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Take home message:  

Metabolomics changes in COVID19 predict acute patient outcomes and suggest a 
pivotal role for a bioenergetic crisis driven by viral hijacking of the mitochondria to 
escape the innate immune response. Thus, metabolomics changes in COVID 19 may 

serve not only as a biomarker, but provide insight into pathogenic mechanisms and 
pharmacologic targets.  
 

 
When the COVID19 pandemic first appeared in December of 2019, the 
pathophysiologic underpinnings of the disease were largely unknown. Scientists, 

physicians and government institutions from around the globe took an “all-hands on 
deck” approach with the hope of identifying potential therapies to treat as well as 
understand the pathophysiology of the disease [1]. Currently, more than 4800 clinical 

trials listed on clinicaltrails.gov have been performed or proposed around the world, 
many with subjects from vastly different ethnic and racial backgrounds, as well as 
different standard-of-care strategies [2]. Despite this effort, apart from monoclonal 

antibodies, few therapies have emerged as effective treatments of COVID-19; vaccines 
remain the best approach to control and mitigate the pandemic [3]. 

Despite the lack of therapeutic successes, we have gained unprecedented 

insight into the progression of the disease [4]. Among the vast amount of clinical and 
biological data published over the course of the pandemic, some of the most consistent 
and exciting results have come from metabolomics profiling of patient serum samples 

[5]. Metabolomics, a rapidly developing field of research in which metabolites present in 
tissue or fluids are comprehensively analyzed, has deepened our understanding of the 
pathobiology of multiple disorders, identified predictive biomarkers, and highlighted 

potential novel therapeutic strategies. Throughout 2020 and 2021, several 
metabolomics papers focusing on COVID-19 have been published. The earliest reports 
identified changes in the metabolic pathways for processing lipids, amino acids, and 

carbohydrates in severely ill COVID-19 patients. More recent studies have begun to 
associate metabolomics changes with symptoms representing specific organ system 
failures – for example, the acute delirium and post-recovery mental health issues of the 

nervous system and disruptions of the digestive system [6, 7]. Dysregulation of the 
kynurenine pathway has been among the most consistent findings as reported in 
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numerous, independent studies [5]. Of potential significance is that many of the 
metabolomics abnormalities in COVID-19 are similar to those found in sepsis and acute 

respiratory failure, suggesting a common mechanism leading to an acute bioenergetic 
crisis [8, 9].  

Along these lines, the paper Metabolomic analyses reveals new stage-specific 

features of COVID-19 by Jia et al. reports an in-depth, well-designed metabolomics 

analysis of confirmed COVID-19 patients [10]. The discovery patients (n=63) were 
subdivided into mild, severe, and recovery groups and independently validated in a 

second cohort with an additional 90 patients along with 41 non-infected controls. The 
investigators utilized both broad-spectrum, semi-quantitative mass spectrometry 
analysis as well as targeted mass spectrometry analysis. The authors found consistent 

disruptions in glucose metabolism and dysregulation in the TCA and urea cycles which 
were identified as potential targets for therapeutic intervention (Figure 1a). These 
metabolomics changes are consistent with metabolomics studies in other contexts and 

point to an underlying bioenergetic crisis  as a key pathogenic feature of COVID-19 [5].  
Furthermore, the authors were able to correlate changes in IL-1β, TNF-α and IL-

6 with metabolomics profiles. Not surprisingly, all three cytokines increased with the 

severity of disease. Although the levels fell during recovery, they were persistently 
elevated relative to non-infected control patients. Importantly, cytokine levels positively 
correlated with TCA cycle-related metabolites, including aspartate, creatinine, malate, 

and 2-oxoglutarate. There was also positive correlation with arginine, a key component 
of the uric acid cycle, which can be converted to either ornithine or nitric oxide and 
citrulline. The authors posited that the decrease in arginine and increase in ornithine 

suggests that arginine is metabolized via arginase and the urea cycle as opposed to the 
nitric oxide cycle. Nonetheless, since nitric oxide could reduce viral RNA production by 
affecting the spike protein and its primary target angiotensin converting enzyme 2 

(ACE2), clinical trials of the therapeutic gas in COVID-19 are currently underway [11].  
The metabolomic findings by Jia and coworkers, like similar studies in sepsis and 

acute respiratory failure (ARF) [9, 12-15], point to a pivotal role for mitochondrial 

dysfunction as a driver of COVID-19 outcomes [16]. In this context, the abundance of 

mitochondrial DNA damage-associated molecular patterns (mtDNA DAMPs) – a 

category of DAMP known to promote cytokine production by both immune and non-

immune cells [17, 18] – in the plasma of COVID-19 patients is an early predictor of ICU 

admission, need for intubation, and mortality in COVID-19 [19].  Experimental studies 

have identified multiple pathways by which SARS-CoV-2 evoke mitochondrial 

dysfunction leading to pathophysiologic effects of COVID-19 (Figure 1b). For example, 

SARS-CoV-2 impairs oxidative metabolism and promotes a transition to a glycolytic 

phenotype in peripheral blood mononuclear cells from COVID-19 patients [20]. This 

effect may be mediated by ACE2, widely known as the receptor mediating SARS-CoV-2 

entry into the cell, which is believed to directly alter mitochondrial function leading to 

decreased ATP production and activation of NADPH oxidase (NOX) 4 [21, 22]. 

Increased ROS generation associated with NOX4 activation could exert multiple 

deleterious events, including damaging the mitochondrial genome leading to its fracture 

into proinflammatory mtDNA DAMPs [23, 24] as well as activating PARP1 causing 

NAD+ depletion with attendant reduced interferon production, enhanced viral 



 

 

replication, and decreased mitophagy [25]. Along with ACE2, proteins encoded by 

SARS-CoV-2 also may perturb mitochondrial functions. Here, studies on open reading 

frames ORF-9b, ORF-8a, and ORF-7a of SARS show that these proteins localize to 

mitochondria.  ORF9b can inactivate the retinoic acid-inducible gene I-mitochondrial 

antiviral signaling protein (RIG1-MAVS)-dependent interferon signaling pathway by 

disrupting K63-linked polyubiquitination of nuclear factor κB (NF-κB) essential modulator 

(NEMO) [26]. ORF-7a and ORF-8a promote viral replication, while ORF-8a can activate 

caspase-3 mediated apoptosis [22, 27]. The release of the virus as well as 

proinflammatory cytokines and mtDNA DAMPS induce a hyper-inflammatory response 

[22, 24, 27-29]. Determining how these bioenergetic metabolomic changes relate to 

mitochondrial dysfunction could project to new therapies that aim to return the 

metabolomic profiles back to homeostasis. 

One of the more surprising findings was that the greatest number of 

metabolomics differences between control subjects and Covid-19 patients were in the 
recovery group, with 98 of 240 metabolites reported as significantly different. This 
finding may be of particular significance to so-called “Long COVID”, which bears certain 

similarities to the long-term reduction in quality-of-life (QOL) noted in survivors of other 
forms of severe illness [30, 31]. It is estimated that 50% of patients admitted to the ICU 
requiring mechanical ventilation go on to develop post-intensive care syndrome, and up 

to 80% of survivors of critical illness are readmitted to a nursing home, rehabilitation 
center or ICU within two years after their initial illness. Half of survivors suffer long-term 
cognitive decline. Each additional day in the ICU can lead to an 11% loss in muscle 

mass even after two year follow-up. With many of these patients never returning to 
work, the health care system and society will be dealing with these issues many years 
after the pandemic is abated. Understanding how the metabolomics changes relate to 

QOL outcomes could potentially identify therapeutic strategies to improve longterm QOL 
in COVID19 survivors. 

Final strengths of this study were that many of the metabolites identified can 

predict patient outcomes, were validated in the independent cohort, and had strong 
overlap with other studies. A large meta-analysis with predictive modeling split between 
discovery and validation cohorts could provide valuable biomarkers, not only for 

prediction for SARS-CoV-2 infection, but also may determine whether acute and chronic 
outcomes in sepsis and ARF display pathways in common with COVID-19.  

There were still some limitations in this report. As the authors note, their cohorts 

were not age-matched due to the fact that the severe cases were primarily observed in 
the elderly. Larger cohorts would provide further confidence in these results.  

Considering the consistent metabolic derangements seen in multiple studies, as 

well as substantial overlap with metabolomics changes in sepsis and ARF, these results 
suggest that metabolic biomarkers should be regularly monitored to determine time-
dependent changes during evolution of COVID-19. Future therapies could potentially 

consider how targeted nutraceutical interventions may return the metabolomics profiles 
back to homeostasis [32]. For example, Jia et al. suggest further investigation into 
whether type I interferon regulates the urea cycle in infected epithelial cells and whether 

COVID-19 infection switches the metabolic pathway of glucose metabolism to the urea 
cycle by reducing nitric oxide production, thereby protecting viral replication. Other 
therapies that target the kynurenine pathway and the NAD+/NADH ratio may mitigate 



 

 

the bioenergetic crisis and NAD-regulated immune responses [8, 25].  Finally, strategies 
to suppress mitochondrial oxidant stress or repair oxidative mtDNA damage also have 

the potential to emerge as therapeutic strategies guided by targeted metabolomics 
monitoring [23, 33, 34]. 
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Figure 1: Metabolomics changes due to SAR-CoV-2 are predictors of patient 
acute and long-term outcomes and reflect a bioenergetic crisis likely due to viral 

hijacking of the mitochondria. a). Metabolomics changes found due to SARS-CoV-2 
infections commonly lead to disruption of the kynurenine pathway, TCA cycle and the 
urea cycle. It is unknown if arginine is converted to citrulline and NO, however, due to 

the increase in ornithine and creatine Jia et al., speculate that the urea cycle 
metabolizes arginine instead of the NO producing pathway.  b). SAR-CoV-2 is 
internalized into the cell via the ACE2 receptor. Many viral proteins including ORF7a, 

ORF8a and ORF9b locate within the mitochondria. These proteins can inhibit RIG1-
MAVS dependent interferon signaling, enhance viral replication and disrupt 
mitochondrial function. This can ultimately lead to cell death via apoptosis, necrosis or 

pyroptosis, the release of proinflammatory cytokines as well as mitochondrial DAMPs 
and ultimately cause multiple organ dysfunction syndrome (MODS). Jia et al, also 
demonstrate that many of the predictive metabolites altered due to SARS-CoV-2 

strongly correlate with proinflammatory cytokines.  
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