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Twitter feed comments: Metatranscriptome profiles identified by clustering analysis suggest a 

complex interplay between the respiratory virus, airway microbiome, and host immune response 

in infants with severe bronchiolitis, and their integrated contributions to the subsequent risk of 

childhood asthma.  



  

ABSTRACT  

The question addressed by the study 

Bronchiolitis is not only the leading cause of hospitalization in U.S. infants but also a major risk 

factor for asthma development. Growing evidence supports clinical heterogeneity within 

bronchiolitis. To identify metatranscriptome profiles of infant bronchiolitis, and examine their 

relationship with host transcriptome and subsequent asthma development.  

Materials/patients and methods 

As part of multicentre prospective cohort study of infants (age <12 months) hospitalized for 

bronchiolitis, we integrated virus and nasopharyngeal metatranscriptome (species-level 

taxonomy and function) data measured at hospitalization. We applied network-based clustering 

approaches to identify metatranscriptome profiles. We then examined their association with host 

transcriptome at hospitalization and risk for developing asthma. 

Results 

We identified five metatranscriptome profiles of bronchiolitis (n=244):  

A) virusRSVmicrobiomecommensals, B) virusRSV/RV-AmicrobiomeH.influenzae,  

C) virusRSVmicrobiomeS.pneumoniae, D) virusRSVmicrobiomeM.nonliquefaciens, and  

E) virusRSV/RV-CmicrobiomeM.catarrhalis. Compared with profile A, profile B infants were 

characterized by high proportion of eczema, H. influenzae abundance, and enriched virulence 



  

related to antibiotic resistance. These profile B infants also had upregulated TH17 and 

downregulated type I interferon pathways (FDR<0.005) and significantly higher risk for 

developing asthma (17.9% vs. 38.9%; adjOR, 2.81; 95%CI, 1.11–7.26). Likewise, profile C 

infants were characterized by high proportion of parental asthma, S. pneumoniae dominance, and 

enriched glycerolipid and glycerophospholipid metabolism of microbiome. These profile C 

infants had upregulated receptor for advanced glycation end products signalling pathway 

(FDR<0.005) and higher risk of asthma (17.9% vs. 35.6%; adjOR, 2.49; 95%CI, 1.10–5.87). 

Answer to the question 

Metatranscriptome and clustering analysis identified biologically-distinct metatranscriptome 

profiles that have differential risks of asthma.  

 

  



  

 

INTRODUCTION 

Bronchiolitis is the leading cause of hospitalization in U.S. infants, accounting for 

~110,000 hospitalizations annually [1]. In addition to the substantial acute morbidity, ~30% of 

infants hospitalized for bronchiolitis (“severe bronchiolitis”) subsequently develop asthma [2]. 

However, the underlying mechanisms linking these two common conditions remain unclear. This 

major knowledge gap has hindered efforts to prevent asthma in this high-risk population. 

Although bronchiolitis has traditionally been thought of as a single disease entity [3], 

growing evidence supports heterogeneity in the clinical manifestations [4] and pathobiology 

(e.g., as reflected by between-virus differences in the upper airway microbiome [via 16S rRNA 

gene sequencing]) [5–7]. Additionally, studies also suggest a complex interplay between viruses, 

microbiome, and host response in the airway, and its interrelationship with respiratory health [2, 

8–14]. Despite the clinical and research significance, no study has integrated virus and airway 

microbiome (both taxonomy and function) data to investigate the metatranscriptome profiles of 

bronchiolitis, their relationship with the host response during the critical period of airway 

development (i.e., early infancy), and their contribution to incident asthma in later childhood.  



  

To address this knowledge gap, we analysed data from a multicentre prospective cohort 

to 1) identify nasopharyngeal metatranscriptome profiles (or clusters) of bronchiolitis, and 2) 

investigate their association with host airway response and subsequent development of asthma. 

 

METHODS 

Study Design, Setting, and Participants 

We analysed data from a multicentre prospective cohort study of infants hospitalized for 

bronchiolitis—the 35th Multicenter Airway Research Collaboration (MARC-35) study. Details of 

the study design, setting, participants, data collection, testing, and statistical analysis may be 

found in the Supplementary Methods of the Supplementary Materials.  

Briefly, at 17 sites across 14 U.S. states (Supplementary Table S1), MARC-35 

enrolled infants (age <1 year) who were hospitalized with an attending physician diagnosis of 

bronchiolitis during three bronchiolitis seasons in 2011-2014. The diagnosis of bronchiolitis was 

made according to the American Academy of Pediatrics bronchiolitis guidelines, defined as an 

acute respiratory illness with a combination of rhinitis, cough, tachypnoea, wheezing, crackles, 

or chest retractions. We excluded infants with a pre-existing heart and lung disease, 

immunodeficiency, immunosuppression, or gestational age of <32 weeks, those with a previous 

bronchiolitis hospitalization, or those who were transferred to a participating hospital >24 hours 



  

after initial hospitalization. All patients were treated at the discretion of the treating physicians. 

The institutional review board at each participating hospital approved the study with a written 

informed consent obtained from the parent or guardian.  

Of 921 infants enrolled into the longitudinal cohort, the current analysis investigated 

244 infants hospitalized for bronchiolitis who were randomly selected for nasopharyngeal 

metatranscriptome (microbiome) and transcriptome (host) testing (Figure 1 and Supplementary 

Figure S1). 

 

Data Collection and Measurement of Virus, Metatranscriptome, and Transcriptome 

Clinical data (patients’ demographic characteristics, and family, environmental, and 

medical history, and details of the acute illness) were collected via structured interview and chart 

reviews using a standardized protocol. Additionally, nasopharyngeal airway specimens were 

collected within 24 hours of hospitalization using a standardized protocol [12]. The details of the 

data collection and measurement methods are described in the Supplementary Methods. The 

nasopharyngeal specimens were tested for a) respiratory viruses (e.g., respiratory syncytial virus 

[RSV] and rhinoviruses [RVs]), b) metatranscriptome (microbiome taxonomy at the species-

level and function), and c) transcriptome (host function).  

 



  

RNAseq for Nasopharyngeal Dual-transcriptome (Metatranscriptome and Transcriptome) 

The details of RNA extraction, RNAseq, and quality control are described in the 

Supplementary Methods. Briefly, after total RNA extraction, DNase treatment, and rRNA 

reduction, we performed RNAseq with Illumina NovaSeq6000 using an S4 100PE Flowcell 

(Illumina, San Diego, CA). All RNAseq samples had high sequence coverage (a mean of 

8,067,019 pair-end reads/sample) after quality control. We filtered and trimmed raw reads for 

adapters and contaminants using the k-mers strategy in bbduck. We characterized the active (via 

RNA transcripts) bacterial component of the microbiome (species-level) coupling PathoScope 

2.0 with the expanded Human Oral Microbiome Database. To characterize the microbiome 

function, we used SUPER-FOCUS and Diamond. To annotate proteins that implement a specific 

biological process or structural complex into subsystems, we used the SEED database. This 

database comprises three-level hierarchical microbiome functions: the level 1 subsystem with 35 

functions, followed by the level 2 subsystem with 194 functions and the level 3 subsystem with 

1,290 functions. Lastly, we estimated host transcript abundances in Salmon using the human 

genome (hg38) and the mapping-based mode.  

  



  

 

Functional and Clinical Outcomes 

 The outcomes of interest are a) host function (the nasopharyngeal transcriptome) at 

index hospitalization for bronchiolitis and b) asthma development by age 5 years. The definition 

of asthma was based on a commonly-used epidemiologic definition of asthma—physician-

diagnosis of asthma by age 5 years, plus either asthma medication use (e.g., albuterol inhaler, 

inhaled corticosteroids, montelukast) or asthma-related symptoms in the preceding year. 

 

Statistical Analysis 

The objectives of the current study are a) to identify biologically distinct 

metatranscriptome profiles among infants with bronchiolitis (description [clustering]), and b) to 

relate them to the host transcriptome and the risk of asthma development (association). The 

analytic workflow is summarized in Figure 1. The details of the statistical analysis can be found 

in the Supplementary Methods.  

Briefly, we first computed a distance matrix for each of three datasets—virus (including 

the genomic load of RSV, RV-A, and RV-C), microbiome taxonomy (species-level), and 

microbiome function data: Euclidean distance for the virus data, Bray-Curtis distance for the 

taxonomy data, and Pearson distance for the function data. Then, we computed an affinity matrix 



  

of each dataset separately, and generated a fused affinity matrix by similarity network fusion 

using the SNFtool package. To identify mutually exclusive metatranscriptome profiles, we 

applied spectral clustering to the fused affinity matrix. To choose an optimal number of profiles, 

we used a combination of the silhouette scores (Supplementary Figure S2, Panel A), network 

modularity (Supplementary Figure S2, Panel B), profile size (n=33-67), and clinical and 

biological plausibility. The network modularity measures how well-separated subnetworks are 

given a particular partitioning (i.e., profiles) of the network. To test the stability of profiles (i.e., 

internal validation), we computed the accuracy of profiles using semi-supervised label 

propagation methods (Supplementary Figure S3). To complement these approaches, we also 

used a priori knowledge by confirming that the derived profiles are consistent with earlier 

studies [2].  

After deriving the metatranscriptome profiles, we examined their relationships with both 

functional (host transcriptome) and clinical (asthma) outcomes. First, we conducted differential 

expression gene and functional pathway analyses by comparing the reference profile with each 

of the other profiles. To investigate whether genes for specific biological pathways are enriched 

among the large positive or negative fold changes, we conducted a functional class scoring 

analysis using clusterProfiler package. Second, to determine the longitudinal association of the 

profiles with asthma at age 5 years (binary outcome), we constructed unadjusted and adjusted 



  

logistic regression models accounting for patient clustering within sites. In the sensitivity 

analysis, we examined the robustness of profile-outcome associations by repeating the analysis 

using a different number of profiles. We analysed the data using R version 3.6.1 (R Foundation 

for Statistical Computing, Vienna, Austria). All P-values were two-tailed, with P<0.05 

considered statistically significant. We corrected for multiple testing using the Benjamini-

Hochberg false discovery rate (FDR) method.  



  

RESULTS 

Of the infants enrolled into this longitudinal cohort, the current study focused on 244 

randomly selected infants with bronchiolitis who underwent testing for nasopharyngeal airway 

microbial metatranscriptome and host transcriptome (Figures 1 and Supplementary Figure S1). 

The analytic cohort and non-analytic cohorts did not differ in patient characteristics (P≥0.05; 

Supplementary Table S2), except for daycare use and solo-RSV infection. Among the analytic 

cohort, the median age was 3 (IQR, 2-6) months, 40.2% were female, and 41.8% were non-

Hispanic white. Overall, 91.0% were RSV infection with solo-RSV infection in 65.2% and 

RSV/RV coinfection in 11.9% (Table 1).  

 

Integrated Omics Approach Identified Distinct Metatranscriptome Profiles 

To derive biologically distinct metatranscriptome profiles of infant bronchiolitis, we 

applied integrative network and clustering approaches to the virus, microbiome taxonomy 

(species-level), and microbiome function data (Figure 1). Both of the average silhouette scores 

and network modularity found that a 5-class model was the optimal fit (Supplementary Figure 

S2), with the 5 profiles called A, B, C, D, and E. The semi-supervised label propagation methods 

also indicated that the stability was also highest with the 5-class model (Supplementary Figure 

S3).  



  

The 5 distinct metatranscriptome profiles (Figure 2A and Supplementary Figure S4) 

were chiefly characterized by the identified virus(es) and the major bacteria species of the 

nasopharyngeal airway microbiome: A) virusRSVmicrobiomecommensals (27.5%), B) virusRSV/RV-

AmicrobiomeH.influenzae (14.8%), C) virusRSVmicrobiomeS.pneumoniae (24.2%), D) 

virusRSVmicrobiomeM.nonliquefaciens (13.5%), and E) virusRSV/RV-CmicrobiomeM.catarrhalis (20.1%) 

(Table 1; Figures 2B and 3).  

Descriptively, infants with a profile A were characterized by a young age, a low 

proportion of parental asthma and eczema and personal history of eczema, and a high proportion 

of RSV infection (Figures 2, and Supplementary Figures S5, S6, and S7). In many respects 

they resembled “classic” bronchiolitis. These infants also had a higher abundance of commensals 

(e.g., Corynebacterium, Cutibacterium; both FDR<0.001; Figure 3 and Supplementary Figure 

S7). Infants with a profile B were characterized by a high proportion of lifetime antibiotics use, 

history of eczema, parental eczema, IgE sensitization, and coinfection with RV-A, and a higher 

abundance of H. influenzae (FDR<0.001when compared to those with a profile A). Infants with a 

profile C were characterized by a high proportion of parental asthma and solo-RSV infection as 

well as a higher abundance of S. pneumoniae (FDR<0.001). Infants with a profile D were 

characterized by a low proportion of hypoxemia, a high proportion of RSV infection, and a 

higher abundance of M. nonliquefaciens (FDR<0.001). Infants with a profile E were 



  

characterized by a high proportion of RV-C coinfection and a higher abundance of M. 

catarrhalis (FDR<0.001). These virus and microbiome variables that characterized the profiles 

had high-ranked normalized mutual information scores, indicating large contributions to the 

similarity network (Supplementary Figure S8).  

 

Metatranscriptome Profiles Had Distinct Microbiome Function Pathways 

These metatranscriptome profiles of infant bronchiolitis also had distinct microbiome 

functions. For example, compared to infants with profile A (virusRSVmicrobiomecommensals) who 

clinically resembled “classic” bronchiolitis and were the largest group, those with a profile B 

(virusRSV/RV-AmicrobiomeH.influenzae) had enriched virulence and iron acquisition and metabolism 

(FDR<0.05; Figure 4). More specifically, the profile B infants had an upregulated virulence 

function related to antibiotic resistance (e.g., multidrug resistance efflux pumps) (FDR<0.05; 

Supplementary Figure S9A) and iron metabolism function related to hemin transport 

(FDR<0.05; Supplementary Figure S9B). The profile C (virusRSVmicrobiomeS.pneumoniae) infants 

had enriched fatty acid, lipid, and isoprenoid metabolism (FDR<0.05; Figure 4)—e.g., 

upregulated glycerolipid and glycerophospholipid metabolism (FDR<0.05; Supplementary 

Figure S10). In contrast, the profile D (virusRSVmicrobiomeM.nonliquefaciens) infants had 

downregulated glycerolipid and glycerophospholipid function in fatty acid, lipid, and isoprenoid 



  

metabolism (FDR<0.05; Figure 4 and Supplementary Figure S11). Lastly, the profile E 

(virusRSV/RV-CmicrobiomeM.catarrhalis) infants had upregulated stress response metabolism 

(FDR<0.05; Figure 4)—e.g., cold shock CspA protein family (FDR<0.05; Supplementary 

Figure S12). 

 

Metatranscriptome Profiles Had Distinct Host Transcriptome Characteristics During 

Infancy and Differential Risk for Developing Asthma  

To better understand the relationship between the metatranscriptome profiles and the 

host response (represented by the transcriptome) during infancy, we conducted differential 

expression gene and functional pathway analyses. Compared with the profile A, the profile B had 

63 differentially enriched pathways (FDR<0.05; Supplementary Figure S13)—e.g., 

upregulated TH17 and downregulated type I interferon pathways. Similarly, the profile C had 45 

differentially enriched pathways (FDR<0.05)—e.g., an upregulated receptor for advanced 

glycation end products (RAGE) signalling pathway (Supplementary Figure S14). For the 

profiles A vs. D and A vs. E comparisons, the detailed differences are summarized in 

Supplementary Figures S15 and S16. 

 The metatranscriptome profiles also had differential risks for developing asthma by age 

5 years (Figure 5). For example, compared with profile A infants, profile B infants had a 



  

significantly higher risk (17.9% vs. 38.9%; adjOR, 2.81; 95%CI, 1.11–7.26; P=0.030). Likewise, 

profile C infants also had a significantly higher risk of asthma (35.6%; adjOR, 2.49; 95%CI, 

1.10–5.87; P=0.031) while profile D infants had a non-significantly lower risk of asthma (9.1%; 

adjOR, 0.47; 95%CI, 0.10–1.65; P=0.28). In the stratification by the development of recurrent 

wheeze by age 3 years, the results were similar (Supplementary Figures S17). 

 

 

Sensitivity Analysis 

To address the robustness of these findings, we examined different numbers of profiles. 

Alluvial plot (Supplementary Figure S18) demonstrates the consistency of the original profiles 

(profiles A-E) across the different numbers chosen (4 and 6 profiles). For example, with the use 

of 4-class models (that had the second-highest accuracy in label propagation methods), the first 

and fourth profiles had >90% concordance with the original profiles A and E (Supplementary 

Table S3). In contrast, the second profile had a mixture of the original profiles B and C. Similar 

to the primary analysis, these four profiles were also characterized by virus and microbiome 

taxonomy (e.g., S. pneumoniae, M. catarrhalis) (Supplementary Table S3; Supplementary 

Figure S19). Lastly, compared to profile 1 (which is concordant with profile A), profile 2 

(concordant with profiles B and C) infants with distinct microbiome functions (e.g., enriched by 



  

virulence, iron acquisition and metabolism, and fatty acid, lipid and isoprenoid metabolism; 

Supplementary Figure S20) had upregulated TH17 (FDR=0.002) and RAGE signalling 

(FDR=0.001) pathways. These infants also had a significantly higher risk for developing asthma 

(18.8% vs. 34.6%; adjOR, 2.25; 95%CI, 1.05-5.00; P=0.041; Supplementary Figure S21).  

DISCUSSION 

By integrating the virus and nasopharyngeal metatranscriptome (both microbiome 

taxonomy and function) data from a multicentre prospective cohort study of 244 infants with 

severe bronchiolitis, we identified five biologically distinct metatranscriptome profiles. In 

particular, infants with profile B (virusRSV/RV-AmicrobiomeH.influenzae) not only had distinct 

microbiome function (e.g., an upregulated virulence function) but also were associated with 

unique host response in the nasopharyngeal airway (e.g., upregulated TH17 pathways) at the time 

of bronchiolitis. Additionally, infants with profile C (virusRSVmicrobiomeS.pneumoniae) also had 

distinctive microbiome function (e.g., an enriched lipid metabolism) and host response (e.g., an 

upregulated RAGE signalling pathways). Furthermore, these two metatranscriptome profiles had 

a significantly higher risk for developing childhood asthma. To the best of our knowledge, this is 

the first study that has identified metatranscriptome profiles in bronchiolitis and demonstrated 

their relationship with host airway response and subsequent development of asthma.  



  

Recent research has suggested the relationship between the virus, airway microbiome, 

host response, and respiratory disease. For example, studies have reported the association 

between respiratory viruses and unique upper airway microbiome (measured either via 16S 

rRNA gene sequencing or quantitative PCR) in infants with bronchiolitis [5, 6, 15] and school-

age children [16]. In these studies, RV-A infection was associated with Haemophilus-dominant 

profile and RV-C with Moraxella-dominant profile, which is consistent with our 

metatranscriptomics findings. Recent studies have also shown the potential role of Haemophilus 

and Streptococcus genera in the upper airway—both among infants with or without 

bronchiolitis—in the host immune response [17, 18] and the development of wheeze illness and 

asthma [18–20]. Furthermore, research has suggested that the interaction of microbiome-host 

functions—via downstream metabolic regulation—contributes to the pathobiology of 

bronchiolitis and asthma [21]. Indeed, studies of upper airway metabolome among infants with 

bronchiolitis have reported the associations of altered lipid metabolism with disease severity [12] 

and asthma risk [21]. The current study corroborates these earlier reports, and extends them not 

only by identifying metatranscriptome profiles through the integrated omics approach but also by 

demonstrating their relationship with unique host immune response and asthma development. 

  



  

There are several potential mechanisms linking the metatranscriptome profiles to the host 

airway response and subsequent asthma risk. First, we observed the relationship of profile B 

(virusRSV/RV-AmicrobiomeH.influenzae)—characterized by a high likelihood of previous antibiotics 

exposure, atopy/allergic sensitization, H. influenzae abundance, and enriched virulence related 

with antibiotic resistance and iron metabolism function—with upregulated TH17 and 

downregulated type I interferon pathways. Consistently, study has reported that antibiotic 

exposures during early infancy lead to Haemophilus-dominant maturation of nasal microbiome 

during the first two years of life [22] . Likewise, RV-A infection is also associated with a high 

abundance of Haemophilus in young children [7, 16]. Additionally, H. influenzae requires hemin 

transport function and X factor for its aerobic growth [23]. Furthermore, animal models have 

reported that H. influenzae induces early IL-17 responses from lung macrophages and 

neutrophils, followed by later responses from Th17 cells in lungs and mediastinal lymph nodes, 

leading to neutrophil influx into the airways [24]. Studies have also shown the roles of TH17 

pathway in neutrophilic inflammation, steroid insensitivity, and airway remodelling in both 

allergic and non-allergic asthma [25, 26]. In addition to the upregulated TH17 pathway, the 

profile B also had downregulated type I interferon pathways. Recent research has reported 

immature type I interferon response to RV-A infection [27]. Reduced anti-viral response (e.g., 

interferons) to RV infection impairs phagocytosis of Haemophilus influenzae among patients 



  

with chronic lung disease [28]. Studies have also demonstrated that type I interferon response to 

RV infection is impaired among infants with allergic sensitization [29] and that the use of anti-

IgE monoclonal antibody improves interferon-α response and reduces asthma exacerbation risks 

[30]. These prior data are in line with our findings in the profile B. 

Second, the mechanisms linking profile C (virusRSVmicrobiomeS.pneumoniae)—characterized 

by a high likelihood of solo-RSV infection, S. pneumoniae dominance, and enriched glycerolipid 

and glycerophospholipid metabolism—to the unique host response (e.g., RAGE signalling) and 

asthma risk warrants further clarification. Research has shown that RSV infection increases the 

virulence of S. pneumoniae [31]. S. pneumoniae produces phosphatidic acid, a precursor to all 

membrane glycerophospholipids [32]. Studies have also suggested the pro-inflammatory role of 

glycerophospholipid (e.g., activation of natural killer T cells) in the pathobiology of asthma [33, 

34]. Additionally, S. pneumoniae is associated with an upregulated RAGE expression in the lung 

[35]. Mendelian randomization study has also demonstrated the causal role of RAGE in asthma 

pathobiology [36]. Furthermore, compared with RAGE knockout mice, wild mice have 

developed more pronounced airway inflammation and mucus metaplasia when intranasally 

administered recombinant type 2 cytokines [37]. While it is intriguing to observe the abundance 

of S pneumoniae and its potential pathobiological effect in the post-pneumococcal conjugate 



  

vaccine (PCV) era, research has shown that the introduction of PCV-13 has led to the changes in 

pneumococcal serotypes, genotypes, and antimicrobial resistance [38].  

In contrast, we observed that the profile D (virusRSVmicrobiomeM.nonliquefaciens) was 

characterized by downregulated glycerolipid and glycerophospholipid function and had the 

lowest risk for developing asthma. Studies have reported that M. nonliquefaciens is less-

pathogenic [39] and associated with a lower risk of incident asthma [40]. Besides, the low 

bronchiolitis severity (suggested by the low proportion of hypoxemia) in the profile D may also 

have contributed to the decreased asthma risk. Lastly, the profile E (virusRSV/RV-

CmicrobiomeM.catarrhalis) had upregulated Casp A family proteins, which induces uspA1 gene 

expression and prolongs survival of M. catarrhalis [41]. M. catarrhalis’s lipopolysaccharides 

activate both MyD88-dependent and TRIF-dependent signaling pathways [42]. These pathways 

activate proinflammatory downstream signalling (e.g., NFκB, mitogen-activated protein kinases, 

interferon regulatory factors) that play roles in asthma [43]. Notwithstanding the complexity of 

these mechanisms, the observed interrelations between the metatranscriptome profiles, host 

immune response, and asthma development are important findings. Our data should not only 

advance research that will disentangle the complex web but they also inform the development of 

microbiome- (or endotype-) specific strategies for the primary prevention of asthma. 



  

Our study has several potential limitations. First, bronchiolitis involves inflammation of 

the lower airways in addition to the upper airways. While the present study is based on 

nasopharyngeal samples, studies have shown that upper airway sampling provides a reliable 

representation of the lung microbiome [43] and transcriptome [44]. Furthermore, the use of 

upper airway specimens is preferable because lower airway sampling (e.g., bronchoscopy) would 

be quite invasive in young infants. Second, the nasopharyngeal samples were obtained at a single 

time-point. While longitudinal molecular data are also informative, the study objective was to 

identify metatranscriptome profiles of bronchiolitis. However, even with single-time point data, 

we successfully identified biologically distinct profiles that are longitudinally associated with 

asthma risk. Third, it is possible that asthma diagnosis is misclassified and that some children are 

going to develop asthma at a later age. To address these points, the study sample is currently 

being followed up to age 9 years. Fourth, the present study did not have healthy “controls”. 

However, our study objective was not to evaluate metatranscriptome profiles related to 

bronchiolitis development (i.e., bronchiolitis yes vs. no) but to examine the relationship between 

the metatranscriptome profile of infants with bronchiolitis and their asthma risk. Fifth, while this 

hypothesis-generating study derives novel and well-calibrated hypotheses that facilitate future 

experiments, our findings warrant further validation. Lastly, the study sample consisted of 

racially/ethnically and geographically diverse infants hospitalized for bronchiolitis. Our findings 



  

may not be generalizable to infants with mild-to-moderate bronchiolitis or a sample with 

different respiratory virus proportions. Regardless, our data remain relevant for the 110,000 

infants hospitalized yearly in the U.S. [1], a vulnerable population with substantial morbidity 

burden. 

 

CONCLUSION 

In summary, by applying an integrated omics approach to data from a multicentre 

prospective cohort of 244 infants with severe bronchiolitis, we identified five biologically 

distinct and clinically meaningful metatranscriptome profiles. These profiles were associated not 

only with distinct host airway response during bronchiolitis but also with differential risks for 

developing asthma. Our data suggest a complex interplay between the respiratory virus, airway 

microbiome, and host immune response, and their integrated contributions to the subsequent 

development of asthma. For clinicians, our findings may provide an evidence base for the early 

identification of high-risk children during an important period of airway development—early 

infancy. For researchers, our data should facilitate further investigations into the development of 

microbiome profile (or endotype)-specific strategies for asthma prevention.  
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Table 1. Baseline characteristics and clinical course of infants with bronchiolitis, according to metatranscriptome profiles 

 

Characteristics 

Overall 

(n=244; 100%) 
Profile A 

(n=67; 27.5%) 

Profile B 

(n=36; 14.8%) 

Profile C 

(n=59; 24.2%) 

Profile D 

(n=33; 13.5%) 

Profile E 

(n=49; 20.1%) 
P-

value 

Demographics        

Age (month), median (IQR) 3 (2–6) 3 (1–6) 4 (2–7) 3 (2–6) 4 (2–7) 3 (2–6) 0.36 

Female sex 98 (40.2) 29 (43.3) 13 (36.1) 22 (37.3) 17 (51.5) 17 (34.7) 0.54 

Race/ethnicity       0.33 

Non-Hispanic white 102 (41.8) 29 (43.3) 14 (38.9) 21 (35.6) 16 (48.5) 22 (44.9)  

Non-Hispanic black 57 (23.4) 12 (17.9) 6 (16.7) 21 (35.6) 8 (24.2) 10 (20.4)  

Hispanic 76 (31.1) 24 (35.8) 15 (41.7) 15 (25.4) 9 (27.3) 13 (26.5)  

Other or unknown 9 (3.7) 2 (3.0) 1 (2.8) 2 (3.4) 0 (0.0) 4 (8.2)  

Prematurity (32-36.9 weeks) 47 (19.3) 15 (22.4) 6 (16.7) 11 (18.6) 9 (27.3) 6 (12.2) 0.48 

Birth weight (kg), median (IQR) 3.20 (2.89–3.57) 3.20 (2.90–3.52) 3.17 (2.70–3.42) 3.23 (2.86–3.69) 3.09 (2.79–3.43) 3.31 (3.00–3.64) 0.43 

Mode of birth (caesarean delivery) 84 (35.0) 19 (28.8) 15 (42.9) 22 (37.3) 11 (33.3) 17 (36.2) 0.69 

Previous breathing problems 

(count) 
      0.92 

0 204 (83.6) 55 (82.1) 31 (86.1) 50 (84.7) 27 (81.8) 41 (83.7)  

1 30 (12.3) 8 (11.9) 3 (8.3) 8 (13.6) 4 (12.1) 7 (14.3)  

2 10 (4.1) 4 (6.0) 2 (5.6) 1 (1.7) 2 (6.1) 1 (2.0)  

Previous ICU admission 4 (1.6) 3 (4.5) 0 (0.0) 0 (0.0) 1 (3.0) 0 (0.0) 0.19 

History of eczema 31 (12.7) 3 (4.5) 8 (22.2) 10 (16.9) 2 (6.1) 8 (16.3) 0.03 

Palivizumab use 8 (3.8) 1 (1.7) 2 (6.2) 3 (6.1) 0 (0.0) 2 (4.9) 0.48 

Lifetime antibiotic use* 79 (32.4) 25 (37.3) 17 (47.2) 16 (27.1) 4 (12.1) 17 (34.7) 0.02 

Ever attended daycare 71 (29.1) 15 (22.4) 11 (30.6) 16 (27.1) 13 (39.4) 16 (32.7) 0.46 

Cigarette smoke exposure at home 34 (13.9) 9 (13.4) 4 (11.1) 11 (18.6) 6 (18.2) 4 (8.2) 0.52 

Maternal smoking during pregnancy 34 (14.2) 9 (13.6) 7 (20.0) 7 (11.9) 3 (9.1) 8 (17.0) 0.69 

Parental history of asthma 76 (31.1) 14 (20.9) 12 (33.3) 24 (40.7) 11 (33.3) 15 (30.6) 0.19 

Parental history of eczema 46 (18.9) 9 (13.4) 12 (33.3) 12 (20.3) 8 (24.2) 5 (10.2) 0.06 

Clinical presentation        

Weight (kg), median (IQR) 6.07 (4.60–7.99) 5.50 (4.36–7.10) 6.80 (5.16–8.12) 6.28 (4.52–7.53) 6.40 (4.75–8.20) 6.20 (4.80–8.45) 0.22 

Respiratory rate (per minute), median  

  (IQR) 
48 (40–60) 48 (40–56) 48 (40–56) 48 (39– 60) 52 (44–64) 50 (41–60) 0.45 

Oxygen saturation      0.19 

<90% 29 (12.2) 12 (19.0) 4 (11.8) 4 (6.8) 2 (6.2) 7 (14.3)  

90-93% 190 (80.2) 46 (73.0) 26 (76.5) 53 (89.8) 29 (90.6) 36 (73.5)  

≥94% 18 (7.6) 5 (7.9) 4 (11.8) 2 (3.4) 1 (3.1) 6 (12.2)  

Blood eosinophilia (≥4%) 21 (10.1) 4 (7.0) 4 (13.3) 5 (10.0) 2 (6.9) 6 (14.3) 0.73 



  

IgE sensitization  51 (20.9) 11 (16.4) 9 (25.0) 13 (22.0) 6 (18.2) 12 (24.5) 0.77 

Clinical course        

Positive pressure ventilation use † 18 (7.4) 6 (9.0) 3 (8.3) 5 (8.5) 3 (9.1) 1 (2.0) 0.55 

Intensive treatment use‡  42 (17.2) 13 (19.4) 6 (16.7) 12 (20.3) 3 (9.1) 8 (16.3) 0.72 

Length-of-day (day), median (IQR) 2 (1-3) 2 (1–4) 2 (1–4) 2 (1–4) 2 (1–3) 2 (1–3) 0.89 

Antibiotic use during hospitalization 80 (32.8) 26 (38.8) 15 (41.7) 19 (32.2) 8 (24.2) 12 (24.5) 0.29 

Corticosteroid use during 

hospitalization 

29 (11.9) 8 (11.9) 7 (19.4) 10 (16.9) 1 (3.0) 3 (6.1) 0.11 

Respiratory virus        

RSV infection 222 (91.0) 61 (91.0) 31 (86.1) 59 (100.0) 33 (100.0) 38 (77.6) <0.001 

  RSV-A§ 153 (62.7) 46 (68.7) 22 (61.1) 41 (69.5) 15 (45.5) 29 (59.2) 0.15 

  RSV-B§ 71 (29.1) 16 (23.9) 9 (25.0) 19 (32.2) 18 (54.5) 9 (18.4) 0.01 

Solo-RSV infection 159 (65.2) 42 (62.7) 21 (58.3) 48 (81.4) 24 (72.7) 24 (49.0) 0.007 

RV infection        

  RV-A 26 (10.7) 8 (11.9) 7 (19.4) 5 (8.5) 2 (6.1) 4 (8.2) 0.41 

  RV-B 4 (1.6) 1 (1.5) 1 (2.8) 0 (0.0) 1 (3.0) 1 (2.0) 0.67 

  RV-C 21 (8.6) 2 (3.0) 0 (0.0) 1 (1.7) 2 (6.1) 16 (32.7) <0.001 

Solo-RV infection 13 (5.3) 4 (6.0) 1 (2.8) 0 (0.0) 0 (0.0) 8 (16.3) 0.002 

RSV/RV coinfection 29 (11.9) 5 (7.5) 3 (8.3) 6 (10.2) 5 (15.2) 10 (20.4) 0.25 

Other coinfection pathogens with  

  RSV¶ 
 

34 (13.9) 14 (20.9) 7 (19.4) 5 (8.5) 4 (12.1) 4 (8.2) 0.17 

Chronic outcome        

Asthma at age 5 years 

 

62 (25.4) 12 (17.9) 14 (38.9) 21 (35.6) 3 (9.1) 12 (24.5) 0.009 

Abbreviations: IQR, interquartile range; ICU, intensive care unit; RSV, respiratory syncytial virus; RV, rhinovirus; IgE, immunoglobulin E 

Data are no. (%) of infants unless otherwise indicated. Percentages may not equal 100, because of rounding and missingness. 

 

  
* Any systemic antibiotic use from birth up to the index hospitalization for bronchiolitis.    
† Infants with bronchiolitis who underwent continuous positive airway ventilation and/or mechanical ventilation.    
‡ Infants with bronchiolitis who were admitted to ICU and/or who underwent positive pressure ventilation. 
 

   
§ Two infants had coinfection of RSV-A and -B. 
¶ Infants with coinfection of RSV and non-RV virus(es) include adenovirus infection (n=7), bocavirus (n=8), endemic coronavirus (n=15), enterovirus (n=1), influenza virus (n=1), human 

metapneumovirus (n=4), Mycoplasma pneumonia (n=1), and parainfluenza virus (n=3). Since 6 infants have co-infection with ≥3 infecting agents, the total number is not equal to 34. 



  

FIGURE LEGENDS 

 

Figure 1. Analytic workflow of metatranscriptome profiling 

A. A total of 921 infants (age <1 year) hospitalized with bronchiolitis comprised the MARC-35 longitudinal 

cohort. At enrolment, the nasopharyngeal specimens were collected. These nasopharyngeal specimens were 



  

tested for respiratory viruses (e.g., RSV, RV species) and dual-transcriptome sequencing. These infants are 

followed with biannual parent interviews, acquisition of annual medical records, and in-person exams. 

B. Randomly-selected 244 infants underwent dual-transcriptome sequencing (via RNAseq) of nasopharyngeal 

specimens to characterize the microbiome taxonomy and function as well as the host transcriptome.  

C. After individually computing an affinity matrix for each of three datasets (i.e., virus, microbiome taxonomy 

and function data), we generated a fused affinity matrix by similarity network fusion. Then, we used the 

fused affinity matrix to identify metatranscriptome profiles by spectral clustering. To choose an optimal 

number of profiles, we used a combination of silhouette scores, network modularity, profile size, and 

clinical and biological plausibility. We visualized the five profiles by using the t-distributed stochastic 

neighbour embedding (t-sne) method.  

D. To visualize the between-metatranscriptome profile differences in the major clinical and virus variables, 

microbiome taxonomy, and functions, we used chord diagrams, pirate plots, and ranked plots. 

E. To examine the relationship between the metatranscriptome profiles and host function (transcriptome data), 

we performed differential gene expression analyses and functional pathway analyses. As infants with a 

profile A clinically resembled “classic” bronchiolitis and had the largest profile size, this group served as 

the reference group. 

F. To examine the relationship of the metatranscriptome profiles with the risk for developing asthma (binary 

outcome), we constructed unadjusted and adjusted logistic regression models.  

Abbreviations: RSV, respiratory syncytial virus; RV-A, rhinovirus A; RV-C, rhinovirus C 

  



  

 

 

Figure 2. Metatranscriptome profiles among infants with bronchiolitis, and their relationship with major 

clinical and virus variables  

A. T-distributed stochastic neighbor embedding of nasopharyngeal metatranscriptome profiles 

To visualize the metatranscriptome profiles, the t-distributed stochastic neighbour embedding method was 

applied to the five eigenvectors in the spectral clustering. Each dot represents the metatranscriptome of a single 

infant in a low-dimensional space. The infants cluster together according to their metatranscriptome profiles. 

 

B. Major clinical and virus characteristics according to metatranscriptome profiles 

The ribbons connect from the individual metatranscriptome profiles to the major clinical and virus 

characteristics. The width of the ribbon represents the proportion of infants within the profile who have the 

corresponding clinical or virus characteristic, which was scaled to a total of 100%. For example, the profile B 

infants (light orange) had a high proportion of lifetime antibiotics use, history of eczema, parental eczema, IgE 



  

sensitization, blood eosinophilia, and coinfection with RV-A. Profile C (pink) infants had a high proportion of 

parental asthma and solo-RSV infection. 

Abbreviations: IgE, immunoglobulin E; RSV, respiratory syncytial virus; RV, rhinovirus; RV-A, rhinovirus A; 

RV-C, rhinovirus C 

  



  

 

 

Figure 3. Between-profile differences in relative abundance of ten most abundant nasopharyngeal 

microbial species among infants with bronchiolitis 

The pirate plots (a combination of boxplots and violin plots) show the distribution of the ten most abundant 

species in the nasopharyngeal microbiome, according to the five metatranscriptome profiles. In the overlying 

violin plots, the width represents the probability that infants in a profile take on a specific relative abundance. 

The between-profile differences in the relative abundance were tested by Kruskal-Wallis test. 

Abbreviation: FDR, false discovery rate 

  



  

 

 

Figure 4. Between-profile differences in nasopharyngeal microbiome function among infants with 

bronchiolitis 

In all comparisons (metatranscriptome profile A vs. each of the other profiles), the mean values of 

microbiome function variables (35 level-1 functions) in the corresponding profiles are plotted. The microbiome 

function variables are standardized by using auto-scaling after variance stabilizing transformation. The 

differences in more detailed microbiome functions (level-3 functions) of specific level-1 functions are presented 

in Figures E8-E11. 

 

* False discovery rate<0.05 



  

Abbreviations; DNA, deoxyribonucleic acid; RNA, ribonucleic acid 

A. Profiles A vs. B comparison  

B. Profiles A vs. C comparison 

C. Profiles A vs. D comparison 

D. Profiles A vs. E comparison 

  



  

 

 

Figure 5. Association between nasopharyngeal metatranscriptome profiles of infant bronchiolitis and risk 

for developing asthma  

Asthma (binary outcome) was defined as physician-diagnosis of asthma at age 5 years, plus either asthma 

medication use (e.g., albuterol inhaler, inhaled corticosteroids, montelukast) or asthma-related symptoms in the 

preceding year. To examine the association between bronchiolitis profiles (profile A as the reference) and the 

risk of developing childhood asthma, unadjusted and adjusted logistic regression models were fit. 

* Multivariable random-effect logistic model adjusted for age, sex, and clustering within hospitals  

Abbreviation: CI, confidence interval; RSV, respiratory syncytial virus; RV, rhinovirus 



 

 

SUPPLEMENTARY MATERIALS 

 

Nasopharyngeal metatranscriptome profiles of infants with bronchiolitis  

and risk of childhood asthma: a multicentre prospective study 

 

Authors: Yoshihiko Raita, MD, MPH, MMSc; Marcos Pérez-Losada, PhD; Robert J. Freishtat, MD, 

MPH; Andrea Hahn, MD, MS; Eduardo Castro-Nallar, PhD; Ignacio Ramos-Tapia, PhD; Nathaniel 

Stearrett; Yury A. Bochkov, PhD; James E. Gern, MD; Jonathan M. Mansbach, MD, MPH, Zhaozhong 

Zhu, ScD; Carlos A. Camargo, Jr., MD, DrPH; and Kohei Hasegawa, MD, MPH, MS 

 

 

CONTENTS 

 

Supplementary Methods………………………………………………………………………….……..3 

 

Supplementary References…………………………………………………………………………….10 

Supplementary Table S1. Principal investigators at the 17 participating sites in MARC-35…….……13 

 

Supplementary Table S2. Comparisons between analytic and non-analytic cohorts in infants with 

bronchiolitis in the MARC-35 cohort…………………………...………….……………………………14 

 

Supplementary Table S3. Sensitivity analysis using four metatranscriptome profiles…….…………..16 

 

Supplementary Figure S1. Study flow diagram………………….…………………………………….18 

 

Supplementary Figure S2. Average silhouette score and network modularity, according to number of 

metatranscriptome profiles……………………………………………………………………………….19 

 

Supplementary Figure S3. Accuracy of metatranscriptome profiles using label propagation methods, 

according to number of profiles………………………………...………………………………………..20 

 

Supplementary Figure S4. Similarity network visualization of metatranscriptome profiles among 

infants with bronchiolitis.………………………………………………………………………………..21 

 

Supplementary Figure S5. Major clinical and virus characteristics according to metatranscriptome 

profiles…………………………………………………………………………………………………...23 

 

Supplementary Figure S6. Relationship between metatranscriptome profiles and major clinical 

variables………………………………………………………………………………………………….24 

 

Supplementary Figure S7. Between-profile differences in clinical variables, virus, and nasopharyngeal 

microbiome (taxonomy) in infants with bronchiolitis…………...………………………………………25 

 

Supplementary Figure S8. Ranking of normalized mutual information 

score………………………….………..…………………………………………………………….…...26 

 



 

 

Supplementary Figure S9. Between-profile differences in focused nasopharyngeal microbiome 

functions in the metatranscriptome profiles A vs. B comparison……….……………….….…………..27 

 

Supplementary Figure S10. Between-profile differences in focused nasopharyngeal microbiome 

functions in the metatranscriptome profiles A vs. C comparison……………………………...………...28 

 

Supplementary Figure S11. Between-profile differences in focused nasopharyngeal microbiome 

functions in the metatranscriptome profiles A vs. D comparison………………………………………..29 

 

Supplementary Figure S12. Between-profile differences in focused nasopharyngeal microbiome 

functions in the metatranscriptome profiles A vs. E comparison…………………..………….………...30 

 

Supplementary Figure S13. Host functional pathway analysis in the metatranscriptome profiles A vs. B 

comparison………………………………………………………………………………..….…………..31 

 

Supplementary Figure S14. Host functional pathway analysis in the metatranscriptome profiles A vs. C 

comparison………………………………………………………………………………………….……32 

 

Supplementary Figure S15. Host functional pathway analysis in the metatranscriptome profiles A vs. 

D comparison…………………………………………………………………………………………….33 

 

Supplementary Figure S16. Host functional pathway analysis in the metatranscriptome profiles A vs. E 

comparison…………………………………………………………………….………………………....34 

 

Supplementary Figure S17. Association between nasopharyngeal metatranscriptome profiles of infant 

bronchiolitis and risk for developing asthma, according to recurrent wheeze status……………………35 

 

Supplementary Figure S18. Alluvial plot that examines consistencies across different number of 

profiles..………………………………………………………………………………………………….36 

 

Supplementary Figure S19. Between-profile differences in relative abundance of ten most abundant 

nasopharyngeal microbial species among infants with bronchiolitis, using four profiles in the sensitivity 

analysis……………………………………………………………………………………………..…….37 

 

Supplementary Figure S20. Between-profile differences in nasopharyngeal microbiome function in the 

metatranscriptome profiles 1 (concordant with profile A) vs. 2 (concordant with profiles B and C) 

comparison, using four profiles in the sensitivity analysis…………...………………………………….38 

 

Supplementary Figure S21. Association between nasopharyngeal metatranscriptome profiles of infant 

bronchiolitis and risk for developing asthma, using four profiles in the sensitivity 

analysis.……..………………………………………………………………………………..…...……..39 

 



 

 

SUPPLEMENTARY METHODS 

Study Design, Setting, and Participants 

We analysed data from a multicentre prospective cohort study of infants hospitalized for 

bronchiolitis—the 35th Multicenter Airway Research Collaboration (MARC-35) study [1]. MARC-35 is 

coordinated by the Emergency Medicine Network (EMNet), an international research collaboration with 

247 participating hospitals. At 17 sites across 14 U.S. states (Supplementary Table S1), MARC-35 

enrolled infants (aged <1 year) who were hospitalized with an attending physician diagnosis of 

bronchiolitis during three bronchiolitis seasons (November 1 to April 30) from 2011 to 2014. The 

diagnosis of bronchiolitis was made according to the American Academy of Pediatrics bronchiolitis 

guidelines, defined as acute respiratory illness with a combination of rhinitis, cough, tachypnoea, 

wheezing, crackles, or retraction [2]. We excluded infants with a pre-existing heart and lung disease, 

immunodeficiency, immunosuppression, or gestational age of <32 weeks, those with a previous 

bronchiolitis hospitalization, or those who were transferred to a participating hospital >24 hours after 

initial hospitalization. All patients were treated at the discretion of the treating physicians. The 

institutional review board at each participating hospital approved the study with a written informed 

consent obtained from the parent or guardian. Of 921 infants enrolled into the longitudinal cohort, the 

current analysis investigated 244 infants hospitalized for bronchiolitis who were randomly selected for 

nasopharyngeal metatranscriptome (microbiome) and transcriptome (host) testing (Figure 1 and 

Supplementary Figure S1). 

 

Data Collection 

 Clinical data (patients’ demographic characteristics, and family, environmental, and medical 

history, and details of the acute illness) were collected via structured interview and chart reviews. All 



 

 

data were reviewed at the EMNet Coordinating Centre (Boston, MA), and site investigators were 

queried about missing data and discrepancies identified by manual data checks.  

In addition to the clinical data, Nasopharyngeal airway samples were collected by trained site 

investigators using the standardized protocol that was utilized in a previous cohort study of children with 

bronchiolitis [1, 3]. All sites used the same collection equipment (Medline Industries, Mundelein, IL, 

USA) and collected the samples within 24 hours of hospitalization. The nasopharyngeal airway 

specimens were immediately placed on ice and then stored at −80°C. Frozen specimens were shipped in 

batches to Baylor College of Medicine (Houston, TX) where they were tested for 17 respiratory viruses 

(including respiratory syncytial virus [RSV] and rhinovirus [RV]) using real-time polymerase chain 

reaction (RT-PCR) assays [1, 3, 4]. For RV detection, complementary DNA was generated using virus-

specific primers for RV and singleplex RT-PCR was used. The details of the RV primers and probes 

have been described elsewhere [5]. Next, to identify the RV species (A, B, and C), RV-positive samples 

were partially sequenced to determine the RV species and type at the University of Wisconsin (Madison, 

WI) [6]. Frozen specimens were also shipped to the University of Maryland (Baltimore, MD) for RNA 

sequencing (both metatranscriptome and transcriptome testing).  

 

RNA Extraction, RNA Sequencing, and Quality Control 

 Total RNA was isolated from the nasopharyngeal samples using Trizol LS reagent 

(ThermoFisher Scientific, Waltham, MA) in combination with the Direct-zol RNA Miniprep Kit (Zymo 

Research, Irvine, CA). RNA quantity was measured with the Qubit 2.0 fluorometer (ThermoFisher 

Scientific, Waltham, MA). Its quality was assessed with the Agilent Bioanalyzer 2100 (Agilent, Palo 

Alto, CA) using the RNA 6000 Nano kit and we confirmed no detection of DNA contamination based 

on the Bioanalyzer results. Total RNA underwent DNase treatment using the TURBO DNA-free™ Kit 



 

 

(ThermoFisher Scientific, Waltham, MA) for the removal of DNA contamination and underwent rRNA 

reduction for both human and bacterial rRNA using NEBNext rRNA Depletion Kits (New England 

Biolabs, Ipswich, MA). RNA was prepared for sequencing using the NEBNext Ultra II Directional RNA 

Library Prep Kit (New England Biolabs, Ipswich, MA) and sequenced on an Illumina NovaSeq6000 

using an S4 100PE Flowcell (Illumina, San Diego, CA). All RNAseq samples had sufficient sequence 

depth (mean, 8,067,019 pair-end reads/sample) to obtain a high degree of sequence coverage.  

 

Nasopharyngeal Airway Taxonomy and Function Testing 

Raw sequence reads were filtered and trimmed for adapters and contaminants using the k-mers 

strategy in bbduck [7]and default settings. We used PathoScope [8] and the expanded Human Oral 

Microbiome Database (eHOMD) database [9] to infer bacterial taxonomy. Samples with <1,000 reads, 

singletons, and strains not present in at least 10% of the samples were eliminated. The 

metatranscriptomic analysis obtained 1,968,352,599 merged sequences and identified 323 microbial 

lineages after singleton removal. 

Microbiome functions were estimated for bacteria and viruses separately using SUPER-FOCUS 

[10] and Diamond [11]and the subsystems included in the SEED database [12]. The SEED database is 

composed of three-level hierarchical microbiome functions: the level 1 subsystem with 35 functions, 

followed by the level 2 subsystem with 194 functions, and the level 3 subsystem with 1,290 functions. 

All the analyses were carried out in the high-performance computing cluster PEGASUS at the George 

Washington University (DC, USA). 

  



 

 

 

Nasopharyngeal Airway Host Transcriptome 

 Transcript abundances from clean RNAseq reads were estimated in Salmon [13]using the 

human transcriptome (hg38) and the mapping-based mode. We first generated a decoy-aware 

transcriptome and then quantified the reads using Salmon’s default settings and the following flags: –

validateMappings, –recoverOrphans, –seqBias and –gcBias. Salmon is fast and accurate, corrects for 

potential changes in gene length across samples (e.g., from differential isoform usage), and has great 

sensitivity.  

 

Functional and Clinical Outcomes 

 The outcomes of interest are a) host function (the nasopharyngeal transcriptome) at index 

hospitalization for bronchiolitis and b) asthma development by age 5 years. The definition of asthma 

was based on a commonly-used epidemiologic definition of asthma [14, 15]—physician-diagnosis of 

asthma by age 5 years, plus either asthma medication use (e.g., albuterol inhaler, inhaled corticosteroids, 

montelukast) or asthma-related symptoms in the preceding year. 

 

Statistical Analysis 

The objectives of the current study are a) to identify biologically distinct metatranscriptome 

profiles among infants with bronchiolitis and b) to relate them to biologically meaningful pathways of 

the transcriptome and risks of asthma development. The analytic workflow is summarized in Figure 1. 

First, we preprocessed variables with appropriate variance stabilization methods and computed 

a distance matrix for each of three datasets—1) virus, 2) microbiome taxonomy (species-level), and 3) 

microbiome function data. For the virus data, we used the viral genomic load for RSV, RV-A, and RV-C 



 

 

given their importance in bronchiolitis and asthma [16]. For the microbiome taxonomy data, we used the 

relative abundance of the 40 most abundant species, which accounted for 95% of the total abundance. 

For the microbiome function data, we selected level-2 functions with high variances (median absolute 

deviation >0.75) with variance stabilizing transformation using DESeq2 package [17].Then, we 

computed Euclidean distance for the virus data using amap package [18], Bray-Curtis distance for the 

taxonomy data using vegan package [19], and Pearson distance for the microbiome function data using 

amap package [18].  

To conduct metatranscriptome profiling (or clustering), we computed an affinity matrix of each 

dataset separately and computed a fused affinity matrix by similarity network [20]fusion using SNFtool 

package [21]. We set all parameters of similarity network fusion (i.e., the number of neighbours [n=25], 

hyperparameter [alpha=0.7], and the number of iteration [T=25]) based on a grid search by computing 

network modularity. Finally, to identify mutually exclusive metatranscriptome profiles (or clusters), we 

applied spectral clustering to the fused affinity matrix [20]. To determine an optimal number of profiles, 

we used a combination of the silhouette scores (Supplementary Figure S2, Panel A), network 

modularity (Supplementary Figure S2, Panel B), profile size (n=33-67), and clinical and biological 

plausibility [1, 15, 16]. The network modularity measures how well-separated subnetworks are given a 

particular partitioning (i.e., profiles) of the network [22].To test the stability of profiles as internal 

validation, we conducted a label propagation method using leave-one-out cross-validation and 5-fold 

cross-validation with 100 iterations (Supplementary Figure S3). We also computed the ranking of 

normalized mutual information (NMI) score of each variable. Each variable is ranked based on the 

similarity in the clustering of the fused matrix, meaning that high-ranked variables contribute more to 

form the similarity network. After deriving the metatranscriptome profiles, we applied the t-distributed 

stochastic neighbour embedding (t-sne) method to the five eigenvectors in the spectral clustering for the 



 

 

visualization of the profiles. We also visualized a patient similarity network with Fruchterman-Reingold 

layout using qgraph package [23].  

Additionally, we conducted several analyses to examine the between-profile differences in the 

virus genomic load, taxonomy, and functional data. First, we examined the differences in the patient 

characteristics and clinical presentation by using Kruskal-Wallis, chi-squared, and Fisher exact tests, as 

appropriate. Second, to examine the relationship between the profiles and major clinical variables, we 

developed chord diagrams, a Venn diagram of three major clinical variables (parental asthma, parental 

eczema, and IgE sensitization) and their intersections, and an upset plot corresponding to the presented 

Venn diagram. We used circlize package [24] for the chord diagram, VennDiagram package [25] for the 

Venn diagram, and ComplexUpset package [26] for the upset plot. Third, to visualize the between-

profile differences in the viruses and selected microbiome species, we developed a heatmap assigning 

the mean value for the virus and taxonomy data. The viral genomic load data are treated as numeric 

variables and processed by auto-scaling. The taxonomy data (30 most abundant species) are processed 

by log2 transformation and auto-scaling. We also developed pirate plots (a combination of a violin plot 

and a box plot) for the taxonomy data. Fourth, to visualize the between-profiles differences in the 

microbiome function (level 1 functions) by comparing the reference profile (profile A) with each of the 

other four profiles, we developed ranked plots using the mean standardized difference between the 

profile pairs. Lastly, to visualize the differences in more-detailed microbiome functions (level 3 

functions) of specific level 1 function of interest, we also developed additional ranked plots. 

After deriving the metatranscriptome profiles, we examined their relationship with host 

transcriptome and the longitudinal relationship with asthma development by age 5 years (Figure 1). For 

transcriptome data, we conducted differential gene expression analysis and functional pathway analysis 

by comparing the reference profile (profile A) with each of the other four profiles. To investigate 



 

 

whether genes for specific biological pathways are enriched among the large positive or negative fold 

changes, we conducted a functional class scoring analysis using clusterProfiler package [27]. To 

determine the association of profiles with the risk of childhood asthma (binary outcome), we fit 

unadjusted and adjusted logistic regression models accounting for patient clustering within sites.  

In the sensitivity analysis that examines the robustness of profile-outcome associations, we also repeated 

the analysis using a different number of profiles. We analysed the data using R version 3.6.1 (R 

Foundation for Statistical Computing, Vienna, Austria). All P-values were two-tailed, with P<0.05 

considered statistically significant. We corrected for multiple testing using the Benjamini-Hochberg 

FDR method [28].  
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Supplementary Table S1. Principal investigators at the 17 participating sites in MARC-35 

Amy D. Thompson, MD Alfred I. duPont Hospital for Children, Wilmington, DE 

Federico R. Laham, MD, MS Arnold Palmer Hospital for Children, Orlando, FL 

Jonathan M. Mansbach, MD, MPH Boston Children's Hospital, Boston, MA 

Vincent J. Wang, MD, MHA and Susan Wu, MD Children's Hospital of Los Angeles, Los Angeles, CA 

Michelle B. Dunn, MD and Jonathan M. Spergel, MD, 

PhD 

Children's Hospital of Philadelphia, Philadelphia, PA 

Juan C. Celedón, MD, DrPH Children's Hospital of Pittsburgh, Pittsburgh, PA 

Michael R. Gomez, MD, MS-HCA and Nancy Inhofe, MD The Children's Hospital at St. Francis, Tulsa, OK 

Brian M. Pate, MD and Henry T. Puls, MD The Children's Mercy Hospital & Clinics, Kansas City, MO 

Stephen J. Teach, MD, MPH Children's National Medical Center, Washington, D.C. 

Richard T. Strait, MD and Stephen C. Porter, MD, MSc, 

MPH 

Cincinnati Children's Hospital and Medical Center, Cincinnati, OH 

Ilana Y. Waynik, MD Connecticut Children's Medical Center, Hartford, CT 

Sujit Iyer, MD Dell Children's Medical Center of Central Texas, Austin, TX 

Michelle D. Stevenson, MD, MS Norton Children's Hospital, Louisville, KY 

Margaret Samuels-Kalow, MD, MPhil, Wayne G. 

Shreffler, MD, PhD and Ari R. Cohen, MD 

Massachusetts General Hospital, Boston, MA 

Anne K. Beasley, MD and Cindy S. Bauer, MD Phoenix Children's Hospital, Phoenix, AZ 

Thida Ong, MD and Markus Boos, MD, PhD Seattle Children's Hospital, Seattle, WA 

Charles G. Macias, MD, MPH Texas Children's Hospital, Houston, TX 



 

 

Supplementary Table S2. Comparisons between analytic and non-analytic cohorts in infants with 

bronchiolitis in the MARC-35 cohort 

 

Characteristics 

Analytic cohort 

(n=244) 

Non-analytic 

cohort (n=677) 
P-value  

Demographics    

Age (month), median (IQR) 3 (2–6) 3 (2–6) 0.85 

Female sex 98 (40.2) 269 (39.7) 0.97 

Race/ethnicity   0.93 

Non-Hispanic white 102 (41.8) 299 (44.2)  

Non-Hispanic black 57 (23.4) 153 (22.6)  

Hispanic 76 (31.1) 199 (29.4)  

Other or unknown 9 (3.7) 26 (3.8)  

Prematurity (32–36.9 weeks) 47 (19.3) 124 (18.3) 0.48 

Birth weight (kg), median (IQR) 3.20 (2.89–3.57) 3.29 (2.90–3.60) 0.28 

Mode of birth (caesarean delivery) 84 (35.0) 228 (34.1) 0.86 

Previous breathing problems (count)   0.19 

0 204 (83.6) 530 (78.3)  

1 30 (12.3) 116 (17.1)  

2 10 (4.1) 31 (4.6)  

Previous ICU admission 4 (1.6) 11 (1.6) 0.99 

History of eczema 31 (12.7) 106 (15.7) 0.31 

Lifetime antibiotic use 79 (32.4) 216 (31.9) 0.96 

Ever attended daycare 71 (29.1) 140 (20.7) 0.01 

Cigarette smoke exposure at home 

 
34 (13.9) 104 (15.4) 0.67 

Maternal smoking during pregnancy 34 (14.2) 92 (13.8) 0.96 

Parental history of asthma 76 (31.1) 229 (33.9) 0.48 

Parental history of eczema 46 (18.9) 129 (19.1) 0.99 

Clinical presentation    

Weight at presentation (kg), median (IQR) 6.07 (4.60–7.99) 6.10 (4.80–7.60) 0.98 

Respiratory rate at presentation (per minute), median (IQR) 48 (40–60) 49 (40–60) 0.72 

Oxygen saturation at presentation   0.16 

<90% 29 (12.2) 106 (16.0)  

90–93% 190 (80.2) 491 (73.9)  

≥94% 18 (7.6) 67 (10.1)  

Blood eosinophilia (≥4%) 21 (10.1) 61 (10.3) 0.99 

IgE sensitization (%) 51 (20.9) 131 (19.4) 0.67 

Respiratory virus    

RSV infection 222 (91.0) 530 (78.3) <0.001 

Solo-RSV infection 159 (65.2) 383 (56.4) 0.021 

RV infection    

RV-A 26 (10.7) 62 (9.2) 0.58 

RV-B 4 (1.6) 11 (1.6) 0.99 

RV-C 21 (8.6) 61 (9.0) 0.95 

Solo-RV infection 13 (5.3) 39 (5.8) 0.93 

RSV/RV coinfection 29 (11.9) 80 (11.8) 0.99 



 

 

Abbreviations: IQR, interquartile range; ICU, intensive care unit; IgE, immunoglobulin E; RSV, respiratory 

syncytial virus; RV, rhinovirus 

Data are no. (%) of infants unless otherwise indicated. Percentages may not equal 100, because of rounding 

and missingness. 

  



 

 

Supplementary Table S3. Sensitivity analysis using four metatranscriptome profiles 

 

 Profile 1 

(n=69) 

Profile 2 

(n=78) 

Profile 3 

(n=44) 

Profile 4 

(n=53) 
P-value FDR 

Original 5 profiles (A-E)       

Profile A (n=67): virusRSVmicrobiomecommensals 65 (94.2) 2 (2.6) 0 (0.0) 0 (0.0)   

Profile B (n=36): virusRSV/RV-AmicrobiomeH.influenzae 0 (0.0) 30 (38.5) 5 (11.4) 1 (1.9)   

Profile C (n=59): virusRSVmicrobiomeS.pneumoniae 4 (5.8) 46 (59.0) 6 (13.6) 3 (5.7)   

Profile D (n=33): virusRSVmicrobiomeM.nonliquefaciens 0 (0.0) 0 (0.0) 33 (75.0) 0 (0.0)   

Profile E (n=49): virusRSV/RV-CmicrobiomeM.catarrhalis 0 (0.0) 0 (0.0) 0 (0.0) 49 (92.5)   

Demographics   

Age (month), median (IQR) 3 (1-6) 3 (2-6) 4 (2-7) 3 (2-5) 0.44  

Female sex 30 (43.5) 30 (38.5) 18 (40.9) 20 (37.7) 0.91  

Race/ethnicity    0.52  

  Non-Hispanic white 30 (43.5) 27 (34.6) 19 (43.2) 26 (49.1)   

  Non-Hispanic black 14 (20.3) 22 (28.2) 11 (25.0) 10 (18.9)   

  Hispanic 23 (33.3) 26 (33.3) 14 (31.8) 13 (24.5)   

  Other or unknown 2 (2.9) 3 (3.8) 0 (0.0) 4 (7.5)   

Prematurity (32–36.9 weeks) 15 (21.7) 16 (20.5) 10 (22.7) 6 (11.3) 0.42  

Birth weight (kg), median (IQR) 3.20 (2.90-3.52) 3.30 (2.84-3.60) 3.09 (2.80-3.39) 3.31 (3.01-3.62) 0.50  

Mode of birth (caesarean delivery) 18 (26.5) 33 (42.9) 15 (34.1) 18 (35.3) 0.23  

Previous breathing problems (count)    0.96  

0 58 (84.1) 65 (83.3) 36 (81.8) 45 (84.9)   

1 8 (11.6) 10 (12.8) 5 (11.4) 7 (13.2)   

2 3 (4.3) 3 (3.8) 3 (6.8) 1 (1.9)   

Previous ICU admission 3 (4.3) 0 (0.0) 1 (2.3) 0 (0.0) 0.11  

History of eczema 3 (4.3) 15 (19.2) 4 (9.1) 9 (17.0) 0.026  

Lifetime antibiotic use* 26 (37.7) 28 (35.9) 7 (15.9) 18 (34.0) 0.063  

Ever attended daycare 15 (21.7) 24 (30.8) 15 (34.1) 17 (32.1) 0.44  

Cigarette smoke exposure at home 9 (13.0) 13 (16.7) 8 (18.2) 4 (7.5) 0.37  

Maternal smoking during pregnancy 9 (13.2) 14 (18.2) 3 (6.8) 8 (15.7) 0.37  

Parental history of asthma 15 (21.7) 28 (35.9) 17 (38.6) 16 (30.2) 0.18  

Parental history of eczema 9 (13.0) 18 (23.1) 13 (29.5) 6 (11.3) 0.056  

Clinical Presentation       

Weight at presentation (kg), median (IQR) 5.50 (4.35-7.35) 6.35 (4.93-7.48) 6.75 (5.05-8.25) 6.20 (4.80-7.92) 0.24  



 

 

Respiratory rate at presentation (per minute), median (IQR) 48 (40-55) 48 (38-60) 51 (44-63) 52 (41-60) 0.19  

Oxygen saturation at presentation     0.33  

<90% 12 (18.5) 8 (10.5) 2 (4.7) 7 (13.2)   

90-93% 49 (75.4) 62 (81.6) 39 (90.7) 40 (75.5)   

≥94% 4 (6.2) 6 (7.9) 2 (4.7) 6 (11.3)   

Blood eosinophilia (≥4%) 4 (6.9) 6 (9.0) 3 (7.9) 8 (17.8) 0.30  

IgE sensitization 11 (15.9) 17 (21.8) 11 (25.0) 12 (22.6) 0.64  

Clinical course       

Positive pressure ventilation use† 6 (8.7) 7 (9.0) 3 (6.8) 2 (3.8) 0.70  

Intensive treatment use‡    12 (17.4) 16 (20.5) 3 (6.8) 11 (20.8) 0.19  

Length of day (day), median (IQR) 2 (1-3) 2 (1-4) 2 (1-3) 2 (1-3) 0.76  

Antibiotic use during hospitalization 27 (39.1) 31 (39.7) 9 (20.5) 13 (24.5) 0.054  

Corticosteroid use during hospitalization 9 (13.0) 13 (16.7) 3 (6.8) 4 (7.5) 0.32  

Respiratory virus       

RSV solo infection 45 (65.2) 56 (71.8) 31 (70.5) 27 (50.9) 0.079  

Rhinovirus coinfection 5 (7.2) 8 (10.3) 5 (11.4) 11 (20.8) 0.16  

  Rhinovirus-A 7 (10.1) 11 (14.1) 4 (9.1) 4 (7.5) 0.70  

  Rhinovirus-B 1 (1.4) 1 (1.3) 1 (2.3) 1 (1.9) 0.99  

  Rhinovirus-C 2 (2.9) 0 (0.0) 2 (4.5) 17 (32.1) <0.001  

Chronic comorbidities       

Asthma at age 5 years 13 (18.8) 27 (34.6) 10 (22.7) 12 (22.6) 0.16  

Microbiome relative abundance§, median (IQR)       

Streptococcus pneumoniae 0.22 (0.12-0.39) 0.20 (0.07-0.61) 0.05 (0.02-0.33) 0.06 (0.01-0.24) <0.001 <0.001 

Moraxella catarrhalis  0.00 (0.00-0.04) 0.01 (0.00-0.06) 0.05 (0.01-0.18) 0.65 (0.48-0.88) <0.001 <0.001 

Moraxella nonliquefaciens  0.00 (0.00-0.00) 0.00 (0.00-0.03) 0.57 (0.01-0.74) 0.00 (0.00-0.03) <0.001 <0.001 

Cutibacterium acnes  0.22 (0.12-0.36) 0.01 (0.00-0.07) 0.01 (0.00-0.02) 0.01 (0.00-0.02) <0.001 <0.001 

Haemophilus influenzae  0.00 (0.00-0.01) 0.01 (0.00-0.34) 0.00 (0.00-0.01) 0.00 (0.00-0.01) <0.001 <0.001 

* Any systemic antibiotic use from birth up to the index hospitalization for bronchiolitis. 
† Infants with bronchiolitis who underwent continuous positive airway ventilation and/or mechanical ventilation. 
‡ Infants with bronchiolitis who were admitted to ICU and/or who underwent positive pressure ventilation. 

§ For microbiome taxonomy data, the five most abundant species are presented. 

Abbreviations: IQR, interquartile range; ICU, intensive care unit; IgE, immunoglobulin E; RSV, respiratory syncytial virus; RV-A, 

rhinovirus A; RV-C, rhinovirus C 



 

 

Supplementary Figure S1. Study flow diagram 

 

The differences in the analytic and non-analytic cohorts are summarized in Table E1. 

* The metatranscriptome and transcriptome data are obtained in 244 infants who were randomly selected from the longitudinal cohort. 

 

 



 

 

Supplementary Figure S1. Average silhouette score and network modularity, according to number of metatranscriptome profiles 

 

A. Average silhouette score, according to number of metatranscriptome profiles 

Across the different numbers of profiles (k of 3-7), the average silhouette score was highest with k=5.  

 

B. Network modularity, according to number of metatranscriptome profiles 

Across the different numbers of profiles (k of 2-10), the network modularity was highest with k=5.  
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Supplementary Figure S3. Accuracy of metatranscriptome profiles using label propagation methods, according to number of profiles 

 

A. Accuracy using leave-one-out cross-validation, according to number of metatranscriptome profiles 

Across the different numbers of profiles (k of 3-7), the accuracy was highest with k=5.  

 

B. Accuracy using 5-fold cross-validation, according to number of metatranscriptome profiles 

Across the different numbers of profiles (k of 3-7), the accuracy was highest with k=5.  
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Supplementary Figure S4. Similarity network visualization of metatranscriptome profiles among infants with bronchiolitis  

The goal of this figure is a network visualization. We applied integrative network and clustering approaches to the virus, nasopharyngeal microbiome 

taxonomy, and microbiome function data. This network-based clustering method identifies distinct profiles based on the degree of connectivity. In 

other words, infants with similar biological characteristics are more closely connected with each other based on the degree of biological similarity 

(Figure 1), resulting in the formation of a connected component (i.e., a profile) in the network. 

 

Nodes (circles) with the same colour represent infants with a corresponding profile (A, B, C, D, and E). Network graphs in the integrated omics 

similarity network are visualized using with Fruchterman-Reingold layout. The layout of the network from the three datasets is fixed with the 

position of the integrated omics similarity network. We selected 1,500 edges with the highest similarity for the network visualization and the width of 

the edge reflects the strength of similarity. 

Abbreviations: RSV, respiratory syncytial virus; RV-A, rhinovirus A; RV-C, rhinovirus C 
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Supplementary Figure S5. Major clinical and virus characteristics according to metatranscriptome profiles 

The y-axis of the bar plots represents the proportion of infants within the profile who have the corresponding clinical or virus characteristic, which 

was scaled to a total of 100%. For example, the profile B infants (light orange) had a high proportion of lifetime antibiotics use, history of eczema, 

parental eczema, IgE sensitization, blood eosinophilia, and coinfection with RV-A. Profile C (pink) infants had a high proportion of parental asthma 

and solo-RSV infection. 

Abbreviations: IgE, immunoglobulin E; RSV, respiratory syncytial virus; RV, rhinovirus; RV-A, rhinovirus A; RV-C, rhinovirus C 



 

 

Supplementary Figure S6. Relationship between metatranscriptome profiles and major clinical variables 

 

A. Venn diagram of three major clinical variables (parental asthma, parental eczema, and IgE sensitization) and their intersections 

The Venn diagram illustrates the composition of three major clinical variables and their intersections. The numbers correspond to the number of 

infants in each subset and intersection 

 

B. Upset plot, corresponding to the presented Venn diagram 

The plot illustrates the composition of three major clinical variables and their intersections visualized based on the five metatranscriptome profiles. 

Vertical stacked bar charts reflect the number of infants within each subset and intersection coloured according to the profiles. Horizontal bars 

indicate the number of infants in each clinical variable set. Black dots indicate the sets of subsets and intersections; connecting lines indicate relevant 

intersections related to each stacked bar chart. 

Abbreviation: IgE, immunoglobulin E 

 

 

 



 

 

Supplementary Figure S7. Between-profile differences in clinical variables, virus, and nasopharyngeal microbiome (taxonomy) in infants 

with bronchiolitis 

To visualize the between-profile differences, the clinical variables and viruses are treated as numeric variables and processed by auto-scaling. The 

microbiome taxonomy data (30 most abundant species) are processed by log2 transformation and auto-scaling.  

Abbreviations: RSV, respiratory syncytial virus; RV, rhinovirus; RV-A, rhinovirus A; RV-C, rhinovirus C 

 

  



 

 

Supplementary Figure S8. Ranking of normalized mutual information score 

The ranking of normalized mutual information score of each dataset is shown in the three plots: A. virus data; B. microbiome taxonomy data (top 20 

score species); and C. microbiome function data (top 30 score level-2 functions) 

 

Abbreviations: RSV, respiratory syncytial virus; RV-A, rhinovirus A; RV-C, rhinovirus C 

 

  



 

 

Supplementary Figure S9. Between-profile differences in focused nasopharyngeal microbiome functions in the metatranscriptome profiles A 

vs. B comparison  

The differences in more-detailed microbiome functions (level 3 functions) of the specific level 1 functions (virulence, iron acquisition and 

metabolism) are visualized. In all comparisons, the mean values of microbiome function variables in the corresponding profiles are plotted. The 

microbiome function variables are standardized by using auto-scaling after variance stabilizing transformation. Each colour in the microbiome 

function variables in the Y-axis corresponds to the specific level-2 functions of interest. 

A. Profiles A vs. B comparison in virulence (60 level-3 functions)  

B. Profiles A vs. B comparison in iron acquisition and metabolism (27 level-3 functions) 
* False discovery rate<0.05 

Abbreviations: DNA, deoxyribonucleic acid; MAR, multiple antibiotic resistance; MCE, mammalian cell entry genes 

 
 



 

 

Supplementary Figure S10. Between-profile differences in focused nasopharyngeal microbiome functions in the metatranscriptome profiles 

A vs. C comparison  

The differences in more-detailed microbiome functions (level 3 functions) of the specific level 1 function (the fatty acids, lipids, and isoprenoids 

metabolism) are visualized. The mean values of microbiome function variables (31 level-3 functions) in the corresponding profiles are plotted. The 

microbiome function variables are standardized by using auto-scaling after variance stabilizing transformation. Each colour in the microbiome 

function variables in the Y-axis corresponds to the specific level-2 functions of interest. 
* False discovery rate<0.05 

Abbreviations: FAS Ⅰ, fatty acid synthase Ⅰ; FAS Ⅱ, fatty acid synthase Ⅱ 

 



 

 

Supplementary Figure S11. Between-profile differences in focused nasopharyngeal microbiome functions in the metatranscriptome profiles 

A vs. D comparison 

The differences in more-detailed microbiome functions (level 3 functions) of the specific level 1 function (the fatty acids, lipids, and isoprenoids 

metabolism) are visualized. The mean values of microbiome function variables (31 level-3 functions) in the corresponding profiles are plotted. The 

microbiome function variables are standardized by using auto-scaling after variance stabilizing transformation. Each colour in the microbiome 

function variables in the Y-axis corresponds to the specific level-2 functions of interest. 
* False discovery rate<0.05 

Abbreviations: FAS Ⅰ, fatty acid synthase Ⅰ; FAS Ⅱ, fatty acid synthase Ⅱ 

 



 

 

Supplementary Figure S12. Between-profile differences in focused nasopharyngeal microbiome functions in the metatranscriptome profiles 

A vs. E comparison 

The differences in more-detailed microbiome functions (level 3 functions) of the specific level 1 function (stress response) are visualized. The mean 

values of microbiome function variables (45 level-3 functions) in the corresponding profiles are plotted. The microbiome function variables are 

standardized by using auto-scaling after variance stabilizing transformation. Each colour in the microbiome function variables in the Y-axis 

corresponds to the specific level-2 functions of interest. 
* False discovery rate<0.05 

 



 

 

Supplementary Figure S13. Host functional pathway analysis in the metatranscriptome profiles A vs. B comparison 

Profile B infants had 63 differentially enriched pathways (FDR<0.05 and percentage of hit genes>70%). For the functional class scoring analysis, we 

selected 30 pathways with the highest gene ratio to visualize the plot.  

Abbreviations: ATP, adenosine triphosphate; DNA, deoxyribonucleic acid; ESCRT, endosomal sorting complexes required for transport; 

FDR, false discovery rate; GABA, gamma-aminobutyric acid; GABA-A, gamma-aminobutyric acid A; MHC, major histocompatibility complex; 

mRNA, messenger ribonucleic acid; RAGE, receptor for advanced glycation end products 

 

 
 



 

 

Supplementary Figure S14. Host functional pathway analysis in the metatranscriptome profiles A vs. C comparison 

Profile C infants had 45 differentially enriched pathways (FDR<0.05 and percentage of hit genes>70%). For the functional class scoring analysis, we 

selected 30 pathways with the highest gene ratio to visualize the plot.  

Abbreviations: CTD, carboxy-terminal domain, FDR, false discovery rate; GABA, gamma-aminobutyric acid; MHC, major histocompatibility 

complex; RAGE, receptor for advanced glycation end products; RNA, ribonucleic acid 

 
 



 

 

Supplementary Figure S15. Host functional pathway analysis in the metatranscriptome profiles A vs. D comparison 

Profile D infants had 35 differentially enriched pathways (FDR<0.05 and percentage of hit genes>70%). For the functional class scoring analysis, we 

selected 30 pathways with the highest gene ratio to visualize the plot.  

Abbreviations: FDR, false discovery rate; GABA, gamma-aminobutyric acid; GABA-A, gamma-aminobutyric acid A; MHC, major 

histocompatibility complex; mRNA, messenger ribonucleic acid 

 
 



 

 

Supplementary Figure S16. Host functional pathway analysis in the metatranscriptome profiles A vs. E comparison 

Profile E infants had 37 differentially enriched pathways (FDR<0.05 and percentage of hit genes>70%). For the functional class scoring analysis, we 

selected 30 pathways with the highest gene ratio to visualize the plot.  

Abbreviations: ADP, adenosine diphosphate; FDR, false discovery rate; GABA, gamma-aminobutyric acid; GABA-A, gamma-aminobutyric acid A;  

NAD+, nicotinamide adenine dinucleotide; NAD(P)+, Nicotinamide adenine dinucleotide phosphate 

 
 



 

 

Supplementary Figure S17. Association between nasopharyngeal metatranscriptome profiles of infant 

bronchiolitis and risk for developing asthma, according to recurrent wheeze status 

* Multivariable random-effect logistic model adjusted for age, sex, and clustering within hospitals  

Abbreviation: CI, confidence interval; RSV, respiratory syncytial virus; RV, rhinovirus 

 

A. Risk of developing asthma at age 5 years with recurrent wheeze by age 3 years (compared to children 

without asthma or recurrent wheeze) 

 
B. Risk of developing asthma at age 5 years without recurrent wheeze by age 3 years (compared to children 

without asthma or recurrent wheeze) 
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Supplementary Figure S18. Alluvial plot that examines consistencies across different number of profiles 

 

Each color band represents a group of infants with an original profile (A-E). There are consistencies between 

the five original profiles (A-E) and four and six profiles. The numbers of infants assigned to each profile are 

presented in Table E3. 

 

 
 

 



 

 

Supplementary Figure S19. Between-profile differences in relative abundance of ten most abundant nasopharyngeal microbial species 

among infants with bronchiolitis, using four profiles in the sensitivity analysis  

The boxplots show the distribution of the ten most abundant species in the nasopharyngeal microbiome, according to the four metatranscriptome 

profiles. In the overlying violin plots, the width represents the probability that infants in a profile take on a specific relative abundance. The 

differences in the relative abundance were tested by the Kruskal-Wallis test. 

Abbreviation: FDR, false discovery rate 

 

 
 



 

 

Supplementary Figure S20. Between-profile differences in nasopharyngeal microbiome function in the metatranscriptome profiles 1 

(concordant with profile A) vs. 2 (concordant with profiles B and C) comparison, using four profiles in the sensitivity analysis 

The mean values of microbiome function variables (35 level-1 functions) in the corresponding profiles are plotted. The microbiome function 

variables are standardized by using auto-scaling after variance stabilizing transformation.  
* False discovery rate <0.05 

Abbreviations; DNA, deoxyribonucleic acid; RNA, ribonucleic acid 

 



 

 

Supplementary Figure S21. Association between nasopharyngeal metatranscriptome profiles of infant bronchiolitis and risk for developing 

asthma, using four profiles in the sensitivity analysis  

 

Asthma (binary outcome) was defined as physician-diagnosis of asthma at age 5 years, plus either asthma medication use (e.g., albuterol inhaler, 

inhaled corticosteroids, montelukast) or asthma-related symptoms in the preceding year. To examine the association between bronchiolitis profiles 

(profile A as the reference) and the risk of developing childhood asthma, logistic regression models were fit. 

* Multivariable random-effect logistic model adjusted for age, sex, and clustering within hospitals  

Abbreviation: CI, confidence interval; RSV, respiratory syncytial virus; RV, rhinovirus 
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