sided tail assessed incidence of clinical variables between endotypes. 

Rank-sum of the cytokines/chemokines from the ELISA validation assay was used to stratify TB 

patients. Differences between sub-groups were analyzed using Mann-Whitney rank sum test. ANOVA 

or Kruskal-Wallis were implemented with corrections for multiple comparison testing. Full description 

of normalization, pre-processing, and clustering are included in the Supplemental methods. In brief, 

after ComBat was used to normalize the microarray data, Seurat clustering was applied across a 

range of resolutions (Supplemental Figure 1). Enriched pathways were evaluated were evaluated 

using Gene Set Enrichment Analysis (GSEA). To quantify pathway activity scores, gene expression 

was scaled via z-score transformation with mean of zero and standard deviation of 1 for each gene, 

then summed z-scores were determined for each pathway.  



RESULTS 

Discovery and validation cohort selection of TB patient with whole blood transcriptomic 

profiles 

The discovery cohort included seven studies that profiled whole blood and included both cases 

and controls by microarray gene expression analysis. The studies used in the discovery cohort 

included 435 individuals with microbiologically confirmed TB and 533 healthy controls[8-14]. These 

seven studies were used for unbiased clustering to identify TB endotypes, based on 12,468 

commonly evaluated genes (Figure 1; Table 1). Two additional studies with both cases and controls 

used RNA-seq transcriptome profiling and included 118 TB patients and 179 controls[15, 16]. These 

studies were reserved for creation of an RNA-seq validation cohort (Table 1). A cohort from Germany 

and Romania including 121 TB patients and 14 healthy controls using microarrays was reserved as 

an additional external validation dataset because it included clinical outcome data (Table 1-2)[7]. A 

fourth cohort of TB patients and healthy controls with multiplex ELISA at baseline and 

phytohemagglutinin stimulated whole blood (Figure 1; Supplemental Table 3).   

Identification and clinical data characterization of TB endotypes  

To identify potential TB endotypes, unbiased clustering of the microarray transcriptome of 435 

TB patients was performed (Figure 2A-B). Clustering was evaluated at various resolutions 

(Supplemental Figure 1A) with final analysis being performed at resolution 0.4 due to limited 

discriminatory capacity at higher resolutions. At resolution 0.4, two distinct endotypes were identified. 

Endotype A consisted of 269 TB patients (54.8%), and endotype B included 166 TB patients (45.1%). 

Patients from each country and each study were well distributed in both endotype clusters (Figure 2C; 

Table 1). In the discovery cohort, only two datasets included individuals co-infected with HIV 

(GSE37250, and GSE39939; Table 1). The 108 TB patients living with HIV clustered into endotype A 

and endotype B, with 57 and 51 in each respectively. Only one study included children under 15 



years of age (GSE39939), with 23 children clustering into endotype A and 12 clustering into endotype 

B (Table 1). 

Using the random forest machine learning algorithm, a classifier was derived to categorize 

endotype A vs endotype B based on the discovery cohort. Genes were ranked by their individual 

classification score, then accuracy of a random forest gene classifier was evaluated across a range of 

the top informative genes using the average (out-of-bag) classification error, determined by repeated 

subsampling  (Supplementary methods; Supplemental Figure 2A). A 40-gene classifier had both a 

low misclassification rate and was comprised of a low gene count.  We applied the endotype classifier 

to a validation cohort comprised of 118 TB patients and 179 controls from two previously published 

RNA-seq studies (Table 1). In the RNA-seq validation cohort, 65 TB samples classified as endotype 

A (55%) and 53 as endotype B (45%; Table 1). We computed pathway enrichment using GSEA 

between each of the predicted endotypes and the control samples, and for the comparison between 

the endotypes. Random forest classification recapitulated the significant enrichments for immune 

related pathways (Figure 2D, Supplemental Figure 2B). For one study, microarray profiles 

(GSE19442 and GSE19444) were used in the discovery dataset whereas RNA-seq profiles 

(GSE107991) for the same samples were also used in the RNA-Seq validation cohort. Our classifier 

achieved good concordance between the microarray discovery cohort endotypes and the predicted 

RNA-seq endotypes (Supplemental Figure 3). Similar to the discovery cohort, compared to both 

healthy controls and endotype B, endotype A enriched for inflammation, IFN-γ signaling, TNFɑ, and 

heme metabolism. Compared to endotype A, endotype B enriched for pathways related to cellular 

proliferation including E2F, G2M and mitosis (Figure 2D). Compared to endotype A, gene targets of 

the transcription factors E2F, ELK1, and NRF1 were increased in endotype B (Supplemental Table 2; 

Supplemental Figure 5). The endotypes were evaluated against six previously published scores that 

identified risk of treatment failure, with two of the scores also identifying risk for TB disease severity. 

(Gene signature activity score computation via z-score normalization is described in the 

Supplemental methods).  Compared to both healthy controls and endotype B, endotype A exhibited 



higher scores for risk of treatment failure and more severe disease compared to healthy controls 

(Figure 3).   

Differential clinical outcome between TB endotypes  

The classifier was applied to a cohort of TB patients assayed using microarray from a 

prospective, multicenter trial in Germany and Romania. This cohort contained information on baseline 

bacillary burden, time to culture conversion, and clinical outcomes defined by the TBNET criteria 

(Table 2). Of 121 TB patients, 64 classified as endotype A (53%), while 57 classified as endotype B 

(47%). Similar to the RNA-seq validation cohort, endotype A and B demonstrated distinct enriched 

pathway profiles (Figure 2D, Supplemental Figure 2B).  Based on the increased predicted treatment 

failure and disease severity signatures (Figure 3), we hypothesized that endotype A patients will 

display worse clinical outcome compared to endotype B patients. Whereas endotype A had a lower 

rate of multi-drug resistance  (54.7% vs 70.2%), Endotype A had slightly increased rates of cavitary 

disease (endotype A 76.5% vs. endotype B 65.9%, p= 0.1305), higher initial bacterial load (14 versus 

21 days; p= 0.0169), slower times to culture conversion (64.6 days versus 33.5 days, p = 0.0005; 

Figure 4A; Table 2) and decreased rates of cure outcomes (74.4% versus 91.7%, p = 0.0447; Figure 

4B; Table 2). All deaths occurred in endotype A (11.7% versus 0%, p = 0.0525). With antibiotics, the 

predominance of individuals classified as endotype A at baseline, were reclassified as endotype B 

after weeks of therapy (Supplemental Figure 4).  

Characterizing transcriptome trajectories across endotypes 

To understand the relationships between controls and endotype A and B, we employed Cell 

Trajectory (also termed pseudotime trajectory) based on transcriptomic profiles. The trajectory score 

increased from healthy controls to endotype B to endotype A (Figure 5A); this result led to a search 

for specific molecular properties that follow the predicted disease trajectory.  We computed pathway 

activity scores for each patient in the discovery cohort. The results demonstrate that, in general, 

pathways related to inflammation and immunity increase in a monotonic manner from healthy controls 



to endotype B to endotype A (Figure 5B). Upon acute infection, increased glycolysis, the tricarboxylic 

acid cycle (TCA) and one-carbon metabolism provide metabolites requisite to fuel cellular 

proliferation; however, if infection is chronic, cells become metabolically exhausted and proliferation 

decreases[17-20]. Compared to healthy controls, endotype B has increased expression of pathways 

related to metabolism and proliferation (oxidative phosphorylation, electron transport chain (ETC), 

and G2M; Figure 5C-D; Supplemental Table 2).   In contrast, endotype A patients exhibit decreased 

activity scores for pathways related to cellular proliferation (G2M, MYC and E2F; p < 0.001) and 

metabolism (oxidative phosphorylation, the TCA cycle and the ETC; p < 0.001; Figure 5C-D).  

Hyperinflammatory, hyporesponsive TB endotype  

At the gene transcription level, TB endotype A is characterized by increased inflammation and 

increased interferon, TNFɑ, and IL-6 signaling in non-stimulated blood (Figure 2D). To evaluate the 

functional response upon stimulation, an independent cohort from Eswatini with mitogen-stimulated 

whole blood samples was analyzed by ELISA (Supplemental Table 3). Rank-sum analysis was 

implemented to stratify the patients into immune-responsive versus less-responsive groups based on 

their response to stimulation with mitogen (phytohemagglutinin) (Figure 6A-B). The two TB patient 

sub-groups were compared to healthy controls. The hypo-responsive group demonstrated a baseline 

hyperinflammatory condition, similar to endotype A, but decreased capacity to up-regulate IFN-γ, 

TNFɑ, IL-1β, IL-6, CXCL9, and CXCL10 upon stimulation with mitogen (Figure 6C-6D, p < 0.007). 

The immune-responsive group was similar to the healthy controls with regard to the capacity to 

respond to stimulation. Among the 40 TB patients, there were 4 deaths, 3 in the hyperinflammatory, 

hypo-responsive group and 1 in the immune responsive group (𝑥2 p = 0.27).  

Comparison of chemical compound signatures to TB endotype signatures 

The Library of Integrated Network-based Cellular Signatures (LINCS) enables the identification 

and prioritization of putative drugs to treat a pathologic condition by countering its transcriptome 

signature. Comparing gene signatures for endotypes A and B to healthy controls, we obtained ranked 



lists of over 5,000 chemical compounds for each endotype and performed a comparative analysis. 

Previously identified candidates for host-directed therapy (HDT), including Vitamin D, glucocorticoids, 

non-steroidal anti-inflammatory drugs (NSAIDS), and retinoids, demonstrated connectivity scores that 

suggest a putative benefit for one endotype and either an inconsequential or contradictory response 

for the other endotype (Supplemental Figure 6). For example, HDAC inhibitors, such as vorinostat 

and phenylbutyrate, demonstrated transcriptomic signatures similar to endotype A, but dissimilar to 

endotype B.   



DISCUSSION  

 In the pre-antibiotic era, a fifth of humans with active tuberculosis survived more than 10-

years[21], but present knowledge is inadequate to describe the underlying mechanisms of a sufficient 

immune response to overcome TB and contain Mtb infection. Further, to date, a single adjuvant host-

directed therapy has not been identified, probably because the immune response to TB is protean 

and polymorphic. In this study, we identified clinically relevant TB endotypes by using unbiased 

clustering of unstimulated blood transcriptomes. Compared to controls, both endotypes displayed 

elevated gene expression related to pathways for inflammation and immunity, with higher levels 

among endotype A. Compared to controls, endotype B enriched for oxidative phosphorylation, the 

TCA cycle and pathways related to cellular proliferation, while endotype A demonstrated decreased 

pathways related to proliferation. Heme metabolism was upregulated in endotype A and 

downregulated in endotype B compared to controls, as described previously[6]. We derived a concise 

random forest classifier for TB endotypes, then used it to predicted endotypes in a validation cohort 

with richly annotated clinical outcomes; endotype A demonstrated slower times to bacterial clearance, 

and reduced incidence of disease cure. 

 Patients with TB are currently treated based on studies examining large heterogeneous 

groups. However, it is reasonable to hypothesize that subgroups exist within these large populations 

and that stratified and precision medicine strategies may improve outcomes[22]. These data provide 

support for individually stratified treatment approaches. Considering the animal model, in vitro, and 

human evidence, additional subtypes and endotypes will likely be identifiable when more robust 

epidemiology, strain characterizations, and functional immune analyses are integrated with 

transcriptomic results. It is notable that both endotypes exhibit elevated unstimulated gene expression 

levels of IFN-γ and TNF-ɑ; however, in functional studies the TB patients with elevated basal IFN-γ 

and TNF-ɑ were less likely to upregulate IFN-γ and TNF-ɑ upon stimulation. For endotypes to help 

guide HDT, future pair-wise transcriptomic and immune function studies are needed to confirm that 



endotype A displays characteristics of immune exhaustion (hyperinflammatory but hyporesponsive), 

and that circulating endotypes correlate with the tissue-specific immune function.   

The trajectory analysis suggest that pathways related to immunity and inflammation 

monotonically progress from healthy controls to first endotype B and subsequently to endotype A. In 

contrast, cellular proliferation and oxidative phosphorylation and the TCA cycle increase in endotype 

B, but decrease in endotype A. Similarly, pathways related to proliferation decrease from controls to 

endotype A.  This is a pattern similar to murine models of TB and other chronic infections[17, 23, 24] 

and therefore suggests that a stage-specific intervention can prevent the progression to terminal 

immune exhaustion in tuberculosis.  

This study is limited in its capacity to determine appropriateness of the host immune response 

due to limited metadata and sub-optimal means to quantify bacillary burden. Immunity to Mtb is tightly 

regulated to avoid pathologic inflammation[2, 20, 25, 26]. Animal models have demonstrated that both 

IFN-γ and TNFɑ require delicate homeostatic regulation with deficient responses allowing disease 

progression and exuberant responses resulting in immune-mediated pathology [2, 3, 20, 25, 27]. The 

included validation cohort used the best available measurement of bacillary burden (liquid culture 

time to positivity) and suggests that endotype A has a hyperinflammatory response with delayed 

culture conversion. Prospective studies need to combine gene expression analysis with functional 

immunology and quantitative measures of bacillary burden to clarify the appropriateness of host 

immunity in respect to bacillary burden. We anticipate that once endotypes are analyzed using robust 

multi-omic platforms, effective and pragmatic classifiers could use a minimal complement of 

informative features. Capitalizing on this minimized complement, cost-effective diagnostics could be 

developed and deployed at point-of-care in TB high burden settings.  

The link between metabolism, particularly glycolysis, and immune function has been 

appreciated for over 90 years [18-20]. Initially upon immune activation, there is an increase in both 

glycolysis and oxidative phosphorylation; however with sustained activation, immune cells become 



metabolically exhausted, leading to transcriptional and epigenetic changes that drive immune 

exhaustion[17, 23, 24, 28-30]. Therefore, it is interesting that endotypes displayed incongruent 

regulation of genes and pathways related to metabolism, proliferation, and immune response. Many 

HDT candidates target these pathways. For example, metformin mediates the AKT-mTOR pathway, 

blunting cellular glycolysis and the TCA cycle leading to inhibition of chromatin conformational 

changes that drive antigen-induced immune function[28, 31]. Another inhibitor of mTOR, everolimus 

decreased TB-induced lung damage[26]. In silico evidence suggests the most pronounced benefit of 

everolimus for endotype A.  

Previously identified candidates for HDTs include IFN-γ, GM-CSF, TNFɑ, TNFɑ inhibitors, 

NSAIDS, Vitamin D, glucocorticoids, HDAC inhibitors, mTOR modulators, retinoids, and statins[26, 

32]. The in silico analysis demonstrated that previously identified HDTs would perform better if 

applied in endotype-specific manners. If functional studies validate one endotype to have decreased 

immune responsiveness, then vitamin D or exogenous recombinant IFN-γ may be an appropriate 

HDT option. In contrast, if future validation studies demonstrate one endotype to have pathologic, 

exuberant immunity, then NSAID, TNFɑ inhibitor, or glucocorticoid treatment would be appropriate. 

Animal and in vitro models that recapitulate the clinically relevant endotypes are also needed to better 

evaluate endotype-specific HDTs. 

All included studies evaluated unstimulated host gene expression. TB is a chronic infection 

resulting in immune suppression. While many genes downstream of IFN-γ are elevated in TB patients 

at baseline[12, 14, 33, 34], they have decreased antigen-induced immune upregulation[35-38]. The 

multiplex ELISA data highlight the limitations of inferring immune function based on non-stimulated 

gene expression measurements; in fact, the group with elevated baseline cytokines 

(hyperinflammatory) was hyporesponsive upon stimulation. Additional gene expression subclusters 

were visible at higher resolution; however, biological relevance was not readily obvious in these sub-

clusters. We speculate that the integration of transcriptomics with functional immune analysis, more 

robust epidemiology, and strain characterization will identify more than two endotypes.  



Progression to TB is related to interactions among host, pathogen, and environmental factors. 

Progression to a specific endotype of TB is likely similarly related to as-yet unappreciated 

interactions. Unlike The Cancer Genome Atlas (TCGA), very limited epidemiology is available in 

existing public data repositories. Epidemiologic predispositions likely drive the divergent endotypes, 

including malnutrition, HIV, helminth, tobacco use, and/or indoor biomass fuel exposure. For 

example, despite successful deworming, previous schistosomiasis infection ablates mycobacterial 

immunity, leaving long-lasting immune suppression. We speculate that individuals with pre-existing 

immune suppression progress rapidly to endotype A, in contrast to previously healthy individuals.   

In conclusion, this unbiased clustering provides additional evidence that there are multiple 

molecular host pathways modulated during TB [2-6, 22]. This analysis of transcriptome and protein 

data from TB patients provides additional evidence for biologically distinctive TB endotypes that 

differentially affect clinical outcomes. Specifically, host gene expression in TB patient clusters into at 

least two endotypes with differential immune and metabolic transcriptomic signatures. These 

observations suggest that different endotypes display responses that are likely to have clinical and 

pathologic relevance and provides the basis for studies to evaluate endotype-specific host-directed 

therapies.  
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Table 1: Characteristics of the included studies.  Seven studies, including 533 controls and 435 

TB patients, had microarray transcriptomic profiles from whole blood and were used as discovery 

cohort. Two RNAseq studies including 118 TB patients and 179 controls were used as a validation 

dataset. An eighth microarray cohort from Germany and Romania (“Borstel cohort”) was reserved as 

an additional validation cohort because it contained clinical outcomes. (TB = tuberculosis; HC = 

healthy control) 

 
Table 2: Epidemiologic characteristics of the German and Romanian validation cohort. (MDR = 

multi-drug resistance; TTP = time to positivity; BMI = body mass index; TCC = time to culture 

conversion). (Not all data was available for all participants.) Mann-Whitney test performed for 

continuous variables and one-sided chi-squared evaluated differences in populations. Not all data 

was available for all participants.     

  



 

 

Figure 1: Overview of study. Using unbiased clustering of TB patients from seven publicly available 

microarray studies, a Random Forest gene classifier was derived to predict TB Endotype A versus B. 

This was validated on two publicly available studies using RNA-seq and on one microarray patient 

cohort that included longitudinal clinical outcomes data. Immunological validation was evaluated by 

multiplex ELISA using a separate cohort from Eswatini. Finally, similarity to endotype gene signatures 

was used to assess and rank previously evaluated host directed therapy candidates.  

  



 

 

 

 

Figure 2: Unbiased clustering identifies unique TB endotypes. (A) Unbiased clustering was 

implemented on discovery cohort of seven studies (Table 1), identifying two major endotypes; next, a 

random forest gene classifier was developed and applied to two external validation datasets. (B) 

Network-based unbiased clustering using the Louvain method identifies 2 major endotypes of TB. (C) 

Distribution of individual studies into Endotype A or B. (D) TB endotypes were compared to healthy 

controls and against each other, then pathway enrichment via Gene Set Enrichment Analysis (GSEA) 

was carried out against the Hallmark pathway compendium. Discovery and validation cohorts are 

described in Table 1.  



 

 

 

Figure 3: Evaluation of TB risk signatures over TB endotypes. Previous studies identified gene 

signatures associated with A) disease severity and treatment failure or with B) risk of treatment 

failure. These signatures were evaluated in healthy controls, endotype A, and endotype B. Activity 

scores (summed z-scores across all signature genes) were computed for each risk signature across 

healthy controls (HC, grey), Endotype A (A, red), and Endotype B (B, blue). ANOVA scores with **** p 

< 0.0001, *** p < 0.0002, ns = non-significant. Solid line at median, dashed lines at interquartile 

range, dotted line across at median of HC. 

  



 

 

 

Figure 4: Endotype evaluation of TB clinical outcomes. Using the clinical annotations of the 

Borstel TB cohort, outcome differences between endotypes and association of pathway scores with 

outcomes were evaluated. (A) Time to culture conversion (TCC) in TB patients identified as endotype 

A or B (p = 0.0005 by Mann Whitney). (B) Rates of cure in TB patients identified as endotype A or B 

(p = 0.0447 by one-sided Chi-squared test).  

 

 



 

 

 

Figure 5: TB endotypes display distinct immune and metabolic gene expression activity 

scores. (A) Pseudotime TB trajectory score in discovery cohort. Pathway activity scores were 

evaluated between healthy controls (HC, grey), endotype B (B, blue) and endotype A (A, red). 

Inflammation and immunity pathways (B), Metabolic pathways (C), and Proliferation pathways (D). 



ANOVA was used; **** p < 0.0001, *** p < 0.0002, ** p < 0.0021, ns = non-significant. Solid line at 

median, dashed lines indicate interquartile range, dotted line across HC median. Specific gene 

changes are available in Supplemental Table 2.    

  



 

 

 

 

Figure 6: Identification of hyper-inflammatory, hyporesponsive cytokine production in TB 

patient endotypes. Whole blood from TB patients (n = 40) and healthy controls (n = 39) was 

stimulated overnight with or without mitogen (PHA), followed by measurement of cytokines and 

chemokines. (A) Samples were ranked for up-regulation of six cytokines to determine an overall rank 



sum (1 is lowest, with 40 highest). Using the rank sum value, TB patients were then split in half into 

“hypo-responsive” (red) and “responsive” (blue) groups.  (B) Heatmap of cytokine expression as log2 

fold change relative to controls. (C) Absolute protein expression of the non-stimulated plasma 

expressed in pg/mL. (D) Cytokine protein expression (log2 fold change) is graphed for each sub-

group. Significance determined by Kruskal-Wallis with Dunn’s multiple comparison test  

  



Table 1.  Publicly available TB transcriptomic studies 

Discovery Data (Microarray) 

Reference GEO ID TB HC Countries Age range (yr) HIV? EndoA EndoB 

Anderson 2014 GSE39939 35 14 Kenya < 15 Yes 23 12 

Berry 2010 GSE19435 7 12 United Kingdom 21 – 51 No 6 1 

 GSE19439 13 29 United Kingdom 19 – 72 No 9 4 

 GSE19442** 20 31 South Africa 18 – 48 No 14 6 

 GSE19444* 21 33 United Kingdom 18 – 78 No 11 10 

Blankley 2016 GSE83456 45 61 United Kingdom 20 – 80 No 27 18 

Bloom 2012 GSE40553 29 38 South Africa > 17 No 22 7 

Bloom 2013 GSE42825 8 23 United Kingdom > 18 No 8 0 

 GSE42826 11 52 United Kingdom, France > 18 No 11 0 

 GSE42830 16 38 United Kingdom > 18 No 13 3 

Kaforou 2014 GSE37250 195 167 South Africa, Malawi 19 – 53 Yes 108 87 

Walter 2016 GSE73408 35 35 United States 20 – 86 No 17 18 

         
Borstel Validation Data (Microarray) 

Heyckendorf 2021 GSE147689-91 121 14 Germany, Romania 18 - 85 No 64 57 

         

RNA-Seq Validation Data  

Leong 2018 GSE101705  28 16 India 16 – 65 No 7 21 

Singhania 2018 GSE107991* 21 33 United Kingdom 18 – 78 No 8 13 

 GSE107992** 16 31 South Africa 18 – 48 No 10 6 

 GSE107994 53 99 United Kingdom 16 – 84 No 40 13 

*GSE107991 reanalyzed samples from GSE19444 

**GSE107992 reanalyzed samples from GSE19442 

 



Table 2. Epidemiologic characteristics of the German and Romanian (Borstel) validation 
cohort. 

 All 
Endotype A 
n=64 

Endotype B 
n=57 

p-value* 

Median age 37.95 39.78 37.95 0.6948 

% Male 62.2% (56/90) 62.5% (30/48) 61.9% (26/42) 0.4768 

Median BMI 20.75 19.49 21.28 0.0009 

Current or previous smoker 52.0% (51/98) 46.2% (24/52) 58.7% (27/46) 0.1074 

Cavitary Disease 71.7% (66/92) 76.5% (39/51) 65.9% (27/41) 0.1305 

MDR TB 62.0% (75/121) 54.7% (35/64) 70.2% (40/57) 0.0399 

Baseline TTP (days) 17 14 21 0.0169 

Median TCC (days) 54.0 64.5 33.5 0.0005 

Cure 81.0% (51/63) 74.4% (29/39) 91.7% (22/24) 0.0447 

Mortality 6.3% (4/63) 10.3% (4/39) 0% (0/24) 0.0525 

MDR, multi-drug resistance; TTP, time to positivity; BMI, body mass index; TCC, time to culture 
conversion. (Not all data was available for all participants) 
*Mann-Whitney U test or one-sided Chi-squared (A worse than B) were used to determine significance, as 
appropriate. 

     

 



 

Supplemental Tables:  

 

Supplemental Table 1. A: Differential expressed genes in the discovery cohort at resolution 0.4. B: 

genes comprising the random forest classifier.   

 

Supplemental Table 2. Enriched gene sets by by Gene Set Enrichment Analysis (GSEA). A: 

Enriched Hallmark pathways. B: Enriched pathway analysis from KEGG, Reactome, and Gene 

Ontology Biological Process. C: Enriched Transcription Factor Targets. 

 

Supplemental Table 3. Demographic information from cohort 4 multiplex ELISA (BioLegend 

LegendPlex).  

 

 

 

  



 



 

Supplemental Figure 1: (A) Cluster tree of the discovery cohort based on different resolutions of the 

Louvain method.  Evaluation occurred at resolution 0.4, which identified 2 clusters, labeled endotype 

A and B. Up to four sub-clusters are visible at resolution 1.0. (B) tSNE plot of the discovery cohort 

including healthy controls, endotype A, and endotype B.   

  



 



 

Supplemental Figure 2: A) Classification error rate for Random Forest classifiers developed across 

a range of the top informative genes. Classification error rate is the average prediction error 

determined by repeated subsampling with replacement of the endotype A and B samples.  B) 

Heatmap of GSEA Normalized Enrichment Scores (NES) for Hallmark pathways using the 40, 50 and 

500 gene TB endotype classifiers over discovery and validation cohorts. 

 

  



 



 

Supplemental Figure 3: Thirty-four samples were included both in the Berry 2010 microarray and 

Singhania 2018 RNA-seq studies. tSNE plot demonstrating the low discordant (green in A and red in 

B) sample classification.  

  



 

 

 Supplemental Figure 4: Longitudinal analysis of endotype classification after time on antimicrobial 

therapy.  

 

 

  



 

 

 



Supplemental Figure 5. Enriched transcription factors targets of between endotype A and endotype 

B. Bars represent the normalized enrichment score for endotype A vs endotype B. Comparison using 

Gene set enrichment analysis with an FDR <0.05. Red bars indicate higher expression in endotype A 

and blue bars indicate higher expression in endotype B. Full data can be found in Supplementary 

Table. 

  



 

 

 

Supplemental Figure 6. Heatmap of connectivity scores for select chemical compounds within the 

TB endotypes A and B based on the Library of Integrated Network-based Cellular Signatures 

(LINCS). Positive connectivity scores represent compounds inducing gene expression profiles similar 

to the endotype, while negative connectivity scores represent compounds inducing gene expression 

profiles antithetical to the endotype.  

 




