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Take home message 

 

Artificial intelligence allows a fully automated volumetric scoring of lung structural 

abnormalities in cystic fibrosis using computed tomography. It could be used as a robust 

quantitative outcome to assess disease changes in the era of CFTR modulators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Rationale. Chest computed tomography (CT) remains the imaging standard for demonstrating cystic 

fibrosis airway structural disease in vivo. However, visual scorings as an outcome measure are time-

consuming, require training, and lack high reproducibility. Objective. To validate a fully automated 

artificial intelligence-driven scoring of cystic fibrosis lung disease severity. 

Methods. Data were retrospectively collected in three cystic fibrosis reference centers, between 2008 

and 2020, in 184 patients 4 to 54-years-old. An algorithm using three two-dimensional convolutional 

neural networks was trained with 78 patients’ CTs (23530 CT slices) for the semantic labeling of 

bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus, and 

collapse/consolidation.  36 patients’ CTs (11435 CT slices) were used for testing versus ground-truth 

labels. The method's clinical validity was assessed in an independent group of 70 patients with or 

without lumacaftor/ivacaftor treatment (n=10 and 60, respectively) with repeat examinations. 

Similarity and reproducibility were assessed using Dice coefficient, correlations using Spearman test, 

and paired comparisons using Wilcoxon rank test.  

Measurement and main results. The overall pixelwise similarity of artificial intelligence-driven 

versus ground-truth labels was good (Dice coefficient=0.71). All artificial intelligence-driven 

volumetric quantifications had moderate to very good correlations to a visual imaging scoring 

(p<0.001) and fair to good correlations to FEV1% at pulmonary function test (p<0.001). Significant 

decreases in peribronchial thickening (p=0.005), bronchial mucus (p=0.005), bronchiolar mucus 

(p=0.007) volumes were measured in patients with lumacaftor/ivacaftor. Conversely, bronchiectasis 

(p=0.002) and peribronchial thickening (p=0.008) volumes increased in patients without 

lumacaftor/ivacaftor. The reproducibility was almost perfect (Dice>0.99).  

Conclusion.  Artificial intelligence allows a fully automated volumetric quantification of cystic 

fibrosis-related modifications over an entire lung. The novel scoring system could provide a robust 

disease outcome in the era of effective CFTR modulator therapy.  

  



 

INTRODUCTION 

Cystic fibrosis (CF) is one of the most common life-shortening genetic disorders in 

Caucasians, and lung disease remains the most common cause of mortality and death[1]. 

Recently, the need for developing robust biomarkers has been emphasized, as novel 

treatments have emerged[2]. Relying on standard outcomes such as the forced expiratory 

volume in 1 second (FEV1) at pulmonary function tests (PFT) may become increasingly 

difficult to demonstrate a new treatment efficacy[3, 4]. In this setting, computed tomography 

(CT) is the primary imaging tool for assessing lung morphology in the clinical care of patients 

with CF. Owing to its excellent spatial resolution, CT allows the accurate identification of 

structural abnormalities, whose evaluation as an outcome measure for CF research has long 

been advocated[5–7]. Multiple scoring methods have been used to quantify the lung disease 

severity[8–10]. All of them share important drawbacks, including the need for trained expert 

readers and a time-consuming scoring process[11]. One of the most widely used scoring 

systems is the Brody score, but this has been found to have limited reproducibility[12] and 

poor sensitivity[13] to mild disease variation. Thus, longitudinal evaluations may be impaired, 

when the same consensus of experts is not continued over years[12].  However, there is a 

worldwide shortage of radiologists[14]. Recently, the PRAGMA-CF score was developed 

specifically for use in infants and young children[15]. This system is more reproducible and 

more sensitive to lung disease progression than the Brody score[13, 15]. However, the use of 

a grid system limits the PRAGMA-CF method, and only a single finding is scored when more 

than one occurs in the same grid square, prioritizing bronchiectasis and air trapping. Because 

of these discarded data, the system cannot assess the extent of other abnormalities, including 

mucous plugging. This system is also limited by a laborious scoring process requiring an 

expert trained in the system, taking approximately 20 minutes to score a subset of 10 CT 



slices per CT scan. Automated analyses may have the potential to address these limitations. 

DeBoer and colleagues published a computer-based system that counted visible airways and 

demonstrated a good correlation with lung function and neutrophil elastase activity[16]. 

Despite this encouraging result, further developments awaited the advent of artificial 

intelligence (AI) with deep learning algorithms[17-19]. Deep learning currently represents the 

most advanced machine learning technique, allowing the creation of models that perform as 

well or even better than humans[20] while reproducing the human visual perception system. 

A CT few studies have reported testing AI to detect abnormal airways in CF[21–23]. As 

compared to chest radiograph[24], chest CT of CF involves additional challenges, due to the 

higher spatial resolution and the large heterogeneity in distribution and size of structural 

abnormalities over hundred of CT slices. Thus, previous CT models had difficulties in 

discriminating structural abnormalities from normal lung parenchyma. Also, no quantification 

of the disease extent was reported, and there was no attempt to correlate the findings to the 

clinical disease status.  

We hypothesized that an AI-driven semantic quantification of lung structural alterations is 

feasible in CF and could build an automated scoring system. Clinical validation expects that a 

biomarker reflects the clinical severity, correlates to a known outcome, and may improve with 

an effective therapy[7, 25]. Thus, the objective was to develop an algorithm enabling 

recognition of five structural alterations hallmarks on CT slices. Then, we aimed to assess the 

clinical validity of the quantitative scoring method by correlating to the patient’s disease 

severity, as assessed by the CT Brody score. Other secondary objectives to support the 

clinical validity were to correlate to PFT, assess variations in patients with and without 

lumacaftor/ivacaftor, and evaluate the reproducibility. 

  



 

Material and Methods 

Study Design 

CT scans and patient data were collected from patients with a diagnosis of CF confirmed by 

genetic and/or sweat chloride test[26] at three CF reference centers from two Institutions: the 

Adult’s Hospital of Haut Leveque (Pessac, France; Site1), the Children’s Hospital of Pellegrin 

(Bordeaux, France; Site2), and Cincinnati Children Hospital Medical Center (Ohio, United 

States of America; Site3). Clinical evaluation, PFT[27], and non-contrast-enhanced CT had to 

be performed as part of annual clinical care the same day[28]. The Institutional Review 

Boards approved the study after waiver of written informed consent (registration number 

NCT04760548). To assess the main outcome, a minimum of 36 patients was calculated to 

assess correlations of more than 0.45 with the CT Brody score, with a power of 0.8 and a risk 

alpha of 0.05[8]. 

Anonymized data from consecutive CF patients were collected from 2017 to 2020 in site1 

(n=43) and site2 (n=47), and from 2008 to 2010 in Site3 (n=24). The data collection periods 

enabled a wide range of CT machines, from relatively old to the newest ones, without 

exclusion. Stratified randomization based on the CT scanner models was used to split the 

original CT dataset into two non-overlapping groups[29], i.e., Training (n=23530 CT slices 

from 78 patients; Supplemental Table E1) and Test (n=11435 CT slices from 36 patients).  

There were seven CT models from two major manufacturers (Supplemental Table E2), and 

there was no overlap in CF patients between the two cohorts.  

To create a final independent clinical validation cohort (n=23940 CT slices from 70 patients), 

including a longitudinal analysis, data from consecutive CF patients were retrieved from 2014 

to 2016 at Site1 (n=32) and Site2 (n=38). Patients were not included if imaging was 



performed <4 weeks from an acute exacerbation[30] or if the participant had previously been 

included in the Training or Test cohorts (n=0). Ten of the patients had initiated 

lumacaftor/ivacaftor treatment, which was introduced for clinical use during 2016 in the 

authors’ country, and repeated examinations at one year. The remaining sixty patients 

repeated examinations at two years (Figure 1). 

 

AI Training Framework 

Briefly, five labels were manually completed in the CT axial plane by consensus of three 

thoracic radiologists on inspiratory CTs with standard kernels[31] and designated as ground-

truth (GT) (Supplemental Method E1; Figure E1). They represented five lung structural 

alterations hallmarks[32]: bronchiectasis, peribronchial thickening, bronchial mucus; 

bronchiolar mucus; and collapse/consolidation. A sixth label identified the surrounding lung 

parenchyma. Three 2D-convolutional neural networks (CNNs)[33–35] were trained utilizing 

the Training cohort after data augmentation[36, 37]. A majority vote[38] was performed to 

complete a final AI-driven multi-label segmentation (Supplemental Method E1; Table E1-E2-

E3). 

 

Evaluation of AI semantic similarity and agreement 

In the Test cohort, 36 CT scans (11435 axial CT slices) were shuffled randomly before being 

segmented by the 2D-CNNs to assess the 2D-similarity between AI-driven and GT test labels. 

Then, the shuffled CT slices were re-assigned to their initial study to calculate each CT scan's 

label volume, and a 3D-agreement was assessed.  

 



Evaluation of AI clinical validity 

Patients’ management was performed according to a standard of care[39]. AI-driven volumes 

were normalized to determine correlations to PFT and a modified CT Brody score[8] 

(Supplemental Method E2-E3; Table E4). Longitudinal evaluations were performed in the 

Clinical Validation cohort by using paired-comparison analyses. 

 

Reproducibility and repeatability  

In the Clinical Validation cohort, AI-driven measurements were performed twice, by using an 

advanced computer system and then a standard computer system (Supplemental Method E4). 

A random subset of 8 patients’ CTs (Supplemental Table E5) was also manually segmented 

twice by an observer, 6 months apart, and then independently by a second observer, blinded to 

any other data and the other observer labels. 

 

Statistical Analysis 

Statistical analyses were performed using the MedCalc® software (Ostend, Belgium) and 

graphs by using the Prism® (San Diego, USA) softwares. As a first attempt study, no 

assumption on the distribution of AI quantitative parameters was possible a priori. Thus, non-

parametric statistical tests were used. Data were expressed as medians with minimum-to-

maximum range. Similarity was assessed by calculating the overall pixelwise balanced 

accuracy, Sorensen-Dice similarity coefficient (Dice), precision, and recall[40] (Supplemental 

Method E2). Agreement was assessed by Kendall’s tau correlation and Bland-Altman 

analysis[41], respectively. The bias was further assessed by using a Passing Bablock 

regression. Spearman’s rho coefficient assessed correlations, and comparison of paired-



medians was made by Wilcoxon-rank test. Correlation coefficients were classified as null 

(=0) to almost perfect (≥0.95)[42]. Comparison of correlation coefficients was performed 

according to Hinkle and colleagues[43]. A Bonferoni correction was not deemed necessary, 

since all tests were used to address planned hypotheses[44] and a p-value≤0.05 was 

considered significant. 

 

Results 

Study populations 

Clinical, functional, and CT characteristics of CF study cohorts are summarized in Table 1. 

Taken together, the median age was 13.5, ranging from 4 to 54-year-old; the ratio of 

male/female was balanced; 49% of CF patients were homozygous for the DeltaF508 mutation, 

and 28% had a chronic infection by Pseudomonas aeruginosa. The CT Brody scores ranged 

from 0 to 156 and took 15 to 20 minutes per examination. 19 out of 36 CF patients, and 44 out 

of 70 CF patients had a measurement of FEV1%>70 at baseline in the Test cohort and 

Clinical Validation cohort, respectively. Table E6 provides additional information on the 

background therapeutic management in the Clinical Validation cohort. Notably, none of 

patients with lumacaftor/ivacaftor had either oral or intravenous anti-infectious chronic 

therapy. 

 

Similarity and Agreement of Test Cohort. 

In the Test cohort, the volume of structural abnormalities per CT slice is given in Table E7. 

The highest pixelwise similarity between AI-driven and ground-truth labels was found for 

bronchiectasis (Dice=0.86) and was lowest for peripheral mucus plugs (Dice=0.49). The 



average labeling results were a Dice of 0.71, a balanced accuracy of 0.82, a recall of 0.63, and 

a precision of 0.84 (Table 2; Figure E2).  The majority vote reconstruction had higher 

precision and Dice than its three CNNs components (Supplemental Table E8). 

The 3D agreement between AI-driven volume calculations and GT labels was good to almost 

perfect, demonstrating τ ranging from 0.79 to 0.93 (Figure 2). Bland-Altman analysis showed 

that the AI-driven segmentation tended to systematically under-label abnormalities compared 

to GT; however, the mean difference was small and less than 7ml for each structural 

abnormality label (Supplemental Figure E3-E4). Regarding the Total abnormal volume, the 

systematic underestimation had a linear pattern, as assessed by the Passing-Bablock 

regression (slope=1.29; Intercept=0.63). Moreover, recognition of the surrounding lung 

parenchyma showed almost perfect pixel-wise similarity (Dice=0.99) and volume agreement 

(τ =0.99).  

 

Correlations with CF Severity 

In the Test cohort, PFT was not performed in four children, who were all less than 6-years-

old. There was a significant correlation between all AI-driven normalized volume labels and 

FEV1% (n=32; p≤0.04) and to the modified Brody score (n=36; p≤0.001) (Table 3). The 

correlation coefficients were similar to those of the corresponding GT labels (p≥0.47). 

Similarly, in an independent clinical validation cohort, all AI-driven normalized volume 

labels significantly correlated to PFT and visual CT scoring at both initial (n=70; p<0.001)  

and follow-up evaluations (n=70; p<0.001) (Table 3; Supplemental Figure E5). Three 

examples of lung AI-driven semantic labeling from the Clinical Validation cohort are shown 

(Figure 3).  

 



Paired comparisons in patients with and without lumacaftor/ivacaftor  

In the Clinical Validation cohort, patients who underwent treatment with lumafactor/ivacaftor 

treatment (n=10) had a significant reduction in normalized volumes at one year, notably 

peribronchial thickening (median difference:-6.4 [95% confidence interval: -22; -2.2]; 

p=0.005), bronchial mucus plugs (-2.5 [-19; -0.2]; p=0.005), bronchiolar mucus plugs (-4.1 [-

44; -0.3]; p=0.007), and the Total Abnormal Volume (-51 [-146; -4.2]; p=0.005), but not 

bronchiectasis ((-0.2 [-7; 4.5]; p=0.59) (Table 4; Table E9; Figure 4). Four out of these ten CF 

patients had an FEV1% of more than 80%. The ten patients with lumacaftor/ivacaftor had a 

standardized CT acquisition at two-time points, with no change in machine manufacturer or 

CT protocol (Supplemental Tables E9-E10). 

Conversely, patients without CFTR modulator treatment (n=60) increased both bronchiectasis 

(3.1 [1; 56]; p=0.002) and peribronchial thickening volumes (3.3 [0.1; 9.9]; p=0.008) at two 

years of routine follow-up (Table 4; Supplemental Figure E6).  

 

Reproducibility and repeatability  

As a fully automated measurement, AI-driven quantitative measurements had an almost 

perfect reproducibility and repeatability when completed twice in 140 CTs (42280 axial CT 

slices; Dice>0.99; Supplemental Table E12). The median time to reach AI-driven labeling 

was 2 and 10.5 minutes per CT scan by using the advanced machine and standard computer 

machines, respectively. The similarity between two independent manual segmentations was 

also assessed in a subset of 8 CTs (2580 axial CT slices). These additional evaluations 

showed an average Dice coefficient of 0.74 and 0.72, respectively, although with a median 

time of 540 minutes per observer per CT scan. 

 



Discussion 

The study demonstrates that AI-driven quantitative measurement of lung structural 

abnormalities on CT scanning in CF is feasible and can provide clinically important 

information in a broad range of patients using a wide range of CT scanners and CT 

techniques. The system showed good similarity and very good agreement with “ground truth” 

identification of expert observers' abnormalities, but dramatically quicker, with high 

reproducibility. Volumetric measurements showed a strong correlation to PFT and a well-

validated visual CT score at several timepoints. The automated quantifications were found to 

sensitively detect longitudinal changes, either a reduction in CF patients with 

lumacaftor/ivacaftor treatment or an increase during the natural course of the disease. As a 

fully automated outcome measurement, the reproducibility was almost perfect. 

 

This AI-based CT analysis differs from previously reported AI studies in CF [21–23] in 

several important ways. First, labeling was performed based on the lung volume occupied by 

all abnormalities separately, without pre-determined limits. Previous AI studies used a patch-

based approach, consisting of dividing a lung CT slice into a grid of several centimeter 

squares. Several difficulties related to this AI approach have been outlined. When multiple 

abnormalities co-exist within a single patch, a hierarchical classification is needed to assign a 

single label to the entire patch. If an abnormality represents less than 50% of a patch, it is 

labeled a normal lung and vice versa. This can lead to confusion between AI labels and, in the 

previous literature, the Dice coefficients were reported to be 0.33, at best[21]. Moreover, we 

used 2D-CNNs to train the model in a slice-by-slice fashion. This study used 78 patients’ CTs 

(23530 unique axial CT slices augmented to 288830 CT slices), in patients with a median age 

of 21 (from 4 to 51-years-old). Previous reports were performed using initial datasets of less 

than 2000 CT slices[21–23]. An important factor in the quality of AI implementation is the 



dataset's size to develop the system[45]. Also, three 2D-CNNs were trained, and the group of 

CNNs used a “majority rule” design. This allowed prioritizing detection precision to minimize 

false-positive identifications. 

In addition, the evaluation was done in an external Test cohort of 36 patients (11435 CT 

slices), where all CT slices composing each CT scan were present. Previous studies were 

performed on a subset of CT slices[21] or in the same dataset used to tune the AI model[22]. 

Thus, a singularity of this CF study is to provide an extensive overview of the method's 

performance to segment an entire lung CT scan. This allows the model to be used without any 

manual interventions, such as cropping the lung areas or pre-selecting CT slices. The highest 

Dice coefficient of similarity was found for bronchiectasis and the lowest for bronchiolar 

mucus plugs. However, when structures are very small, it is known that Dice is not an 

appropriate method of evaluation[40] since any pixel of disagreement may dramatically 

reduce the Dice coefficient even when there is large-scale agreement. In addition, in 2D, both 

normal small vessels and bronchiolar mucus plugs may share similar aspects cross-

sectionnally, in the form of multiple millimeter spots[32]. However, the precision was good, 

and the AI segmentation was able to clinically correlate to the disease severity and to detect a 

variation in patients with CFTR modulator treatment.  Moreover, this metric discards the true-

negative results. This is why we used τ correlations to evaluate the disease extent at the 

patient level, and all reconstructed label volumes showed a very good 3D agreement with 

ground-truth volumes over the full range of disease severity. Of note, the majority of the 

patients involved in this study had mild disease, according to PFT[46].  

 

Clinical validation is necessary for any biomarker to be utilized for research or clinical 

practice. This study's retrospective and multisite design provided the opportunity for a “real 

world” evaluation. The study cohorts had patient characteristics similar to that of CF patients' 



larger populations, such as genetic, functional, and microbiological data[47]. First, the 

volumetric multilabel quantifications were correlated to the lung disease severity, assessed by 

PFT and a well-validated human-based CT score. Correlations were demonstrated in a Test 

cohort of 36 patients and an independent clinical validation cohort of 70 patients, at two time 

points. At cross-sectional analysis, the correlates' strength appeared similar in all cohorts, 

despite some heterogeneity in CT models and acquisition techniques[31], supporting the 

model’s generalizability. Second, in patients with CFTR modulators, the fully automated AI-

driven measurements demonstrated a significant volume reduction in peribronchial 

thickening, bronchial mucus, bronchiolar mucus, and collapse/consolidation.  Conversely, 

PFT and a visual CT score only approached significance in a small sample of 10 patients—4 

of whom had normal FEV1% at baseline. As for previous CF studies using CT, we did not 

directly compare to a control group[48, 49]. However, the natural disease course would be 

stable or worsening[50], while a similar reduction in peribronchial thickening and mucus 

plugs in patients with CFTR modulators has been reported[48, 49]. In fact, such significant 

reduction has never before been reported out of a result of therapeutics. 

In patients without CFTR modulators, the increase in bronchiectasis is also consistent with the 

known contribution of bronchiectasis to disease progression[9, 15]. This is also critical 

information, allowing clinicians to monitor disease progression and supporting treatment 

plans[51]. Besides, the lack of reversibility of bronchiectasis under novel CF treatments 

agrees with the literature[48, 49]. Therefore, our findings' clinical validity is consistently 

supported by international literature, both cross-sectionally and longitudinally. The results are 

promising and pave the way for future prospective trials, since AI may facilitate large-scale 

studies at reduced cost. In this setting, chest CT standardization is likely further beneficial to 

optimize the method's sensitivity[52].   

 



The AI-based system offers multiple advantages over expert reader scoring systems. The time 

required to get AI-driven quantifications in each full-lung CT exam was only 2 minutes, 

compared to many hours for a human performing similar whole-lung analysis. 

Simultaneously, the reproducibility and repeatability of the clinically relevant assessments 

was almost perfect.  This level of reproducibility is unique as compared to reader scoring 

systems. The Digital Imaging and Communications in Medicine (DICOM) standard used by 

all imaging equipment manufacturers allows for easy CT data transfer in a research context. 

In CF centers, anyone with basic computer skills can be quickly trained to perform the 

analysis. This simplifies the use of CT scoring in both clinical use and for drug development. 

In addition to these advantages over expert reader scoring systems, these initial results suggest 

that peribronchial thickening, which has not been a useful parameter in expert reader systems, 

may be an important measure using an AI-based system. Peribronchial thickening is one of 

the most difficult findings to assess visually[12], and it is considered at the third rank of 

priority in hierarchical systems[21]. However, a reliable assessment of reversible structural 

alterations has become important in the contemporary context of novel CF treatments[48]. 

With the increasing interest in sensitively assessing rapidly reversible changes, this may 

dramatically improve CT scanning's ability to serve as a short-term outcome surrogate. 

Nevertheless, both visual and automated quantitative measurements are complementary 

practices, in the authors’ opinion[53].  

 

Several limitations of the study could be pointed out. First, as an initial description, the study 

was retrospective; a multicenter, prospective study would be a useful comparison. Second, 

expiratory CTs were not performed in two of the three sites, so the functional evaluation of air 

trapping was not possible as a sub-score. Indeed, AI was trained in a multilabeling fashion, to 

detect structural abnormalities only. In addition, expiratory CT requires additional radiation 



exposure and, despite advances in the reduction of radiation doses, this is not practiced in all 

CF centers[48]. Third, the labelings were not made in a pure 3D fashion. However, as for 

human assessment, information from adjacent CT slices could improve the performance. 

Further evaluation using alternative strategies such as multiplane consensus labeling[54] or 

3D algorithm[45] would be worth evaluating, albeit with a heavy computational burden. Also, 

we have not created a label to segment the lung vessels[55]. An evaluation of the spatial 

evaluation of the lesions, such as central and peripheral lung, could be also interesting to 

address in a next implementation. Fourth, two major manufacturers were present in the 

datasets, and additional evaluation with other manufacturers would be of added value. Fifth, 

the lower limit of age was four years. Conversely, the semi-automated PRAGMA-CF method 

has been well-validated in infants and younger children[15]. Sixth, the lowest CT dose in the 

study was 8 mGy.cm. Although an ultra low dose CT may correspond a CT dose lower than 

20 mGy.cm[56], this AI has not yet been trained at lower radiation doses. Finally, a 

translation to recently developed radiation-free MRI acquisitions at high resolution could be 

envisioned[53, 57]. 

 

To conclude, we have demonstrated for the first time that an automated AI-driven quantitative 

scoring of structural abnormality is feasible and robust in CF, using non-contrast-enhanced 

CT. The multilabel scoring method demonstrated clinical validity for a reproducible and 

precise evaluation of an entire CF lung, with quantifiable changes over time. Moreover, it 

could provide an outcome for a sensitive therapeutic response detection in the current context 

of highly effective CFTR modulator therapy.  
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Tables 

 

Table 1. Patient characteristics at initial evaluation 

  

    Test Cohort  Clinical Validation Cohort 

  
(n=36) (n=70) 

   

n=10 patients with 

lumacaftor/ivacaftor 

n=60 patients without 

lumacaftor/ivacaftor 

  
      

Age Years 13 (4-54) 13.5 (12-37) 15 (6-48) 

Gender Male/Female 16/20 5/5 28/32 

Body mass index kg.m
-2

 18 (13-27) 17 (12-23) 19.5 (13-33) 

Genetic mutation 
DeltaF508 

homozygous/heterozygous 
18/14 10/0 24/36 

Pancreatic insufficiency* Yes/no 21/11 9/1 45/15 

Diabetes Mellitus* Yes/no 0/32 0/10 3/57 

Hepatobiliary disease* Yes/no 3/29 2/8 8/52 

     
PFT* FEV1% 77 (30-124) 71 (44-104) 76 (22-123) 

 
100xFEV1/FVC 75 (46-109) 68 (62-89) 73 (49-97) 

 
100xRV/TLC 31.8 (14-110) 31.4 (13-72) 32 (19-86) 

 
    

     
Visual CT score modified Brody score 39 (0-156) 45.5 (5-152) 48 (0-153) 

     

Chronic colonization* 
Pseudomonas aeruginosa 

(yes/no) 
11/21 3/7 16/44 

 

Staphylococcus aureus 

(yes/no) 
12/20 4/6 29/31 

          

  

Data are median with (minimum-maximum) range during the initial evaluation of CF patients. 

*In the Test cohort, data were missing in 4 CF patients. 

Legends: CF=cystic fibrosis; PFT=pulmonary function tests; FEV1=forced expiratory volume in 1 second; FVC=forced vital 

capacity; RV=residual volume; TLC=total lung capacity; %=percentage predicted; mBrody score=modified Brody score 

 

 

 

 

 

 



Table 2. Semantic evaluation of 2D pixel similarity between AI-driven and ground-truth labels in the Test 

cohort. 

            

Overall pixelwise similarity                    
Balanced 

Accuracy 
Dice Recall Precision 

in 11435 axial CT slices         

            

Bronchiectasis 0.91 0.86 0.79 0.90 

Peribronchial thickening 0.81 0.69 0.61 0.78 

Bronchial mucus plug 0.87 0.79 0.73 0.87 

Bronchiolar mucus plug 0.68 0.49 0.37 0.78 

Collapse/Consolidation 0.85 0.75 0.66 0.86 

Total Abnormal Lung 0.82 0.71 0.63 0.84 

Lung Parenchyma 0.99 0.99 0.99 0.99 

            

            

Note: Owing to the large number of pixels over 11435 CT slices, the confidence interval of the pixelwise similarity 

measurements was considered negligible. The Total Abnormal Lung corresponds to the average of five structural 

alteration similarity results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Correlations of normalized label volumes with pulmonary function test and visual CT scoring in the 

Test cohort and Clinical Validation cohort. 

                    

  AI-driven labeling Manual GT labeling 

    FEV1% mBrody score FEV1% mBrody score 

Test cohort (n=32) (n=36) (n=32) (n=36) 

    rho p-value rho p-value rho p-value rho p-value 

                    

Bronchiectasis -0.54 0.001 0.72 <0.001 -0.50 0.003 0.70 <0.001 

Peribronchial thickening -0.49 0.004 0.81 <0.001 -0.49 0.004 0.74 <0.001 

Bronchial mucus plug -0.69 <0.001 0.77 <0.001 -0.61 <0.001 0.73 <0.001 

Bronchiolar mucus plug -0.36 0.04 0.49 0.002 -0.39 0.02 0.58 <0.001 

Collapse/Consolidation -0.48 0.004 0.45 0.006 -0.50 0.003 0.45 0.006 

Total Abnormal Volume -0.63 <0.001 0.77 <0.001 -0.63 <0.001 0.78 <0.001 

                    

  
AI-driven labeling AI-driven labeling 

at initial evaluation at follow-up evaluation 

    FEV1% mBrody score FEV1% mBrody score 

Independent Clinical 

Validation cohort 
(n=70) (n=70) (n=70) (n=70) 

    rho p-value rho p-value rho p-value rho p-value 

                    

Bronchiectasis -0.46 <0.001 0.76 <0.001 -0.54 <0.001 0.69 <0.001 

Peribronchial thickening -0.50 <0.001 0.74 <0.001 -0.56 <0.001 0.67 <0.001 

Bronchial mucus plug -0.59 <0.001 0.72 <0.001 -0.61 <0.001 0.70 <0.001 

Bronchiolar mucus plug -0.48 <0.001 0.65 <0.001 -0.54 0.001 0.59 <0.001 

Collapse/Consolidation -0.43 <0.001 0.54 <0.001 -0.59 <0.001 0.64 <0.001 

Total Abnormal Volume -0.55 <0.001 0.82 <0.001 -0.68 <0.001 0.80 <0.001 

                    

                    

Note: data are Spearman's rho correlation coefficients. The follow-up evaluation was performed at 1 year in CF patients with 

lumacaftor/ivacaftor treatment (n=10) and 2 years in CF patients without lumacaftor/ivacaftor treatment (n=60). 

The Total Abnormal Volume corresponds to the sum of the five structural alterations volumes per CT scan. 

Legends: AI=artificial intelligence; GT=ground truth; CF=cystic fibrosis; FEV1%=forced expiratory volume in 1 second; 

mBrody=modified Brody score 

 

 

 

 

 

 

 



 

  

Table 4. Paired-comparisons in CF at initial evaluation and at follow-up, with or without 

lumacaftor/ivacaftor treatment. 

  

Clinical Validation cohort 
 

CF patients with 

lumacaftor/ivacaftor (n=10) 

CF patients without 

lumacaftor/ivacaftor (n=60) 

  
M0 M12 p-value M0 M24 p-value 

        
Normalized AI 

volumes 
Bronchiectasis Median 21.1 14.1 0.59 15.5 20.4 0.002 

  
Range (0-115) (0-126) 

 
(0-315) (0.3-357) 

 

         

 
Peribronchial thickening Median 18.4 12.1 0.005 23 25.7 0.008 

  
Range (0.1-57) (0-33) 

 
(0-188) (0.6-220) 

 

         

 
Bronchial mucus plug Median 4.1 3.6 0.005 10.3 6.8 0.64 

  
Range (0.2- 67) (0-56) 

 
(0-186) (0.3-148) 

 

         

 
Bronchiolar mucus plug Median 29.0 6.0 0.007 5.0 6.3 0.69 

  
Range (0.3-105) (0-67) 

 
(0-94) (0.0-136) 

 

         

 
Collapse/Consolidation Median 9.7 2.9 0.02 4.1 3.4 0.41 

  
Range (0-123) (0-56) 

 
(0-102) (0.3-114) 

 

         

 
Total Abnormal Volume Median 170.0 51.5 0.005 73.3 80.2 0.46 

  
Range (2.9-452) (2.4-213) 

 
(0-601) (2.6-663) 

 

         
PFT FEV1% Median 71 82.5 0.058 78.5 73.5 0.08 

  
Range (44-104) (44-118) 

 
(21-123) (22-128) 

 

         
Visual CT score mBrody score Median 45.5 35 0.06 48 52 0.18 

  
Range (5-152) (5-125) 

 
(0-153) (2-155) 

 
  

  

Note: data are medians with (minimum-maximum) range of values. The Total Abnormal Volume corresponds to the sum of the 

five structural alterations volumes per CT scan. 

Legends: M0=initial evaluation; M12=second evaluation at 1 year; M24=second evaluation at 2 years; PFT=pulmonary 

function test; FEV1%=forced expiratory volume in 1 second percentage predicted; mBrody score=modified Brody score 



 

Figures Legends 

 

 

Figure 1. Study flow chart. CF=cystic fibrosis; CT=computed tomography. 

  



 

Figure 2. Agreement between AI-driven and manual volumes in the Test cohort. The volume 

values are given in milliliters. Black circles (•) represent data acquired with a CT machine 

from GE® manufacturer, and white triangles (Δ) represent data obtained with a CT machine 

from Siemens® manufacturer. The black diagonal lines indicate the lines of equality. 

τ=Kendall’s tau correlation coefficient with [95% confidence interval]. 

  



 

Figure 3. Examples of AI-driven semantic labeling from the Clinical Validation cohort, in 

three patients with cystic fibrosis, a 14-year-old male (A, B, C), a 13-year-old male (D, E, F), 

and a 32-year-old female (G, H, I).  CF patients had an increased level of disease severity 

from top to bottom, as assessed by the forced expiratory volume in 1 second (FEV1%). The 

left column shows axial CT slices (A, D, G). The middle column shows the corresponding AI-

driven semantic labeling (B, E, H). By integrating all individual 2D labelings over the entire 

CT scans, 3D reconstructions were allowed and displayed in coronal view (C, F, I).  In panels 

E, F, H, I, blue arrows and blue labels highlight areas of central mucus plugs; red arrow and 

red labels show mucus-free lumen dilatations; green arrow and green labels show 

peribronchial thickening; cyan arrow and cyan labels show a consolidation.  

  



 

Figure 4. Comparison of AI-driven semantic labeling in the Clinical Validation cohort, before 

(A, C, E) and after (B, D, F) 1 year of treatment by lumacaftor/ivacaftor in a 15-year-old male 

with cystic fibrosis. 2D axial CT slices (A, B) are shown, with AI-driven semantic labeling 

displayed in the corresponding axial slice (C, D). By integrating all individual 2D labelings 

over the entire CT scan, a 3D reconstruction is allowed and displayed in coronal view (E, F). 

Bronchiolar mucus plugs with the “tree-in-bud” pattern are labeled in yellow color, mucus-

free bronchial lumen dilatation in red color, and peribronchial thickening in green color (C, D, 

E, F). Yellow arrows emphasize the example of bronchiolar mucus plugs (C) that were not 

visible at one year (D). There was a reduction in total abnormal volume (TAV) before and 

after treatment (E, F). FEV1% was normal at baseline (104%) and remained stable at follow-

up (103%). 
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SUPPLEMENTAL METHODS 

 

Supplemental Method E1. Artificial Intelligence Training Framework 

 

Supplemental Table E1 describes the population characteristics of the 78 cystic fibrosis (CF) 

patients whose computed tomography (CT) examination was entered in the artificial 

intelligence (AI) Training dataset. There was a wide range of ages, from 4- to 51-year-old, 

and a wide range of disease severity, as assessed by forced expiratory volume in 1-second 

percentage predicted (FEV1%) at pulmonary function test (PFT), from 31 to 114%.   

Three CF reference centers from two Institutions were involved: the Adult’s Hospital of Haut 

Leveque (Pessac, France; Site1), the Children’s Hospital of Pellegrin (Bordeaux, France; 

Site2), and Cincinnati Children Hospital Medical Center (Ohio, United States of America; 

Site3). All three sites correspond to geographically distinct CF reference centers, notably with 

their medical team and their own CT machines[1]. CT and PFT were performed the same as 

part of the annual evaluation. 

Pulmonary function tests were completed by using a bodyplethysmography devices (site1: 

Medisoft, Belgium; site2: Jaeger, Germany; site3: SensorMedics, USA). The examinations 

were performed according to the joint ATS/ERS taskforce guidelines [2], and a daily 

calibration of devices was routinely performed. Reference values were determined according 

to Quanjer et al. in site 1 and 2[3], and according to Wang et al. in Site 3[4]. This evaluation 

requires the cooperation of the patients, which is not always possible notably in children 

under the age of 6-year-old[5]. 



Supplemental Table E2 describes the CT characteristics. There were seven different machine 

models from 2 major manufacturers over the three sites, namely General Electric (GE) GE 

Lightspeed 16®, GE LightSpeed VGT®, GE Revolution®, Siemens Somatom Emotion®, 

Siemens Somatom Sensation 16®, Siemens Somatom Definition 64®, and Siemens Somatom 

Force®. The matrix was 512*512, the dose-length product ranged from 8 to 260 mGy.cm and 

the slice thickness from 1 to 1.25 mm. 

All patients were thoroughly coached in breathing techniques before each CT scan and CT at 

full inspiration and reconstructed with standard kernels were used. This methodology choice 

deserves some comments. A previous study has shown that standard kernel CT noise texture 

is similar between manufacturers[6] and avoids the high level of noise-induced by “sharp” 

filters[6]. Second, AI was trained by using inspiratory CT images only. Expiratory CT 

requires additional radiation exposure and, despite advances in CT reduction of radiation 

doses, this is not practiced in all CF centers[7–11]. Moreover, inspiratory images are more 

easily obtained than expiratory images[12], improving reliability and allowing younger 

patients to provide the necessary cooperation. Importantly, using only inspiratory images 

decreases radiation exposure by 50%. 

 

 

Methodology used for labeling of CT slices 

The annotation of CT slices was done in consensus between three observers of 6, 12, and 25 

years of experience in thoracic imaging, who are part of a CF reference center which belongs 

to the European Cystic Fibrosis Society Clinical Trial Network,  and with published expertise 

in CF scoring of lung CT and MRI[13–17]. 

Manual segmentation of labels was performed by using the 3D Slicer software 4.11, an open-

source software. CT images were displayed with parenchymal window width and level 

(width, 1500 Hounsfield Unit; level -450 Hounsfield Unit)[18]. Five labels were created to 

represent five main hallmarks of structural alterations of CF: bronchiectasis, peribronchial 

thickening, bronchial mucus plugs, bronchiolar mucus plugs with the “tree-in-bud” pattern, 

and collapse/consolidation[19]. In this study, bronchiectasis refers to the mucus-free airway 

lumen dilatation, and the bronchial mucus plug was scored when a secretion filled the 

bronchial lumen entirely. A sixth label was also created, which corresponds to the lung 

parenchyma, as the total lung minus the sum of other abnormal labels. Bulla or sacculation 

was also not part of the analysis, the former being a rare abnormality[20] and the second 

without a definition[19]. One could discuss that bronchiectasis was meant for mucus-free 



bronchial lumen dilatation herein. There is not a single definition of bronchiectasis[21]. 

However, the multilabel method allows flexible evaluations and could enable customized 

combinations, such as a mix of the airway lumen, airway wall, and mucus alterations, as 

proposed earlier[22]. In this study, a detailed description of each feature was provided, and we 

did not attempt to perform such combinations. The pipeline to reach a consensus CT 

evaluation is illustrated in Figure E1. One observer with 12 years of experience in thoracic 

imaging and published expertise in CT scoring of CF made the annotations on a slice-by-slice 

analysis over a full CT acquisition. After recognizing a specific label, the observer had to 

delineate their shape and extent. Multiplanar reformations and scrolling of CT slices were 

allowed to identify target structural alterations better. Two independent observers of 6 and 25 

years of experience in thoracic imaging had to visually check the segmentations at the 

segmental level. A segment was considered false-negative if a specific label was missing in a 

lung segment. Conversely, a false-positive was scored when a label was incorrectly present in 

a lung segment. Moreover, a visual agreement of more than 80% in the visible spatial extent 

of true-positive findings was necessary. The threshold of 80% was arbitrary, to take into 

account the human interobserver reproducibility. The true-negative results from the 

surrounding lung parenchyma were not considered for visual consensus analysis. 

If at least one segment was scored as incorrectly labeled by one observer due to false-positive 

and/or false-negative labeling or an agreement in the spatial extent of true-positive labels 

<80%, the CT examination was returned for edits. The process was continued until all 

observers agree that no false-positive or false-negative lung segments were present in the 

multilabel segmentation. The visual extent of true-positive matched all three observers by 

more than 80%. Thus, the CT multilabel segmentation was considered a consensus CT 

segmentation and entered in the AI framework as “ground-truth” (GT). The mean time to 

reach a first CT multilabel segmentation was 10 hours (including all labels). The mean time to 

achieve a consensus CT segmentation was six additional hours, depending on the number of 

structural lung alterations. 

All ground-truth labels were performed randomly, blinded to any other data, and before any 

AI labeling. 

 

Description of the AI pipeline 

Convolutional neural networking training was performed on Lambda Labs computer running 

Ubuntu with ten core I9-9820X processor, 128GB memory, Titan RTX GPU with 24GB 



memory. We allocated 23 530 axial CT slices from 78 CF patients' CT scans to create the 

image analysis pipeline. As mentioned above, they were annotated by the consensus of three 

expert radiologists as training data. The multilabel segmentation included five classes 

representing five main hallmarks of structural alteration in the cystic fibrosis lung and a sixth 

class to characterize the surrounding lung parenchyma. Then, each CT slice was scaled to a 

value between 0-1. To improve the method's generalizability, we used the Vicinal Risk 

Minimization principle to train similar but different training data examples through data 

augmentation[23]. The accompanying segmentation was used to create heuristic data 

augmentation by applying a deterministic sequence of transformation functions. In our 

implementation, ten new image/segmentation combinations were obtained by applying affine 

transformations, including random combinations of shearing, scaling, rotation, and 

translation.  Data augmentation was performed using Keras image data preprocessing tools 

(available at https://keras.io/api/preprocessing/image/). After augmentation, there were 258 

830 unique 2D-CT image and semantic segmentation pairs (1 original plus ten augmented) for 

neural network training. To further improve generalizability, random pairs of the 

image/segmentation data were selected to undergo Mixup augmentation[24].  Another 30 000 

Mixup image/segmentation pairs were created and made available for neural network training.   

A total of 288 830 CT slices data were pooled together, shuffled regardless of the CT scan 

they were originally coming from, and then split randomly 80%/20% as training and 

validation datasets for neural network optimization. Three two-dimensional (2D) 

convolutional neural network (CNN) architectures were trained based on the popular U-Net 

model with different backbone architectures. These included:  

1) InceptionResNetv2 (Model 1) is a convolutional neural architecture that builds on the 

Inception family of architectures but incorporates residual connections, replacing the filter 

concatenation stage of the Inception architecture[25];  

2) ResNet50 (Model 2) is a convolutional neural network that is 50 layers deep and uses 

residual learning[26]; 

3) the classic U-net (Model 3) is a convolutional neural network, where the main principle is 

to supplement a usual contracting network by successive layers, where polling operators are 

replaced by upsampling operators[27]. 

These models were chosen for two main reasons. First, the three of them are known to have 

made such significant contributions to the field of imaging segmentation that they have 

https://keras.io/api/preprocessing/image/


become widely considered as current standards[28]. Thus, they are commonly used as 

building blocks for many segmentation architectures[29]. Second, their backbone 

architectures are different; thus, their segmentation result is not expected to be entirely 

similar, allowing a Majority Vote ensemble of different classifiers[30]. 

 

The optimizer algorithm selected was Adam, a replacement optimization algorithm for 

stochastic gradient descent for training deep learning models[31]. The loss function was 

combined with categorical cross-entropy and Dice[32] by taking into account the overall 

performance of the six labels.  The Input shape was (512x512x1), and the Output shape was 

(512x512x7). The batch size was 3, and 15 epochs were performed.  

Finally, to improve segmentation consistency, a majority vote[33] of the three outputs was 

performed at each pixel to determine the final semantic multilabel segmentation using ANTs 

(https://github.com/ANTsX/ANTs). The rationale is as follows: 

The rationale is as follows:  

- Assume n independent classifiers with an error rate ϵ. 

- Assume a binary classification task (yes/no) 

- Assume the error rate of each independent classifier is better than random guessing 

(i.e., ϵ is lower than 0.5 for each binary classification) 

Let   (     )be a Bernouilli variable:     if the classifier k makes a good 

prediction (this happens with a probability 1-ϵ) and     if the classifier k makes a 

wrong prediction (this happens with a probability ϵ). 

Let   ∑   
 
   be the number of classifier that make a wrong prediction.  is a 

Binomial variable and we have: 

 (   )  (
 
 
)   (   )    

Therefore, the probability that we make a wrong prediction via the ensemble on n 

classifier is equal to: 

 (  
 

 
)  ∑ (

 
 
)

 

     ⁄  

  (   )    

As a consequence, by making the assumptions mentioned above, it is expected that the 

majority voting error of an ensemble of n independent classifiers converges toward 0 

as long as the number n of classifiers increase. 

https://github.com/ANTsX/ANTs


That being said, we have used three models, mainly because we have used a “hard voting” 

system instead of “soft voting” system. Indeed, we have not weighted the prediction made per 

each model. Thus, using a hard voting system, any pair number of models would lead to the 

possibility of equality between classifiers, and thus, unlabeled pixels. In this implementation, 

we have chosen to assign a label to all pixels. 

However, other methods of voting systems could be implemented and tested in next studies or 

other groups, for instance soft voting systems or a number of models higher than three. 

However, one could also expect that the time required to get the final results will be 

necessarily much higher by using more than three models. 

 

Pilot evaluation of the manual segmentations chosen as Ground Truth 

 

Supplemental Table E3 shows the result of a pilot statistical analysis performed in the 

Training data set. It shows that all labels from the consensus CT segmentations significantly 

correlated to other well-established biomarkers of the lung disease severity, notably FEV1% 

at PFT, and a modified CT Brody system at CT (Supplemental Table E4)[34], with all p-value 

from all labels being ≤0.001.  

A modified version of Brody and colleagues' original scoring system (24) was necessary since 

expiratory CT was not performed in two of the three CF reference centers. Thus, the feature 

of air trapping was not available for analysis as a sub-score and was not part of the visual CT 

scoring evaluation. In the Training dataset, the visual modified Brody score of anonymized 

CTs was established by Obs3, blinded to any other data. 

 

 

 

Supplemental Method E2. Test Cohort evaluation 

All CF patients from the external Test cohort were not part of the Training cohort. All manual 

ground-truth CT labels in the Test dataset were done using the same method as in the Training 

dataset and before any AI segmentation.  

Since the AI-driven quantification was performed using 2D-CNNs, an evaluation of the 

similarity between AI-driven segmentation and GT labels was planned via a pixel-by-pixel 

2D-similarity assessment over 11345 CT slices of 36 patients CTs, after anonymization, 

blinded from any other data. For this, all 2D-axial CT slices were shuffled randomly 



altogether before being segmented by the 2D-CNNs. True-positive (TP), true-negative (TN), 

false-positive (FP), and false-negative results (FN) were counted and summed over the full 

dataset of 11345 CT slices to calculate the balanced accuracy, Sorensen-Dice coefficient, 

recall, and precision, as reported earlier[35]. 

 

The standard formula of calculation were as follows: 

Dice = 2*TP / (2*TP + FP + FN) 

Recall = TP / (TP + FN) 

Precision = TP / (TP + FP) 

True negative rate = TN / (TN + FP) 

Balanced accuracy = (Recall + True negative rate) / 2 

 

However, in the specific field of lung CT of CF airways, the similarity metric evaluations 

have to deal with specific issues as follows: 

- The study deals with 2D algorithms. Thus, the unit of measurement is the pixelwise 

similarity, since there is no 3D information in the code of the CNNs, neither for Training nor 

for Test purposes. 

- The full CT examinations of all patients were used, to enable an extensive overview of the 

model performance over a full CT scan, without any pre-selection of some CT slices. This 

includes both tasks of detecting and ruling out the disease presence or absence. 

- However, it is known that there is a vast heterogeneity in the regional distribution of 

structural abnormalities. Therefore, the five structural abnormalities were heterogeneously 

present/absent across the stack of CT slices. 

- Moreover, each label were not segmented by 6 different AI algorithm, but the same AI 

algorithm in a multilabeling fashion. Thus, six labels (including the normal lung parenchyma) 

plus the background image (extrapulmonary pixels) were considered to perform probability 

maps per each CT slice by the same AI algorithm, before allocating a single label per each 

pixel of the CT slice image.  



- In addition, it is known that the similarity metrics cannot be considered similarly when 

dealing with small or large structures. Owing to the known vast heterogeneity in size and 

shape of structural abnormalities, the metrics would not have the same meaning from one CT 

slice to another[36]. 

  

Therefore, the heterogeneity of distribution of lesions does not allow to provide the results as 

a mean per CT slice with standard deviation. Notably, the heterogenous distribution of lesions 

would inevitably lead to a substantial amount of 0 divisions in the calculations, thus a 

mathematical impossibility to calculate the metrics. In addition, the heterogeneity in size and 

shape of the structural abnormalities would also lead to mix similarity results that would not 

have the same meaning from one evaluation to another. Thus, such approach would also lead 

to inconsistent and uninterpretable results[36]. 

This is why we have performed the similarity evaluation by using a spatial overlap 

calculation over the full set of CT slices[35]. By doing so, one could remark that the 

uncertainty of the result is expected to be negligible, since it is performed over 512x512 

pixels per CT slice, over 11435 CT slices herein. 

Indeed, the mathematical formula of the 95% confidence interval would be: 

P = p ± 1.96 √[p(1-p)/n] where P is the maximum or minimum limit of the 95% confidence 

interval of a ratio, p the measured ratio, and n is the number of evaluations (herein the number 

of pixels). 

Thus, we have assumed that the 95% confidence interval of the pixelwise similarity metrics 

are negligible.  

 

Finally, the Total Abnormal Lung's similarity result was calculated as the mean of the five 

label results, related to bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar 

mucus, and collapse/consolidation measurements. 

Then, the shuffled CT slices were re-assigned to their initial CT examination, and the volume 

of labels was calculated per each CT scan according to the volume of positive findings of 

each label, and expressed as a volume in milliliters. One could remark that these volumetric 

measurements are original, as compared the standard cross-sectional measurements of 

airways, which represents the plain area of a single cross-section along a bronchial path[14]. 



The Total Abnormal Volume was defined as the sum of the five structural alteration volumes 

per CT scan. The Total Lung Volume was defined as the sum (Total Abnormal Volume + 

Lung Parenchyma Volume). 

To take into account variations in lung volumes, notably between children and adults, or 

related to lung growth over time in children and teenagers, normalization was performed as 

follows: Normalized Volume of Label(y) = [Volume of Label(y) / Total Lung Volume] x 10
4
. 

The factor 10
4 

was done to take into account the expected magnitude of volume difference 

between the normal central airway tree at the segmental level and the lung volume[37]. 

 

Supplemental Method E3. Visual CT scorings. 

As mentioned above, we used a modified Brody score on CT[34] (Supplemental Table E4).  

Two separate sessions were done: the first session was dedicated to CTs of the Test cohort, 

and the second session was dedicated to CTs of the Clinical Validation cohort. 

Per each session, anonymized CTs of a given cohort were analyzed randomly by Obs1 and 

Obs2, independently and blinded to any other data. The mean of both evaluations was kept for 

further analysis. The time required to perform a CT Brody score ranges between 15 to 20 

minutes. 

 

Supplemental Method E4. Reproducibility and repeatability of evaluations. 

To assess the reproducibility of AI evaluations, the 140 CTs of the Clinical Validation cohort 

were runned on two different computers: 

- An “advanced” computer, with the following characteristics: Lambda Labs computer 

running Ubuntu with ten core I9-9820X processor, 128GB memory, Titan RTX GPU 

with 24GB memory 

- A “standard” computer, with the following characteristics: Dell computer running 

Windows 10 with I7-6700 processor, 32 GB memory, GeForce GT 730 with 2 GB 

memory. 

The repeatability of AI evaluation was also assessed by repeating twice the 140 CTs by using 

the advanced computer. 



Moreover, a random subset of 8 patients’ CTs (e-Table5) was segmented independently by 

Observer 1 and 2 with 6 and 12 years of experience, respectively, to assess the manual 

interobserver reproducibility. The same dataset was manually segmented a second time by 

Observer 2, 6 months apart from the first evaluation, to assess the intra-observer repeatability. 

Observer 1 and 2 were the same observers than those who were part of the Training 

evaluations. 
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Table E1. Characteristics of 78 cystic fibrosis patients in the Training dataset 

        

      Training dataset 

        

        

Age Years   21 (4-51) 

Gender Male/Female   36/42 

Body mass index kg.m
-2

   19 (12-28) 

        

Pulmonary function tests FEV1%   74 (31-114) 

  100xFEV1/FVC 73 (38-92) 

 100xRV/TLC 41 (17-106) 

        

Visual CT score mBrody score 40 (0-151) 

        

        

Data are median with (minimum-maximum) range of values 

 

Legends: FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; RV=residual volume; TLC=total 

lung capacity; %=percentage predicted; mBrody=modified Brody score. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table E2. Characteristics of CT scans 

 
          

              

Dataset Machine model Kernel Reconstruction DLP kV mAs 
Slice 

thickness 

        (mGy.cm) 
 

  (mm) 

                

Training 
Somatom Sensation 16® (Site1, 

n=7 ; Site2, n=9) 
STD (n=31) FBP (n=42) (8-260) (100-140) (5-40) (1-1.25) 

  
Somatom Definition 64® (Site1, 
n=8 ; Site2, n=10) 

B40s (n=20) ASiR (n=16)         

  
Somatom Force® (Site1, n=9) 

Somatom Emotion® (Site3, n=4) 
Br40 (n=7) SAFIRE (n=20)         

  GE LightSpeed 16® (Site3, n=9) I30f (n=20)           

  GE LightSpeed VGT® (Site3, n=6)             

  GE Revolution® (Site2, n=16)             

                

Test 
Somatom Sensation 16® (Site1, 
n=2 ; Site2, n=5) 

STD (n=14) FBP (n=12) (9-210) (100-140) (5-40) (1-1.25) 

  
Somatom Definition 64® (Site1, 

n=3 ; Site2, n=6) 
B40s (n=8) ASiR (n=10)         

  Somatom Force® (Site1, n=5) Br40 (n=5) SAFIRE (n=14)         

 Somatom Emotion (Site3, n=1) I30F (n=9)      

 GE LightSpeed® 16 (Site3, n=2)       

  GE LightSpeed VGT® (Site3, n=2) 
 

          

  GE Revolution® (Site2, n=10)             

               

                

Clinical 

Validation 

Somatom Sensation 16® (Site1, 

n=28 ; Site2, n=35) 
B40s (n=53) FBP (n=75) (12-64) 110 (5-54) 1 

  
Somatom Definition 64® (Site1, 
n=37 ; Site2, n=40) 

Br40 (n=22) SAFIRE (n=65)         

    I30F (n=65)           

                

            

 

Legend: Site1=Adult Hospital of Haut Levêque (Pessac, France); Site2=Children Hospital of Pellegrin 

(Bordeaux, France); Site3=Cincinnati Children Hospital Medical Center (Ohio, United States of America); 

GE=General Electric®; STD=standard kernel; FBP=filtered-back projection; ASiR=adaptive statistical iterative 

reconstruction; SAFIRE=sinogram affirmed iterative reconstruction; kV=kilovoltage, mAs=milliampere second; 

DLP=dose length product; for kV, mAs and pixel size, data between parentheses are the (minimum-maximum) 

range of values. 

 

 

 

 

 



 

 

 

Table E3. Correlation between structural abnormality volumes, lung function, and structural 

severity in the Training dataset. 

              

              

    Manual segmentation 

Normalized volumes   FEV1%   mBrody score 

    rho p-value   rho p-value 

              

Bronchiectasis   -0.45 0.001   0.72 <0.001 

Peribronchial thickening   -0.49 <0.001   0.70 <0.001 

Bronchial mucus plug   -0.64 <0.001   0.67 <0.001 

Bronchiolar mucus plug   -0.46 <0.001   0.69 <0.001 

Collapse/Consolidation   -0.35 0.001   0.39 <0.001 

Total Abnormal Volume   -0.60 <0.001   0.79 <0.001 

              

              

Note: Data are Spearman's rho coefficient of correlation. The Total Abnormal Volume corresponds 

to the sum of five structural alteration volumes. Normalized volumes were obtained by dividing a 

given structural alteration volume by the corresponding total lung volume. 

Legends: FEV1%=forced expiratory volume in 1-second percentage predicted; mBrody=modified 

Brody score 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table E4. Brody HRCT score (reproduced from the original publication by A. S. Brody et al. J Pediatr 2004). 

    

Parameter Calculation 

 

 

Bronchiectasis score (0-12) 

(Extent of bronchiectasis in central lung + Extent of bronchiectasis in peripheral 

lung) x Average bronchiectasis size multiplier [0.5 = 0; 1 = 1; 1.5 = 1.25; 2.0 = 

1.5; 2.5 =1.75; 3 = 2] 
 

where 
 

Average bronchiectasis size = ( Size of largest dilated bronchus + Average size 

of dilated bronchus )/2   

Mucus plugging score (0-6) 
The extent of mucous plugging in central lung + Extent of mucous plugging in 

peripheral lung  

Peribronchial thickening 

score (0-9) 

(Extent of peribronchial thickening in central lung + Extent of peribronchial 

thickening in peripheral lung) x Severity of peribronchial thickening [1 = mild; 

1.25 = moderate; 1.5 = severe] 
 

Parenchyma score (0-9) 
The extent of dense parenchymal opacity + Extent of ground-glass opacity + 

Extent of cysts or bullae  

Air trapping score (0-4.5) 
Extent of air trapping x Appearance of air trapping [1 = subsegmental; 1.5 = 

segmental or larger]  

    
 

Finding extent scoring: absent (0), 1/3 of the lobe (1), 1/3 to 2/3 of the lobe (2), more than 2/3 of the lobe (3) 
 

Bronchiectasis Severity: less than 2X adjacent vessel (1), 2x to 3x adjacent vessel (2), more than 3X adjacent 

vessel (3)   

Parameters’ definitions   
 

1.Bronchiectasis: one or more of the following criteria: a broncho arterial ratio >1, a non-tapering bronchus, a 

bronchus within 1 cm of the costal pleura, or a bronchus abutting the mediastinal pleura  

2. Peribronchial thickening: bronchial wall thickness >2 mm in the hila, 1 mm in the central portion of the lung, 

and 0.5 mm in the peripheral lung  

3. Mucus plugging: Central mucous plugging was defined as an opacity filling a defined bronchus, and peripheral 

mucous plugging was defined as the presence of either dilated mucous-filled bronchi or peripheral thin branching 

structures or centrilobular nodules in the peripheral lung 
 

4. Air trapping: areas of the lung on the expiratory images that remained similar in attenuation to the appearance 

on inspiratory images   

    
 

Note: in this study, we used a modified version of the scoring system, and the feature of air trapping was not 

scored. Indeed, in this retrospective study, expiratory CT was not performed in 2/3 sites.  

    
 



 

 

 

Table E5. Characteristics of 8 cystic fibrosis patients of the Clinical Validation cohort for 

interobserver manual similarity assessments. 

 

        

      N=8 

        

        

Age Years   12 (6-42) 

Gender Male/Female   3/5 

Body mass index kg.m
-2

   17 (13-21) 

        

Pulmonary function tests FEV1%   68 (38-95) 

  100xFEV1/FVC   77 (51-101) 

 100xRV/TLC  42 (24-85) 

        

 
mBrody score   115 (0-152) 

        

        

Data are median with (minimum-maximum) range of values 

Legends: FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; RV=residual volume; 

TLC=total lung capacity; %=percentage predicted; mBrody=modified Brody score. 

 

 

 

 

 

 

 

 



 

 

 

Table E6. Background therapeutic management in the Clinical Validation cohort. 

          

    Clinical Validation Cohort 

    n=70 

    

n=10 patients with 

lumacaftor/ivacaftor 
  

n=60 patients without 

lumacaftor/ivacaftor 

          

Inhaled treatment Antibiotics 3   24 

  LABA 4   15 

  Corticosteroid 4   15 

  Mucolytic 7   43 

          

Oral treatment Antibiotics 0   5 

  Corticosteroids 0   0 

  Antifungal 0   4 

          

Intravenous treatment Antibiotics 0   5 

  Corticosteroids 0   0 

 Antifungal 0  0 

          

          

Data are the absolute number of patients with a given chronic treatment. 

Legends: LABA=long-acting beta-agonist. 

 

 

 

 

 

 

 

 

 



 

 

 

Table E7. Description of the volume of the six labels in the Test cohort per each CT slice, in milliliters. 

  

  

                        

  AI segmentation   Manual segmentation 

Labels 
Median IQR 

95% 

CI 
Minimum Maximum 

  
Median IQR 

95% 

CI 
Minimum Maximum 

                        

Bronchiectasis 0.0005 0-0.06 0-0.04 0 2.4   0.0005 0-0.08 0-0.05 0 3 

                        

Peribronchial 

thickening 
0.001 0-0.01 0-0.5 0 2.4 

  
0 0-0.01 0-0.7 0 2.5 

                        

Central mucus 0.0005 0-0.05 0-0.4 0 1.3   0 0-0.07 0-0.4 0 1.5 

                        

Peripheral mucus 0.001 0-0.03 0-0.1 0 1.9   0.001 0-0.09 0-0.5 0 2 

                        

Collapse consolidation 0 0-0.08 0-0.2 0 4.3   0 0-0.09 0-0.4 0 4.4 

                        

Lung parenchyma 21.3 0-34.6 0-41.9 0 50.8   21.2 0-34.2 0-41.9 0 50 

                        

                        

Note: data corresponds to the volume per each CT slice, and expressed in milliliters.           

The summary characteristics were calculated from 11435 CT slices of 36 CF patients' CT         

Legend: AI=artificial intelligence; IQR=interquartile range; CI=confidence interval           

                        

 

 

 

 

 

 

 

 

 

 



 

 

 

Table E8. Performance of three convolutional neural networks in the Test dataset. 

 

 

                 

Overall pixelwise similarity in 

11435 axial CT slices 

  

Bronchiectasis 
Peribronchial 

Thickening 

Bronchial 

mucus 

plug 

Bronchiolar 

mucus plug 

Collapse 

/consolidation 

Total 

Abnormal 

Lung 

 

  
          

  

InceptionResNetv2 DICE 0.85 0.68 0.79 0.46 0.74 0.70 

  Precision 0.89 0.71 0.82 0.61 0.83 0.77 

  Recall 0.81 0.66 0.76 0.37 0.67 0.65 

  
Balanced 

Accuracy 
0.90 0.83 0.88 0.68 0.85 0.82 

    
      

ResNet50 DICE 0.83 0.67 0.77 0.48 0.70 0.69 

  Precision 0.89 0.76 0.80 0.65 0.74 0.76 

  Recall 0.79 0.60 0.74 0.38 0.65 0.63 

  
Balanced 

Accuracy 
0.89 0.80 0.87 0.69 0.85 0.82 

    
      

U-net DICE 0.82 0.65 0.75 0.45 0.72 0.68 

  Precision 0.88 0.77 0.82 0.74 0.80 0.79 

  Recall 0.77 0.56 0.69 0.32 0.66 0.60 

  
Balanced 

Accuracy 
0.89 0.78 0.84 0.66 0.85 0.80 

    
      

Majority Vote DICE 0.84 0.69 0.79 0.49 0.75 0.71 

  Precision 0.90 0.78 0.87 0.78 0.86 0.84 

  Recall 0.79 0.61 0.73 0.37 0.66 0.63 

  
Balanced 

Accuracy 
0.90 0.81 0.87 0.68 0.85 0.82 

    
      

                

 

Note: Owing to the large number of pixels over 11435 CT slices , the confidence interval of measurements was 

considered as negligible. 

The Total Abnormal Lung values correspond to the average of the five structural alterations results. 

 

 

 

 

 



 

 

 

Table E9. Longitudinal evaluation of CF patients at initial evaluation and at follow-up, with or 

without lumacaftor/ivacaftor treatment. 

  

Clinical Validation cohort 
CF patients with 

lumacaftor/ivacaftor (n=10) 

CF patients without 

lumacaftor/ivacaftor (n=60) 

  
Median 

difference 

95%CI of 

median 

difference 

Median 

difference 

95% CI of 

median 

difference 

          

Normalized AI 

volumes 
Bronchiectasis -0.2 [-7; 4.5] 3.1 [1; 5.6] 

            

  Peribronchial thickening -6.4 [-22; -2.2] 3.3 [0.1; 9.9] 

            

  Bronchial mucus plug -2.5 [-19; -0.2] -0.3 [-2.4; 0.8] 

            

  Bronchiolar mucus plug -4.1 [-44; -0.3] -0.01 [-0.7; 1.2] 

            

  Collapse/Consolidation -1.4 [-72; 0.01] 0.1 [-1; 0.8] 

            

  Total Abnormal Volume -51 [-146; -4.2] 3.6 [-6.6; 8.7] 

            

PFT FEV1% 5.5 [-1; 19] -1.5 [-4; 0] 

            

Visual CT score mBrody score -2.5 [-30; 0] 5 [0; 5] 

  

  

Note: The Total Abnormal Volume corresponds to the sum of the five structural alterations volumes per CT 

scan. 

Legends: AI=artificial intelligence; PFT=pulmonary function test; FEV1%=forced expiratory volume in 1 

second percentage predicted; mBrody score=modified Brody score 

 

 

 

 

 

 



 

 

 

Table E10. Paired comparisons of raw AI-driven label volumes in CF patients with and without lumacaftor/ivacaftor 

treatment 

                            

 Clinical Validation cohort 

  
  CF patients with lumacaftor/ivacaftor   

CF patients without 

lumacaftor/ivacaftor 

      (n=10)   (n=60) 

      M0   M12   
p-

value 
  M0   M24   

p-

value 

                            

                            

Raw AI volumes (ml) Bronchiectasis Median 6.8   5.8   0.88   5.8   8.6   0.005 

    Range (0-75)   (0-82)       (0-144)   (0.1-146)     

                            

  
Peribronchial 

thickening 
Median 6.3   3.9   0.005   6.8   11.5   0.003 

    Range (1-18)   (0-11)       (0-84)   (0.2-99)     

                            

  Bronchial mucus plug Median 2.3   2.0   0.005   3.0   2.7   0.96 

    Range (0.08-20)   (0.01-13)       (0-110)   (0.1-58)     

                            

  Bronchiolar mucus plug Median 8.3   3.2   0.006   1.7   2.8   0.52 

    Range (0.1-36)   (0.01-25)       (0-32)   (0-49)     

                            

  Collapse/Consolidation Median 3.0   1.5   0.01   1.5   1.3   0.68 

    Range (0-80)   (0-17)       (0-55)   (0.9-46)     

                            

  Total Abnormal Volume Median 56.0   20.4   0.005   21.4   29.5   0.17 

    Range (1.0-294)   (0.8-100)       (0-276)   (0.8-249)     

                            

  Lung Parenchyma Median 3250   3457   0.04   3549   3929   0.001 

    Range (2326-6494)   (2328-6494)       (1009-7405)   (1389-7455)     

                            

                            

 

Note: Data are medians, with (minimum-maximum) range of values. The Total Abnormal volume corresponds to 

the sum of the five structural alterations volumes per CT scan. 

 

Legends: M0=initial evaluation; M12=second evaluation at one year; M24=second evaluation at two years. 

 

 

 

 

 



 

 

 

Table E11. Characteristics of CT scans in the follow-up of 140 CF.  

  

                    

      CF with lumacaftor/ivacaftor 
 

CF without lumacaftor/ivacaftor 

 Clinical Validation group 

  
  (n=10) 

 
(n=60) 

      M0   M12 
 

M0 
 

M24 

      
 

  
     

      
 

  
     

Machine brand     
Somatom 

Definition 64® 

(n=10) 

  
Somatom 

Definition 64® 

(n=10) 
 

Somatom 
Definition 64® 

(n=33) 
 

Somatom 
Definition 64® 

(n=34) 

      
 

  
  

Somatom 
Sensation 16® 

(n=27) 
 

Somatom 
Sensation 16® 

(n=26) 

      
 

  
     

Kernel     I30f (n=10)   I30f (n=10) 
 

I30f (n=22) 
 

I30f (n=23) 

      
 

  
  

Br40 (n=11) 
 

Br40 (n=11) 

      
 

  
  

B40s (n=27) 
 

B40s (n=26) 

      
 

  
     

Reconstruction     SAFIRE (n=10)   SAFIRE (n=10) 
 

FBP (n=38) 
 

FBP (n=37) 

      
 

  
  

SAFIRE (n=22) 
 

SAFIRE (n=23) 

      
 

  
     

DLP  
 mGy.cm  
(minimum-maximum) 

  (12-17)   (12-18) 
 

(12-53) 
 

(13-64) 

      
 

  
     

kV 
 

  110   110 
 

110 
 

110 

      
 

  
     

mAs 
Dose modulation* 

(yes/no) 
  10/0   10/0 

 
38/32 

 
39/31 

  
If yes, reference values 

(minimum-maximum) 
  (5-10)   (5-10) 

 
(5-10)  

 
(5-10) 

          

  
If no, fixed value 

(minimum-maximum) 
  NA   NA 

 
(35-54) 

 
(35-54) 

      
 

  
     

Slice thickness (mm)   1   1 
 

1 
 

1 

      
 

  
     

      
 

            

 

 

*Note: the dose modulation system was CareDose4D®. 

Legends: FBP=filtered-back projection; SAFIRE=sinogram affirmed iterative reconstruction; kV=kilovoltage, 

mAs=milliampere second; DLP=dose length product 

 

 

 

 



 

 

 

 

Table E12. Reproducibility and repeatibility of AI and manual interobserver similarity in the Clinical Validation cohort 

  

2D pixelwise similarity AI1 vs. AI2 AI1 vs. AI1 

n=42280 CT slices in 140 CTs Dice Dice 

      

      
Bronchiectasis >0.99 >0.99 

Peribronchial thickening >0.99 >0.99 

Bronchial mucus plug >0.99 >0.99 

Bronchiolar mucus plug >0.99 >0.99 

Collapse/Consolidation >0.99 >0.99 

Total Abnormal Lung >0.99 >0.99 

Lung Parenchyma >0.99 >0.99 

  

      
  Manual1 vs. Manual2 Manual1 vs. Manual1 

n=2850 CT slices in 8 CTs Dice Dice 

      

      
Bronchiectasis 0.86 0.84 

Peribronchial thickening 0.70 0.73 

Bronchial mucus plug 0.72 0.73 

Bronchiolar mucus plug 0.62 0.65 

Collapse/Consolidation 0.73 0.77 

Total Abnormal Lung 0.72 0.74 

Lung Parenchyma 0.99 0.99 

      
      

  

Note: the Total Abnormal Lung corresponds to the average of the five structural alterations similarity results. 

Legends: AI1=artificial intelligence-driven measurement performed on an advanced computer device; AI2=artificial intelligence-driven 

measurement performed on a standard computer device; Manualx=segmentation performed by Observer x 

 

 

 

 

 

 

 

 



 

 

 

SUPPLEMENTAL FIGURES 

 

 

 

Figure E1. Flow chart of the method to produce consensus CT semantic segmentation for 

Training. The segmentations were visually checked at the segmental level. TP=true positive; 

FP=false positive; FN=false negative. 

 

 

 

 

 

 

 

 



 

 

 

Figure E2. Axial (A) and coronal reformations (D) of a lung CT scan acquired in a 15-year-

old female with cystic fibrosis. Manual (B, E) and AI-driven (C, F) semantic multilabel 

segmentation are shown and displayed in corresponding axial CT slice (B, C) and volume 

rendering in coronal view (E, F). In panels B, C, E, F, red arrow and red labels indicate 

mucus-free bronchial lumen dilatations, green arrow, and green labels show peribronchial 

thickening, blue arrow, and blue labels indicate central bronchoceles. Bronchiolar mucus 

plugs were labeled in yellow color, and orange arrows show some AI’s false-negative results 

of this feature (C). In panels E and F, cyan labels indicate consolidations. Note the 

heterogeneity of structural alterations and their regional distribution within the same lung CT 

volume. In this patient, the mean Dice coefficient of similarity between manual and AI-driven 

segmentation was equal to 0.70. 

 

 

 

 

 

 

 

 

 



 

 

 



Figure E3. Bland-Altman analyses of manual versus AI-driven label volumes in the Test 

cohort (n=36), expressed in milliliters. The plain lines represent the mean difference and the 

bars their 95% confidence interval; the dashed lines represent the limits of agreement. 

 

 



Figure E4. Bland-Altman analyses of manual versus AI-driven normalized volumes in the 

Test cohort (n=36). The plain lines represent the mean difference and the bars their 95% 

confidence interval; the dashed lines represent the limits of agreement. 

 

 

Figure E5. Spearman’s correlations between AI-driven measurement of normalized total 

abnormal volume and CF disease severity, as assessed by the forced expiratory volume in 1-

second percentage predicted (FEV1%; A and C) and the modified Brody score (mBrody; B 

and D). Results are shown for both the Test (A, B) and the Clinical Validation (C, D) cohorts. 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure E6. Comparison of AI-driven semantic labeling in the Clinical Validation cohort, at 

initial evaluation (A, C) and after two years (B, D) of standard management, in a 15-year-old 

male with cystic fibrosis. Axial CT slices (A, B) are shown, with AI-driven semantic labeling 

displayed in the corresponding axial slice (C, D). Mucus-free bronchial lumen dilatations are 

labeled in red color, peribronchial thickening in green color, bronchial mucus plugs in blue 

color, bronchiolar mucus plugs in yellow color, and atelectasis in cyan color. In panels (C, D), 

red arrows show an increase in bronchial dilatations and peribronchial thickening over time.  

 

 

 

 

 


