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Abstract. 

 

Background. LAM is a rare multisystem disease with variable clinical manifestations and differing 

rates of progression that make management decisions and giving prognostic advice difficult. We used 

machine learning to identify clusters of associated features which could be used to stratify patients 

and predict outcomes in individuals.  

Patients and methods. Using unsupervised machine learning we generated patient clusters using 

data from 173 women with LAM from the UK and 186 replication subjects from the NHLBI LAM 

registry. Prospective outcomes were associated with cluster results. 

Results. Two and three-cluster models were developed. A three-cluster model separated a large 

group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high 

prevalence of angiomyolipoma symptoms (p=0.0001) and TSC (p=0.041). The third cluster were 

older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. 

Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted 

prospective outcomes: in a two-cluster model future risk of pneumothorax was 3.3 fold (95% C.I. 1.7-

5.6) greater in cluster one than two (p=0.0002). Using the three-cluster model, the need for 

intervention for angiomyolipoma was lower in clusters two and three than cluster one (p<0.00001). 

In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters two and 

three (p=0.0045). 

Conclusions. Machine learning has identified clinically relevant clusters associated with 

complications and outcome. Assigning individuals to clusters could improve decision making and 

prognostic information for patients. 
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Introduction 

Lymphangioleiomyomatosis (LAM) is a rare multisystem disease that occurs both sporadically and in 

those with TSC[1]. The prevalence of LAM is estimated to be less than 1 per 100 000 women[2] and 

the diagnosis of an orphan disease is frequently difficult for patients due to feelings of isolation and 

uncertainty over their prognosis and future disease manifestations[3]. This is particularly true for 

LAM where both the clinical manifestations and rates of disease progression vary. Although all have 

lung cysts, only 70% have pneumothorax[4, 5]. Half of women with sporadic LAM and almost all with 

TSC-LAM have angiomyolipomas, a proportion of which enlarge and are at risk of haemorrhage[6]. 

Around 20% have significant lymphatic disease[7]. Prognosis can be difficult to predict as some have 

well preserved lung function long term, whilst others require lung transplantation within a decade of 

diagnosis.  

There are few predictive markers of outcome in LAM. Oestrogen is thought to contribute to disease 

progression[8-10] and premenopausal status is associated with more rapid loss of lung function[10, 

11]. High levels of the lymphangiogenic growth factor, vascular endothelial growth factor type D 

(VEGF-D) and the presence of bronchodilator reversibility are associated with more rapid loss of FEV1 

in some studies[12, 13] and genetic variants in vitamin D binding protein are associated with shorter 

survival[14]. Smaller studies have reported other features that are associated with outcome including 

mode of presentation and initial lung function although all of these associations lack predictive 

power in individual subjects[15, 16]. Uncertainty around disease progression and complications can 

worry patients, lead to restrictive lifestyle changes and an unselective approach to management with 

many given unnecessarily pessimistic advice[17, 18].  

We hypothesised that groups of clinical features preferentially cluster together and identifying these 

associations would improve prediction of complications and outcomes. We used machine learning to 

associate biological and physiological variables in two national cohorts with the aim of identifying 

sub-phenotypes within the LAM population that could be used to predict disease manifestations and 

improve clinical advice. 



Methods 

The clinical cohorts, variables and analysis are described fully in the on line supplement. 

Subjects and clinical data. 

The discovery cohort comprised 173 women recruited at the National Centre for LAM in Nottingham 

UK between 2011 and 2018. All subjects had LAM defined by ATS/JRS criteria[19]. A further 10 were 

added after the discovery analysis until December 2019. All patients attending the Centre were 

invited to participate and measurements were made as part of clinical care. At their first visit, which 

formed the baseline assessment, subjects had CT of the chest, abdomen and pelvis, screening for 

TSC, lung function, bronchodilator reversibility testing and a six minute walk test according to 

ERS/ATS standards[20]. CT was used to screen for angiomyolipoma and lymphatic disease, the latter 

defined as the presence of lymphatic enlargement, chylous pleural effusion or ascites. Review 

appointments were scheduled according to clinical need and at least annually; complications were 

recorded, FEV1 and TLCO were repeated and angiomyolipoma size monitored according to a defined 

protocol[21]. The East Midlands Research Ethics Committee approved the study (13/EM/0264) and 

participants gave written informed consent. The replication cohort comprised 186 subjects recruited 

between 1998 and 2003 to the National Heart Lung and Blood Institute (NHLBI) Registry study on the 

natural history of LAM[7]. Clinical and serial lung function data were obtained from the National 

Disease Research Interchange (Philadelphia, USA). All-cause mortality and lung transplantation data 

for the period until December 2010, prior to the use of rapamycin, were obtained from the United 

States National Death Index and the United Network for Organ Sharing databases respectively (figure 

1).  

Cluster assignment was performed using data from the baseline visit (table 1) and outcomes 

assessed prospectively from this point. Survival is quoted as overall time since diagnosis. Change in 

lung function was calculated as the slope of all FEV1 (ΔFEV1) or TLCO (ΔTLCO) values [22].  

 



Machine learning methodology. 

The workflow is summarised in figure 2 and described in detail in the supplementary methods. 

Briefly, the data set was pre-processed, cleaned and checked for validity. Imputation of missing data 

was performed using Multiple Imputation Chain Equations (MICE), Random Forest (RF) and MICE 

with RF. Cluster analysis using multiple algorithms was repeated five times to ensure cluster stability 

and 42 internal cluster validation schemes applied to determine the optimal number of clusters. We 

identified the smallest number of variables necessary to classify women with LAM into clusters based 

on Feature Selection schemes including Recursive Feature Elimination, Correlation-based Feature 

Detection, Maximum Relevance Minimum Redundant and bivariate statistical tests. Five classification 

algorithms including Random Forest, Decision Tree, CART, C4.5, C5.0, and Naive Bayes were used to 

develop models for classifying subjects into clusters. Five-fold cross validation repeated for 10 runs 

was used when identifying markers and developing classification models. The analysis was carried 

out using R (https://www.r-project.org/). The clustering algorithms are available at 

https://github.com/nmpn/lam-stratification. 

Statistical analysis. 

Data were tested for normality using the Shapiro-Wilk test. Parametric data were analysed using 

unpaired two-tailed T-test, or one-way ANOVA and non-parametric data using Kruskal-Wallis or 

Mann-Whitney tests. Categorical data were analysed by Chi Square or Fisher’s test. Kolmogorov-

Smirnov Tests were used to determine whether two data sets have different distributions. Survival 

analysis was performed using Kaplan-Meier analysis and Mantel-Cox test. Data were analysed in 

Microsoft Excel and Graphpad Prism version 7.03.  

 

Results 

Cluster model development 



Complete demographic, presentation and phenotype data were available for all discovery cohort 

subjects and treatment, disease activity and oestrogen exposure for greater than 90%. Serum VEGF-

D and bronchodilator response data were available for 74 and 61% of subjects respectively (Table 1). 

Data distribution of missing variables imputed using MICE, RF and MICE+RF did not differ from the 

original distributions and data imputed from MICE was used (supplementary figure S1).  

Two clusters provided optimal separation of factors between groups by majority voting (figure 2 and 

supplementary table S1). Three clusters also proved clinically useful. Of the five machine learning 

techniques using fivefold cross validation repeated 10 times, Naïve Bayes delivered the strongest 

accuracy (0.98, 95% confidence interval 0.9502 - 0.9964), sensitivity (1.0) and specificity (0.96) for 

cluster assignment and was used henceforth (supplementary table 2 and figure S2). Three 

classification models were developed, two comprising two clusters and one of three clusters. The 

initial two-cluster model was based on multiple clustering algorithms, with variables based on 

feature selection techniques. The alternative two-cluster model used multiple clustering algorithms, 

with variables based on statistical tests. Whilst both models produced similar groupings, the latter 

separated subjects using fewer terms, was more effective at predicting complications and is reported 

henceforth. The three-cluster model was based on hierarchy and Kmeans, with selected variables 

based on statistics comparing clusters. Subjects were assigned to the cluster for which the output 

probability was between 0.5 and 1.  

Two-cluster model 

Thirteen input variables divided subjects into clusters comprising 51 and 49% of the discovery cohort 

(table 2). The most informative factors discriminating clusters were age at first LAM symptom 

(p=7.6x10-7), age at assessment (p=4x10-14), presentation with dyspnoea (p=0.00001), pneumothorax 

(p=0.00001), angiomyolipoma (p=0.00001) or as a chance finding (p=0.00001), ever experiencing 

pneumothorax (p=0.00001) or angiomyolipoma (p=0.00017) and baseline TLCO (p=0.0097) 

(Supplementary figure S2). Cluster one was comprised of younger women with earlier onset disease, 

predominantly presenting with pneumothorax or angiomyolipoma that had often required 



intervention, whereas lymphatic manifestations were uncommon. Subjects in cluster two were on 

average, 10 years older, tended to present with dyspnoea, had more lymphatic complications and 

larger defects in gas transfer (lower TLCO and post exercise SaO2). Pneumothorax was infrequent and 

although many had angiomyolipoma these seldom required intervention (table 2, supplementary 

tables S3, S4 and supplementary figure S4).  

Three-cluster model 

In the three-cluster system, cluster one comprised 69% of subjects who were most likely to present 

with dyspnoea or pneumothorax and had moderately impaired lung function. Cluster two comprised 

22% who very commonly presented with angiomyolipoma related problems, rather than respiratory 

symptoms, a higher prevalence of TSC and better lung function than cluster one. Cluster three 

comprised only 9% of subjects and were older at presentation with more recent symptom onset 

which comprised respiratory symptoms other than breathlessness or pneumothorax, or without LAM 

symptoms after investigations for other issues. Pneumothorax was very infrequent and lung function 

almost normal (table 3, figure 3, supplementary figure S3, supplementary tables S5 and S6).  

Cluster validation. 

To determine if these clusters could be reproduced in other populations, we used subjects recruited 

in a different country and time period from the discovery cohort. The NHLBI cohort were slightly 

younger with better lung function than the UK cohort, angiomyolipoma was less common, although 

other clinical characteristics were similar and age at diagnosis was used in place of age at first 

symptom. Applying the algorithm without imputation of missing data reproduced both models with a 

similar level of differentiation other than for angiomyolipoma (figure 4, supplementary tables S7 and 

S8).  

The effect of missing data on cluster assignment was examined by running the clustering algorithm 

with single factors omitted. Running the three-cluster model using 112 UK subjects for whom all 

factors were available, was compared with sequential removal of each factor. Omission of factors 

resulted in misclassifications in a median of 0.7% (range 0-7.1) subjects in cluster one, 5.4% (0-38) in 



cluster two and 8.3% (0-17) in cluster three. The chance of misclassification was greater where the 

original clustering probability was closer to 0.5 than 1 and with omission of factors with the greatest 

contribution to cluster separation; such as age at first symptom (figure 4, supplementary figures S5 

and S6). 

Association of clusters with clinical outcomes 

To determine if the models could be used to predict outcomes, we examined lung function decline 

and disease related complications prospectively from the point of cluster assignment and survival 

from diagnosis. As rapamycin reduces lung function decline, rapamycin treated, and untreated 

subjects were examined separately. Serial lung function data spanning 54 (SD 36) and 38 (17) months 

were available for 112 UK and 174 US subjects respectively who had not received rapamycin and for 

81 UK subjects treated with rapamycin for a mean of 45 (30) months. There were no significant 

differences between clusters in rate of loss of FEV1 or TLCO using either model for untreated or 

rapamycin treated subjects (figure 5a, supplementary tables S9 and S10).  

UK subjects are screened for angiomyolipoma at baseline and tumours monitored using a 

standardised protocol[21]. Risk of angiomyolipoma intervention was examined irrespective of 

treatment with rapamycin. Using the two-cluster model, risk of intervention was 0.059 patient-years 

after assignment to cluster one and 0.025 for cluster two (p<0.00001). In the three-cluster model, 

despite a high prevalence of angiomyolipoma in clusters two and three their need for interventions 

were significantly lower than in cluster one (p<0.00001. Supplementary table S11). 

Future risk of pneumothorax was greatest in cluster one using both models in both cohorts 

(supplementary figure S7). The two-cluster model had the best predictive power where combining all 

subjects showed the risk of pneumothorax was 3.3-fold (95% C.I. 1.7-5.6) greater in cluster one than 

two (p=0.0002, figure 5b).  

Survival and transplant data were available for 166 patients in the NHLBI cohort. Over a mean follow-

up of 14 years from cluster assignment and up to 33 years from diagnosis; 38 had required lung 

transplantation and 14 had died. Time to the combined endpoint of death or transplant was similar 



in the two-cluster model (table 5 and supplementary figure S8). In the three-cluster model the 

incidence of death or transplant was 41.7% in cluster one, zero in cluster two and 4.2 in cluster three 

(p=0.0045. Figure 5c, supplementary table 12). 

 

Discussion 

By applying machine learning to carefully characterised clinical cohorts we have identified groups of 

related factors which are together associated with outcomes in women with LAM. Whilst clinicians, 

and indeed patients, have recognised some associations between disease related manifestations, our 

data for the first time, allow us to quantify the risk of complications, improve prognostic advice and 

work toward stratified care. Separation into three clusters identifies a large cluster tending to 

present with pneumothorax or dyspnoea. The second cluster are on average, five years younger with 

a high prevalence of angiomyolipoma symptoms and TSC. Women in cluster three, whilst comprising 

only 9% of subjects presented 10-15 years later than clusters one and two with non-classical or no 

symptoms, didn’t experience pneumothorax and tended to have almost normal lung function. 

Cluster one represents the classic description of women with LAM, presenting in their mid-30s with 

dyspnoea or pneumothorax and airflow obstruction. Cluster two, where angiomyolipoma 

haemorrhage or TSC are the first clue to the presence of LAM and respiratory disease is less severe. 

The third cluster are an increasingly recognised group with milder disease who present at an older 

age with non-classical symptoms including haemoptysis and cough, or without LAM symptoms. We 

feel our findings are widely applicable and robust as we were able to independently replicate clusters 

and although accuracy was reduced somewhat by missing data, the factors required for clustering 

are available in routine practice. Factors less commonly measured and requiring imputation in the 

initial analysis, including exertional hypoxaemia, bronchodilator reversibility and VEGF-D were not 

required for clustering. 

The importance of our findings lies in the differences in clinical manifestations, complications and 

outcomes between clusters. Women with LAM present at varying ages with different symptoms, lung 



function and menopausal status. Current guidelines do not give guidance on risk of complications or 

survival and patients with markedly differing disease may receive similar clinical advice[18, 19, 23]. 

Applying the methodology described here, could allow clinical advice and decision-making to be 

improved. Those assigned to clusters two and three presenting in their fifties or later could be 

reassured that their lifespan is unlikely to be shortened by LAM. The risk of pneumothorax is a 

common concern[17] and applying the two-cluster model can better quantify this risk with 

individuals in cluster one having a 10% one year and 43% five year risk of pneumothorax compared 

with 0 and 15% respectively in cluster two. Such data could be used to improve both patient advice 

and inform discussions on the need for preventative surgery. Despite a higher prevalence of 

angiomyolipoma in clusters two and three, the risk of an intervention during follow up is lower than 

cluster one and the need for surveillance may be less in these groups. This reflects the differing 

natural history of angiomyolipoma across the clusters: with cluster two and to a lesser extent three, 

more likely to present with angiomyolipoma and need intervention than cluster one; meaning 

enlarging and symptomatic tumours have already been treated. The absence of presentation with 

angiomyolipoma symptoms in cluster one, despite an angiomyolipoma prevalence approaching 50% 

suggests that angiomyolipoma is often overlooked in this group and makes intervention more likely 

in these newly identified tumours.  

The use of unsupervised machine learning informs us both which variables are important in 

phenotyping subjects and also understanding the disease. Input variables were chosen for their 

potential relevance to LAM based on disease manifestations and previous literature. These features 

included mode and age of presentation, existing clinical manifestations, their severity, oestrogen 

exposure and pattern of lung physiology. The strongest factors separating clusters being age at first 

symptom and age at time of assessment. We are unable to say whether clusters represent discreet 

endotypes: clusters may reflect differences in disease activity with lead-time bias separating subjects 

presenting earlier due to pneumothorax or angiomyolipoma rather than later with dyspnoea. 

However, as rate of FEV1 decline, the best-documented marker of disease activity[9, 10, 24], is similar 

in all clusters, and clusters have separate disease manifestations suggesting differences in organ 



involvement, it seems likely the clusters represent discreet endotypes. In either case, assigning 

women with LAM to these clusters may be clinically useful. The molecular and cellular processes 

underlying differences between clusters are not clear and further work examining biomarkers and 

histologic features within the clusters is required. This initial study shows that machine learning can 

be applied to the relatively small datasets provided by rare lung diseases using only basic clinical 

data. Improvements in imaging and biomarker development mean that these variables could be 

factored into future models which may further improve predictive accuracy.  

Our findings are based on two of the largest and best categorised cohorts of women with LAM 

reported; yet despite using unbiased methodology the study has some limitations. The third cluster 

in both cohorts comprised a relatively small number of subjects that may have some inbuilt survivor 

bias. Some variables require further assessment; pre-menopausal status has been associated with 

accelerated loss of lung function. Menopausal status was not a strong differentiator between clusters 

and rate of loss of FEV1 and DLCO were similar between clusters despite differing proportions of pre-

menopausal women. Age was a strong determinant of cluster assignment, as menopausal status and 

age are related, menopausal status may still contribute to some of these differences and should 

continue to be a factor in clinical decisions. Due to differences in data recording between the UK and 

US we were unable to reproduce all data, particularly for angiomyolipoma. Since the NHLBI cohort 

closed, rapamycin has become the standard of care for those with progressive disease[23] and has 

improved outcomes. How rapamycin affects different clusters and how clustering may inform the 

decision to use rapamycin should be studied prospectively; including using data from the ongoing 

Multicenter Interventional Lymphangioleiomyomatosis Early Disease Trial (NCT03150914). Our study 

was not designed to predict need for therapy, however it could be argued that those in cluster one 

should already be considered for early treatment with mTOR inhibitors to prevent further loss of lung 

function.  

In conclusion, we have used machine learning techniques to stratify women with LAM into clusters 

using simple clinical data. The method has the potential to improve advice on disease trajectory, 



complications and screening. Further prospective studies are warranted to determine if this can be 

translated to improve management for women with LAM.  
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Table 1. Disease related variables captured in discovery and replication cohorts.  

Cohort  UK (n=173) NHLBI (n=186) 

Variable Data type Missing 
(%) 

Mean (SD) 
or % present 

Missing 
(%) 

Mean (SD) 
or % present 

Demographic  
Age (years) Continuous 0 48.5 (11.8) 0 45.0 (9.3) 

Age 1
st

 symptom (years) Continuous 0 35.7 (11.5) - NA 
Age at diagnosis (years) Continuous - NA 0 40.7 (9.5) 
Disease duration (years) Continuous 0 12.8 (10.2) - NA 

Time since diagnosis (years) Continuous - NA 0 4.4 (4.24) 

Body mass index (kg/m2) Continuous 0 26.2 (6.3) - NA 
First symptom *  

Dyspnoea (%) Categorical 0 39 0 48 

Pneumothorax (%) Categorical 0 27 0 33 

Other respiratory (%) Categorical 0 9 0 7 

Angiomyolipoma (%) Categorical 0 15 0 4 
Other non-respiratory (%) Categorical 0 3 0 2 

Screened (%) Categorical 0 3 0 5 
None (%) Categorical 0 4 0 1 

Phenotype †  

Tuberous sclerosis present (%) Categorical 0 21 0 10 

Ever had angiomyolipoma (%) Categorical 0 64 0 18 

Lymphatic disease (%) Categorical 0 17 0 17 

Ever had pneumothorax (%) Categorical 0 44 0 53 

Oestrogen exposure  

Number of children Continuous 2.3 0.96 (1.1) - NA 
Post menopause (%) Categorical 1.1 34 0 15 

Disease activity markers  

Surgery for pneumothorax (%) Categorical 0.6 34 0 23 

Intervention for angiomyolipoma (%) Categorical 1.1 37 0 15 

Serum VEGF-D (pg/ml) Continuous 26 1407 (1392) - NA 

Physiology at enrolment  

FEV1 (% predicted) Continuous 4.6 68.3 (26) 0 74.2 (25) 

TLCO (% predicted) Continuous 6.9 52.3 (19.8) 1.6 57.4 (22) 

%FEV1/%TLCO Continuous 7.5 1.37 (0.44) 1.6 1.40 (0.41) 

Post walk SaO2 (%) Continuous 10 87.9 (6.8) - NA 

Positive bronchodilator response (%) Categorical 39 62 1.1 38 

Treatment at enrolment  

On rapamycin (%) Categorical 0.5 52 0 0 
On oxygen (%) Categorical 0.5 23 - NA 

‘Disease duration’ is defined as time from first LAM symptom to baseline study assessment. *, The 

first recorded symptom of LAM. Only one of the group for each subject. ‘Other respiratory’ is any 

respiratory symptom other than dyspnoea or pneumothorax. ‘Other non-respiratory’ is any non-

respiratory symptom other than angiomyolipoma. †, ever experienced by subject, any combination 

may be present. NA, not available for this cohort.



Table 2. Discriminating features of the two-cluster model. 

Factor Cluster 1 Cluster 2 Mean diff. p 

n (%) 97 (51) 86 (49)   
Demographic *     

Age at assessment (yrs) 46.6 (11) 54.8 (10.6) -8.2 7.6x10-7 

Age 1st symptom (yrs) 31.9 (9.8) 44.4 (10.6) -12.4  4x10-14 
Disease duration (months) 143 (120) 90 (84.7) 52 0.00083 

BMI (kg/m2) 24.6 (5) 27.4 (6.9) -2.7 0.002 

VEGF-D (pg /ml) 1319 (1320) 1370 (1328) -51 0.801 

Presenting symptom †     
Dyspnoea 4 49 -45 0.00001 

Pneumothorax 54 0 54 0.00001 

Other respiratory 3 14 -11 0.011 
Angiomyolipoma 32 5 27 0.00001 

Screened 2 1 1 0.56 

Chance finding 0 9 -9 0.009 
Phenotype †     

Ever had pneumothorax 68 16 52 0.00001 

Ever had angiomyolipoma 69 43 26 0.00017 
Lymphatic disease 13 16 -3 0.546 

TSC 17 8 9 0.054 

Lung function *     

FEV1 (% predicted) 72.7 (22.0) 68.4 (26.8) 4.3 0.24 
TLCO (% predicted) 58.8 (16.8) 51.5 (20.3) 7.3 0.0097 

6 minute walk distance (m) 501 (127) 457 (136) 43 0.103 

Post walk saturation (%) 89.1 (6.8) 87.7 (6.9) 1.4 0.268 
Bronchodilator reversibility (%) 7.5 (7.5) 10.9 (10.8) -3.4 0.126 

* Mean value (standard deviation) compared by unpaired 2 tail t-test. † Percentage of cohort with 

this feature present compared by chi square test.  

 

  



Table 3. Discriminating factors of the three-cluster model. 

 Cluster 1 Cluster 2 Cluster 3 p 

n (%) 127 (69) 39 (22) 17 (9)  
Demographic * 

Age at assessment (yrs) 50. 4 (11.4) 45.9 (10.4) 60.2 (9.9) <0.0001 

Age 1st symptom (yrs) 37.4 (10.8) 32.0 (10.5) 52.8 (10.1) <0.0001 
Disease duration (months) 120 (108) 136 (113) 59 (61) 0.043 

BMI (kg/m2) 26 (6.0) 26 (6.2) 28 (6.8) 0.2 

VEGF-D (pg /ml) 1385 (1431) 1286 (1099) 1141 (816) 0.26 

Presenting symptom † 
Dyspnoea 41.7 0 0 0.0001 

Pneumothorax 42.5 0 0 0.0001 

Other respiratory 8.7 2.5 29.4 0.0057 
Angiomyolipoma 0 89.7 11.8 0.0001 

Screened 0.8 5.1 0 0.156 

Chance finding 2.4 2.5 29 0.0001 
Phenotype † 

Ever had pneumothorax 58.3 25.6 0 0.0001 

Ever had angiomyolipoma 49.6 97.4 64.7 0.0001 
Lymphatic disease 17.3 5.12 29.4 0.051 

TSC 11.0 25.6 5.9 0.041 

Lung function * 

FEV1 (% predicted) 64.0 (23.4) 79.6 (26.9) 90.7 (19.0) <0.0001 
TLCO (% predicted) 50.5 (19.9) 62.7 (17.3) 67.0 (10.2) <0.0001 

6 minute walk distance (m) 470 (145) 499 (112) 521 (52) 0.44 

Post walk saturation (%) 86.7 (7.1) 90.8 (5.6) 93.4 (2.8) 0.0006 
Bronchodilator reversibility (%) 11.1 (10.4) 5.8 (6.2) 5.5 (5.5) 0.066 

* mean (+/-SD), analysed by one way ANOVA. † percentage of cohort, analysed by chi square test.  

 

 



Figure legends 

 

Figure 1. Enrolment and data available in cohorts studied. Women with LAM were recruited from 

the UK LAM Centre (UK) and the National Heart, Lung and Blood Institute LAM registry in the USA 

(NHLBI). Not all data were available for all subjects for all endpoints. Exact numbers are specified in 

the individual analyses. 

Figure 2. Study workflow, data identification and separation of features into two clusters. (a) 

Summary workflow of data processing and analysis. The data set was pre-processed which involved 

data cleaning and data validity checking. Missing data were imputed using Multiple Imputation Chain 

Equation (MICE), Random Forest (RF), and MICE + RF. Data were transformed from numerical and 

categorical variables for clustering analysis using Principal Component Analysis (PCA) with Multiple 

Correspondent Analysis (MCA) and Gower’s distance. Optimal number of cluster identification was 

performed then internal cluster validity indexes. Gap statistics with bootstrapping were used to 

determine cluster validity. Cluster analysis using four algorithms and classification models developed 

using by Recursive Feature Elimination followed by the classification algorithms Naïve Bayes, Random 

Forest (RF) and Nearest Neighbour. Full details are given in the supplementary methods (b) Inertia 

gain plot measuring the degree of homogeneity between the data associated with a cluster using 

hierarchical + Kmeans methods. Division of the data into two and three clusters gives good 

separation. (c) Cluster dendrogram showing separation between the three clusters using hierarchical 

clustering + Kmeans. (d) Principal component analysis showing separation of subjects into three 

clusters.  

Figure 3. Features of the three-cluster model. (a) Distribution of age, age at first symptom, percent 

predicted FEV1 and TLCO at baseline and hypoxia during exertion in the three-cluster model. (b) 

Representative subjects from clusters one, two and three. Showing at baseline age, presenting 

symptom, CT images of the chest, abdomen and lung function. Cluster one subject presented age 36 

with pneumothorax (grey arrow). Cluster two presented with ruptured angiomyolipoma requiring 



embolisation (black arrow). Cluster three subject was diagnosed after a lymphatic mass (white arrow) 

was detected during a CT scan was performed for another indication. 

Figure 4. Cluster validation analyses. (a) Comparison of variable distribution in the UK and NHLBI 

Cohorts for the three-cluster model. Clusters are represented by the percentage of positive subjects 

for each variable within that cluster in the two cohorts. *presenting symptom. †feature ever present. 

(b) Effect of missing data upon cluster assignment. 112 subjects from the UK cohort with complete 

data were assigned to clusters and then reassigned with each variable removed in turn. The heatmap 

is red for correctly assigned subjects (columns) and tan when omission of that variable (rows) led to 

mis-assignment to cluster one, purple to cluster two and yellow to cluster three. Subjects for each 

cluster ranked according to strength of assignment (posterior prediction) to the cluster from 1 

(strong) to 0.5 (weak) left to right along the y axis.  

Figure 5. Prospective clinical outcomes stratified by cluster. (a) Rate of change of FEV1 and TLCO 

(∆FEV1 and ∆TLCO) for subjects in the UK and NHLBI cohorts combined who were not being treated 

with rapamycin stratified using the two and three-cluster models. Values within bars are the number 

of subjects with lung function data available for analysis. None of the differences between clusters in 

the models was significant. (b) Kaplan Meier analysis of the prospective risk of pneumothorax 

following cluster assignment in the UK and NHLBI cohorts combined for the two-cluster model. Those 

in cluster one have a 3.3 fold higher risk of pneumothorax, independent of prior treatment for 

pneumothorax compared with those in cluster two. (c) Kaplan Meier analysis of the combined risk of 

death or need for lung transplantation since diagnosis in the NHLBI cohort stratified using the three-

cluster model. 
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Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis. 
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Supplementary methods and results 



Supplementary methods 

 
 

Subjects and clinical data. 

The discovery cohort comprised 173 women recruited from the National Centre for LAM in 
Nottingham UK between 2011 and 2018. A further 10 were added after the discovery analysis until 
December 2019 and contributed to the outcome analyses. All subjects had LAM defined by current 
ATS/JRS criteria1. All subjects fitting these criteria were invited to participate in the study 
irrespective of length of follow-up. Outcome analyses included only subjects with follow-up data and 
the numbers included are described for these analyses individually.  

At their first visit to the centre, which formed the baseline assessment for the study, subjects had a 
clinical assessment, comprising CT of the chest, abdomen and pelvis, screening for TSC, full lung 
function, bronchodilator reversibility testing and a six minute walk test according to ERS/ATS 
standards2. CT was used to screen for angiomyolipoma at first visit. At follow up visits, clinical 
outcomes and complications were recorded, FEV1 and TLCO were repeated and angiomyolipoma size 
monitored according to a defined protocol at least annually using ultrasound or MRI. 
Angiomyolipoma causing symptoms, or greater than 4cm in diameter, were discussed with a view to 
an intervention3. All measurements were made as part of clinical care, the study was approved by 
the East Midlands Research Ethics Committee (13/EM/0264) and participants gave written informed 
consent. 

The replication cohort comprised 186 subjects recruited between 1998 and 2003 to the National 
Heart Lung and Blood Institute (NHLBI) Registry study on the natural history of LAM4. Clinical and 
serial lung function data were obtained from the National Disease Research Interchange 
(Philadelphia, USA). All-cause mortality and lung transplantation data for the period until December 
2014, were obtained from the United States National Death Index and the United Network for Organ 
Sharing databases respectively.  

In the discovery cohort we collected 25 variables of presumed importance to LAM comprising 
demographic data (age at presenting symptom, age at assessment and body mass index (BMI)), 
disease duration (defined by the time from first symptom attributable to LAM to time at baseline 
assessment), presenting symptom of LAM (one only of dyspnoea, pneumothorax, other respiratory 
symptom, angiomyolipoma related symptom, other non-respiratory symptom, no LAM related 
symptoms or diagnosed after screening), clinical phenotype (the presence of any of pneumothorax, 
angiomyolipoma, TSC or lymphatic manifestations during the whole disease course), oestrogen 
exposure (menopausal status and the number of children), disease activity (the need for surgical 
intervention for pneumothorax, intervention for angiomyolipoma and serum VEGF-D level), 
physiology (percent predicted (%) FEV1, TLCO, %FEV1/%TLCO at assessment and minimum oxygen 
saturation during a walk test) and LAM treatment (mTOR inhibitor use, oxygen and transplant 
referral) were collected for each subject.  

The NHLBI cohort collected similar data with some exceptions4. Date of diagnosis of LAM, rather 
than date of first LAM symptom was recorded and minimum oxygen saturation during a walk test, 
BMI, number of children and serum VEGF-D were either not recorded or unavailable. 

Prospective change in lung function for both cohorts was calculated by the regression slope of all 
FEV1 (ΔFEV1) or TLCO (ΔTLCO) values and expressed as change in ml/year or mmol/min/kPa/yr 
respectively using Excel (Microsoft Corporation). Clinical outcomes including pneumothorax and the 
need for an intervention for angiomyolipoma was recorded prospectively in the period following 
baseline assessment. 

Serum VEGF-D was determined using Quantikine ELISA DVED00, (R&D Systems, Abingdon, UK). 



Machine learning methodology 
 
Data pre-processing 
The data set was first pre-processed which involved data cleaning and data validity checking. Three imputation 
techniques i.e. Multiple Imputation Chain Equation (MICE), Random Forest (RF), and MICE with RF were 
investigated. An R package MICE

5
, and missForest

6
 were used in this stage.  

 
To check the imputed data validity, Kolmogorov-Smirnov Tests, Fisher’s Test and Pearson's Chi-squared Test 
were performed to check the distributions between the imputed and original data. 
 
Data transformation 
As there are both numerical and categorical variables in the data set, two techniques were used to transform 
the data so that they are suitable for clustering analysis. The first technique is based on Principal Component 
Analysis (PCA) with Multiple Correspondent Analysis (MCA). An R package FactoMineR7 was used to perform 
this step. The second technique used Gowers distance

8
 to calculate the dissimilarity between individuals. 

Gowers distance compares two variables i and j, at a location k and assign a score di,j,k of zero if ik is different 
from jk, or a positive value if ik is similar to jk. For categorical data, the score dij is one if values of ik and jk is the 
same, otherwise the score is zero: 
 

 
 

 
Optimal number of cluster identification 
Seven clustering techniques including K-means, Fuzzy C-means, Partition Around Medoids (PAM), hierarchical 
clustering, hierarchical + Kmeans, hierarchical + fuzzy, hierarchical + PAM, with varying number of clusters 
were used to produce cluster models. In this study, number of clusters ranging from 2 to 10 were used. As 
some of the selected techniques are based on random initialisation, all techniques were repeated 5 times.  
 
A brief definition of techniques used are described below:  
 
Fuzzy C-means (FCM) is a partition-based clustering algorithms. Given the data set X = {x1, x2, ..., xd}, where d is 
the number of features. The aim of FCM is to minimise the cost function Jm: 
 

 
 
 
 

 

where cj is the centre of cluster j, υij is the degree of membership of xi in cluster j and x ∈  [0, 1], ‖∗ ‖ is the 
similarity function, and m is the degree of fuzzification and m ∈  *1, ∞). Fuzzy C-mean performs recursively 
where each iteration the degree of membership υij, and the cluster center cj is updated as follows: 
 

 
 
 
 
 
 
 

 

where ε is the termination criteria and ε ∈  [0, 1].  The iteration stops when maxij  
 

 
K-mean is another clustering algorithm. Similar to Fuzzy-cmean, clusters k clusters      

  are chosen which 
aim to minimise: 



 
 
Where inf is realisable and is      . In this paper, Hartigan and Wong9 algorithm was adopted, which 
employed greedy heuristic search to repeatedly select point by point, and determine its optimal cluster 
assignment10.  
 
 
Partitioning Around Medoids (PAM) 
PAM is another partition-based clustering algorithm. Unlike K-mean which relies on Euclidean geometry to 
estimate clusters’ centers, PAM uses medoid, the object with the smallest dissimilarity to all others in the 
cluster. This allows complex distance functions e.g. Jaccard, Gower to be used11. The aim is to 
find k representative objects which minimize the sum of the dissimilarities of the observations to their closest 
representative object.  
 
In this study, Euclidean distance was used to calculate the dissimilarity between individuals, and Ward’s 
method was used for clustering in hierarchical clustering algorithm. 
 
25 internal cluster validity indexes, and Gap statistics

12
 with bootstrap were used to measure the cluster 

validity. In this study the number of bootstrap was set to 100. A majority voting was used to determine the 
optimal number of clusters for each algorithm. In the case of ties, the smallest number of clusters is selected. 
 
Euclidean distance was used to calculate the dissimilarity between individuals. The Euclidean distance 
calculates straight-line distance between two points: 
 

 
 
 
 
 

Wards method was used for clustering in hierarchical clustering algorithm. 25 internal cluster validity indexes, 
and Gap statistics with bootstraping were used to measure the cluster validity. The list of validation indexes 
and their criteria are presented in Table 1. We applied all the criteria on cluster results and select the optimal 
number of clusters based on majority voting with the number of bootstraps set to 100. In the case of ties, the 
smallest number of clusters is selected. 
 
 
Cluster analysis 
4 algorithms, Kmeans, Fuzzy C-means, PAM, and hierarchical clustering were used for cluster analysis. As each 
algorithm may be assigned different cluster number (for example, cluster 1 in kmeans may be the same as 
cluster 2 in PAM), it is necessary to inspect the cluster plots, and reassign clusters before combining results. 
The results from the four techniques were later combined based on majority voting to give the final results. To 
identify the prominent characteristics in each cluster, Fisher’s Test, Pearson's Chi-squared Test, Wilcoxon Rank 
Sum and Signed Rank Tests were used at 95% confidence interval. 
 
We identified the smallest number of variables necessary to classify subjects with LAM into the groups defined 
in the earlier stage. Three feature selection techniques, Recursive Feature Elimination (RFE), Correlation-based 
feature selection (CFS) and Maximum Relevance Minimum Redundant (MRMR) were used to identify the 
markers necessary for classifying subjects into clusters. Here we briefly describe algorithms used:  
 
RFE combines a backward search with classification algorithms to identify the optimal subset of features. First, 
a model is built and evaluated based on all features and a feature ranking performed. In each iteration, the 
least significant feature is removed, and a model built and evaluated based on the remaining features, with 
the process is repeated until no features are left. The optimal subset of features was selected based upon the 
feature subset with the greatest accuracy. Feature importance was calculated using Naive Bayes (NB) and RF 



with RFE. For NB, the feature ranking uses a filter method based on the Area Under the Receiver Operating 
Characteristic curve (AUC). For each variable, AUC is calculated using different cut-off points. Important 
features are ones with high AUC. For RF, features are ranked based on the mean decrease in node impurities 
from splitting on the variable. Gini Index (GI) is used as a measurement for the node impurity. Given at any 
splitting point in a tree, GI of a variable V with n possible values V = {v1, v2, ..., vn}, GI can be calculated as: 
 

 
 
 
where P(v) is the probability of event v after the split.  

 
GI is averaged over all trees. Important features are ones with high mean decrease in GI (i.e. features that 
make the node become purer). 
 

 CFS is based on correlation between features where it is believed that features are useful if it is 
correlated with outcomes and uncorrelated with each other. A feature is selected if it predicts 
outcomes in spaces which have not already predicted by other features. A score of a feature set S 
with k variables is calculated as:  

 
 
 
 
 

where τcf is the mean feature-class correlation, and τf f is the average feature-feature correlation.  
A best-first-search strategy was employed with CFS with feature selection carried out using 5-fold cross-
validation (CV) with 10 runs, with all results aggregated. The ranking was used in a sequential feature forward 
selection (SFS) with 5-fold CV repeated for 10 times to obtain the final evaluation. 
 

 MRMR is a feature selection based on mutual information which measures how much information 
one variable has on another variable. Given two variables with discrete values x = {x1, x2, ..., xi} and y = 
{y1, y2, ..., yj}, where i, j are the numbers of possible values in x, y. Their mutual information (MI) was 
calculated as:  

 
 
 
 
 

To measure class relevancy, mutual information between a variable and outcomes was calculated to identify 
variables with high discriminant power. Given a variable x, and outcome o = {o1, ..., ok}, relevancy was 
calculated as: 

 
Redundancy was reduced within the selected features by selecting a feature with minimum redundancy, with 
redundancy between two variables x, y can be calculated as: 

 
 
 
 

 
MRMR selects a feature set based that maximizes discriminant power between a variable and outcomes, 
whilst minimising redundancy between variables. Relevancy and redundancy were optimised using Mutual 
Information Difference criterion max and Mutual Information Quotient criterion 
 
 



 
 
 
 
 
 
 
 
 

Data were first discretized into three stages where stage -1 represents data value lower than µ − σ/2, stage, 1 
represents data value greater than µ + σ/2, and stage 0 represents value between µ − σ/2, µ + σ/2. 25 Similar 
to CFS, feature ranking was performed using MRMR based on 5-fold CV and 10 runs. Then, the ranking was 
used in SFS to identify feature set and its performances. 
 
Classification models 
Classification models were developed using the cluster results from the previous stage. First, feature selection 
technique namely Recursive Feature Elimination (RFE) was used to identify the marker necessary for classifying 
LAM patients. Five classification algorithms i.e. Naïve Bayes (NB), RF, C4.5, C5.0, and CART, were investigated. 
 
CART, C4.5 and C5.0 are variant of decision tree (DT) algorithms13,14. DT tries to find the variables that split the 
data such that the data become as pure as possible. The process of dividing continues until data cannot be 
split further. Often, a tree pruning process is applied to reduce overfitting. In CART, a binary tree is constructed 
where each node only contains only two sub-nodes. The three algorithms use different splitting, and pruning 
criteria. for splitting criteria, CART uses towing criteria, whereas C4.5 uses Gain ratio, C5.0 uses Information 
Gain. For pruning criteria, CART uses cost-complexity, while C4.5 uses error-based pruning, and C5.0 performs 
2 stages pruning i.e. individual branch, and global tree. 
 
RF was developed by Breiman15 and is based on ensemble learning method. In RF algorithm,        
bootstrap samples are drawn from the data, and tree models are developed from them. The final results are 
the aggregation of individual tree outcomes16.  
 
NB is a probabilistic classifier based on Bayes theorem and chain rule. Given an event D of a patient having a 

disease or not such that D ∈  {d +, d−}, and test result T ∈  {t +, t−}, the posterior probability of a patient having a 
disease given that the test result is positive, P(d +|t +), was calculated as: 
 

 
 
 

 
The posterior probability of the event was based upon a chain rule simplified to: 
 

 
 

Giving the probability of a patient having a disease given that test 1 is positive and test 2 is negative is:  
 

 
 
 
 
 
 
 
 
 
 

 



Supplementary Results 
 
Data imputation. 
173 patients with definite outcome were included in the analysis. 10 independent variables, and all outcome 
variables contain missing data  
 
25 independent variables were used in data imputation. The results from the statistical analysis revealed that 
all three imputation techniques produced data similar to the original data. In this study, we chose to use 
imputed data produced using MICE.  
 
 

 
Supplementary figure S1. Data distribution before and after imputation using multiple imputation by MICE.  
 
The figure shows heat maps of the standardized values for each variable compared between cluster 1 and 
cluster 2 for the five data imputation sets used. Higher values compared to the average value are represented 
by increasing red colour, lower by green. All imputed data sets are similar indicating the characteristics of the 
two clusters are consistent across the imputed data sets. A combination of Kolmogorov-Smirnov Tests, Fisher’s 
Test and Pearson's Chi-squared Test were performed and showed there were no differences in the 
distributions between the imputed and original data sets. 
 
 

  
 
 
 
 
 



Defining the optimal number of clusters.  
All 5 imputed data sets obtained were used to identify the optimal number of clusters, and the results are 
shown in Table E1. Based on majority voting, the number of optimal clusters was 2. 
 
Supplementary table S1. Output of optimal cluster number methodology. 

Input Method Validation technique Cluster no. 
PCA+MCA transformed Kmean Internal cluster indexes 2 

PCA+MCA transformed Fuzzy c mean Internal cluster indexes 8 
PCA+MCA transformed PAM Internal cluster indexes 10 
PCA+MCA transformed Hierarchy Internal cluster indexes 2 

PCA+MCA transformed Hierarchy + Kmean Internal cluster indexes 2 

PCA+MCA transformed Hierarchy + PAM Internal cluster indexes 10 
PCA+MCA transformed Hierarchy + Fuzzy c mean Internal cluster indexes 9 

Gower distance PAM Internal cluster indexes 2 

Gower distance Hierarchy Internal cluster indexes 3 
PCA+MCA transformed Kmeans Gap statistics 2 

PCA+MCA transformed PAM Gap statistics 9 
PCA+MCA transformed Hierarchy + Kmean Gap statistics 2 

PCA+MCA transformed Fuzzy c mean Gap statistics 2 
 Input comprises data transformed by principal component analysis (PCA) and multiple correspondent analysis 
(MCA) for numerical and categorical variables repectively. PAM, partitioning around medoids. 

 
 

Predictive modelling  
We investigated 5 Machine Learning techniques i.e. Random Forest (RF), Decision Tree, CART, C4.5, C5.0, and 
Naive Bayes (NB) in data modelling. The experiment was carried out using 5-fold cross validation and repeated 

10 times. Supplementary table S2 shows the performances of each technique. 
 
Supplementary table S2. Performance of machine learning techniques. 

 RF C4.5 C5.0 CART NB 

AUC 0.99317 0.89889 0.925416 0.868421 0.989501 

prAUC 0.991595 0.433186 0.89319 0.782929 0.986296 

Accuracy* 0.958 0.884824 0.881765 0.833882 0.960588 

Kappa 0.915985 0.769672 0.763559 0.667776 0.921145 

F1 0.958548 0.884973 0.881817 0.83462 0.961459 

Sensitivity 0.96 0.875814 0.872093 0.828605 0.97186 

Specificity 0.955952 0.894048 0.891667 0.839286 0.949048 

Pos Pred Value 0.957126 0.894435 0.891892 0.840738 0.951289 

Neg Pred Value 0.958952 0.875568 0.872065 0.827089 0.970559 

Precision 0.957126 0.894435 0.891892 0.840738 0.951289 

Recall 0.96 0.875814 0.872093 0.828605 0.97186 

Detection Rate 0.485647 0.443059 0.441176 0.419176 0.491647 

Balanced Accuracy 0.957976 0.884931 0.88188 0.833945 0.960454 

Accuracy is the ability of the model to correctly assign patients to cluster 1 or 2. *since the number of patients 
in each cluster is inequivalent the balanced accuracy i.e. balanced using the proportion of patients is a better 
estimation of the accuracy. Sensitivity, the ability to correctly identify those patients with cluster 1 
characteristics. Specificity, the ability to correctly identify patients with cluster 2 characteristics. PPV (positive 
predictive value) quantifies the likleyhood that a patient has the characteristics of cluster 1 given a positive 
result (predicting C1). The NPV (negative predictive value) quantifies the likleyhood that a patient has the 
characteristics of cluster 2 given a negative result (predicting C2). P-Value is the accuracy over the no 
Information Rate (probability of correctly identifying patient with cluster 1 characteristics without given 
variable data). 



Naive Bayes Model  
 
The performance of the Naive Bayes Model for the two-cluster model is shown below. 

 
 
Supplementary figure S2. Receiver operating characteristic curve for the Naive Bayes Model for the two-
cluster model 
 

 
 
 
Confusion Matrix and Statistics for the two-cluster model 
(Positive' Class: G1) 
 
Prediction   G1 vs  G2 
Accuracy : 0.9827    (95% CI: 0.9502 - 0.9964) 
No Information Rate (NIR): 0.5029           
P-Value [Acc > NIR] : <2e-16           
Kappa : 0.9653           
Mcnemar's Test P-Value : 0.2482           
Sensitivity : 1.0000           
Specificity : 0.9651           
Pos Pred Value : 0.9667           
Neg Pred Value : 1.0000           
Prevalence : 0.5029           
Detection Rate : 0.5029           
Detection Prevalence : 0.5202           
Balanced Accuracy : 0.9826  
 



Supplementary figure S3 Contribution of variables to cluster variation.  

The following figures show variables contribute to each cluster. For example, patients on the top of the graph 
(Cluster 2) are older and were older at first symptom, compared with patients in the bottom of the graph 
(Cluster 1). Patients on the right side of the graph (Cluster 2) have higher TLCO with those on the left side of the 

graph (Cluster 1). 

 
 

Dot plot showing separation of 
individuals into clusters by principal 
components. 



Variance of model factors 
Data used for training are imputed data from MICE and removed duplicates (N=427). Labels are from 

combining multiple clusters 

Supplementary table S3. The following graphs and table show the probability of a patient falling into each 

cluster dependent on each factor. For example, a patient presenting with shortness of breath is more likely to 

be in cluster 1. Older patients are likely to be in cluster 2. 

 

Two cluster model 

AGE 

 
Age at first Sx. 

 
TLCO 

 
 

Presentation with shortness of breath          

 No Yes 

Cluster1  0.91954023  0.08045977 

Cluster2 0.29069767  0.70930233 

 

Presentation with pneumothorax 

 No Yes 

Cluster1  0.47126437  0.52873563 

Cluster2 0.98837209  0.01162791 

 

Presentation with angiomyolipoma 

 No Yes 

Cluster1  0.71264368  0.28735632 

Cluster2 0.97674419  0.02325581 

 

C1 

C1 

C1 
C2 

C2 

C2 



Presentation with no symptoms 

 No Yes 

Cluster1  1.00000000  0.00000000 

Cluster2 0.91860465  0.08139535 

 

Ever had angiomyolipoma 

 No Yes 

Cluster1  0.2643678  0.7356322 

Cluster2 0.4651163  0.5348837 

 

Ever had lymphatic manifestations 

 No Yes 

Cluster1  0.94252874  0.05747126 

Cluster2  0.72093023  0.27906977 

 

Ever had pneumothorax 

 No Yes 

Cluster1  0.2758621  0.7241379 

Cluster2 0.8488372  0.1511628 

 

Post Menopause 

 No Yes 

Cluster1  0.1954023  0.8045977 

Cluster2 0.4767442  0.5232558 

 

Surgery for pneumothorax 

 No Yes 

Cluster1  0.3678161  0.6321839 

Cluster2 0.8837209  0.1162791 

 

Intervention for angiomyolipoma 

 No Yes 

Cluster1  0.5862069  0.4137931 

Cluster2  0.8255814  0.1744186 

 



Supplementary table S4. Statistical tests for numerical variables in two-cluster model. Continuous variables 
are analysed in section 9a), categorical in section (b) and the differences between variables for each group are 
presented in (c). 
(a) 

Continuous variable Statistics Direction Cluster average Global average P value 

Cluster 1 

AGE 5759.5 - 44.0 48.0 0.002016 

Age first symptom 5320.5 - 29.0 34.5 0.000116 

TLCO 9050.0 + 59.3 51.6 0.007728 

Cluster 2 

AGE 9205.0 + 52.00 48.0 0.001858 

Age first symptom 9644.0 + 40.90 34.5 0.0001032 

TLCO 5914.5 - 40.55 51.6 0.007267 

(b) 

Categorical variable Cluster 
average 

Statistics Per model 
cluster 

Per model 
global 

Global 
average 

P value 

Cluster 1 

present dyspnoea No 71.688492 91.95402 76.19048 No 0.0004998 

present pneumothorax Yes NA 52.87356 97.87234 No 2.44e-16 

present angiomyolipoma Yes NA 71.26437 42.46575 No 9.995e-07 

present no symptoms No NA 100.0000 52.40964 No 0.006603 

ever had angiomyolipoma Yes 7.527227 73.56322 58.18182 Yes 0.007996 

ever had lymphatic disease No 15.220782 94.25287 56.94444 No 0.0009995 

pneumothorax Yes 57.643460 72.41379 82.89474 No 0.0004998 

post menopause Pre 15.360550 80.45977 60.86957 Pre 0.0009995 

surgery for pneumothorax Yes 49.075631 63.21839 84.61538 No 0.0004998 

intervention for angiomyolipoma Yes 11.920365 58.62069 41.80328 No 0.001499 

Cluster 2 

present dyspnoea Yes 71.688492 70.93023 89.70588 No 0.0004998 

present pneumothorax No NA 98.83721 67.46032 No 2.44e-16 

present angiomyolipoma No NA 97.67442 57.53425 No 9.995e-07 

present no symptoms Yes NA 91.86047 47.59036 No 0.006603 

ever had angiomyolipoma No 7.527227 53.48837 41.81818 Yes 0.004998 

ever had lymphatic disease Yes 15.220782 72.09302 43.05556 No 0.0004998 

pneumothorax No 57.643460 84.88372 75.25773 No 0.0004998 

post menopause Post 15.360550 52.32558 39.13043 Pre 0.0004998 

surgery for pneumothorax No 49.075631 88.37209 70.37037 No 0.0004998 

intervention for angiomyolipoma No 11.920365 82.55814 58.19672 No 0.001999 

 

 

 

 

 

 



(c) 

Variables Cluster 1 Cluster 2 

AGE - + 

Age first symptom - + 

TLCO + - 

present dyspnoea No Yes 

present pneumothorax Yes No 

present angiomyolipoma Yes No 

present no symptoms No Yes 

ever had angiomyolipoma Yes No 

ever had lymphatic disease No Yes 

pneumothorax Yes No 

post menopause Pre Post 

surgery for pneumothorax Yes No 

intervention for angiomyolipoma Yes No 

 

Dimension 2 

 
Dimension 1 

Supplementary Figure S4. 
Subject distribution in the two-
cluster model. Cluster 1 subjects 
shown in blue, cluster 2 red.  



Three-cluster model 
 
Supplementary table S5. The following graphs and table show the probability of a patient falling into each 

cluster according to each factor. For example, a patient with angiomyolipoma is more likely to be in cluster 

two.  

 

Age at first symptom 

 
Age at presentation 

 
FEV1 

 
TLCO 

 
exertional hypoxaemia 

 

C1 

C2 

C3 

C1 

C2 

C3 

C1 

C2 C3 

C1 

C2 
C3 

C1 

C2 

C3 



Presentation with dyspnoea 
 
 No Yes 

Cluster 1  0.484375  0.515625 
Cluster 2  0.937500  0.062500 

Cluster 3  1.000000  0.000000 

 
Presentation with pneumothorax 
 

 No Yes 

Cluster 1  0.6328125  0.3671875 

Cluster 2  1.0000000  0.0000000 

Cluster 3  1.0000000  0.0000000 
 
Presentation with angiomyolipoma 
 

 No Yes 

Cluster 1  1.00000  0.00000 

Cluster 2  0.15625  0.84375 

Cluster 3  1.00000  0.00000 

 
Ever had lymphatic manifestations 
 

 No Yes 

Cluster 1  0.8515625  0.1484375 

Cluster 2  0.8750000  0.1250000 

Cluster 3  0.5384615  0.4615385 

 
Ever had pneumothorax 
 

 No Yes 

Cluster 1  0.48437500  0.51562500 

Cluster 2  0.71875000  0.28125000 

Cluster 3  0.92307692  0.07692308 

 
Post menopause 
 
 No Yes 

Cluster 1  0.3828125  0.6171875 

Cluster 2  0.0937500  0.9062500 

Cluster 3  0.4615385  0.5384615 

 
Surgery for pneumothorax 
 

 No Yes 

Cluster 1  0.57812500  0.42187500 

Cluster 2  0.68750000  0.31250000 

Cluster 3  0.92307692  0.07692308 
 
Presentation after screening 
 

 No Yes 

Cluster 1  1.00000  0.00000 

Cluster 2  0.84375  0.15625 

Cluster 3  1.00000  0.00000 



TSC present 
 
 No Yes 

Cluster 1  0.8515625  0.1484375 

Cluster 2  0.6250000  0.3750000 

Cluster 3  0.6153846  0.3846154 

 
Angiomyolipoma present 
 

 No Yes 

Cluster 1  0.4296875  0.5703125 

Cluster 2  0.0000000  1.0000000 

Cluster 3  0.6153846  0.3846154 

 
Intervention for angiomyolipoma 
 

 No Yes 

Cluster 1  0.78125000  0.21875000 

Cluster 2  0.31250000  0.68750000 

Cluster 3  0.92307692  0.07692308 

 
 
  



Supplementary table S6. Statistical tests for numerical variables in three-cluster model. Continuous variables 

are analysed in section (a), categorical in section (b) and the differences between variables for each group are 

presented in (c). 

 

(a) 

Continuous variable Statistics Direction Cluster 
average 

Global 
average 

P value 

Cluster 1 

Age first symptom 1822 - 28.25 34.5 0.00216 

Age 1648 - 38.00 48.0 0.00028 

FEV1 3688 + 90.90 68.8 0.00286 

TLCO 3747 + 64.55 51.6 0.00150 

Cluster 3 

Age first symptom 1829.5 + 46.8 34.5 0.00017 

 
(b) 

Categorical variable Cluster 
average 

Statistics Per model 
cluster 

Per model 
global 

Global 
average 

P value 

Cluster 1 

present dyspnoea Yes NA 51.56250 97.05882 No 2.787e-09 

present pneumothorax Yes NA 63.28125 64.28571 No 8.131e-08 

present angiomyolipoma No NA 100.0000 87.67123 No 5.945e-20 

ever had pneumothorax Yes 11.6362 51.56250 86.84211 No 0.0009995 

post menopause Post 4.99292 61.71875 68.69565 Pre 0.03098 

surgery for pneumothorax Yes 4.46877 57.81250 68.51852 No 0.04948 

present with screening No NA 100.0000 76.19048 No 0.001003 

TSC  No 10.6269 85.15625 79.56204 No 0.0004998 

ever had angiomyolipoma No 9.12484 57.03125 66.36364 Yes 0.001999 

intervention for angiomyolipoma No 13.6892 78.12500 81.96721 No 0.0004998 

Cluster 2 

present dyspnoea No NA 93.750 28.57143 No 6.361e-06 

present pneumothorax No NA 100.000 25.39683 No 1.417e-05 

present angiomyolipoma Yes NA 84.375 100.0000 No 6.977e-27 

ever had pneumothorax No 3.98206 71.875 23.71134 No 0.04298 

post menopause Pre NA 90.625 25.21739 Pre 0.0008591 

surgery for pneumothorax Yes NA 84.375 16.07143 No 0.0001653 

present with screening Yes 6.637398 62.500 14.59854 No 0.01599 

TSC  Yes NA 100.000 29.09091 Yes 8.33e-08 

ever had angiomyolipoma Yes 29.1250 68.750 43.13725 No 0.0004998 

Cluster 3 

present dyspnoea Yes NA 51.56250 97.05882 No 2.787e-09 

present pneumothorax Yes NA 63.28125 64.28571 No 8.131e-08 



present angiomyolipoma No NA 100.0000 87.67123 No 5.945e-20 

ever had pneumothorax Yes 11.63621 51.56250 86.84211 No 0.0009995 

post menopause Post 4.992919 61.71875 68.69565 Pre 0.03098 

surgery for pneumothorax Yes 4.468773 57.81250 68.51852 No 0.04948 

present with screening No NA 100.0000 76.19048 No 0.001003 

TSC  No 10.62689 85.15625 79.56204 No 0.0004998 

ever had angiomyolipoma No 9.124839 57.03125 66.36364 Yes 0.001999 

intervention for angiomyolipoma No 13.68919 78.12500 81.96721 No 0.0004998 

 
(C) 

Variables Cluster 1 Cluster 2 Cluster 3 

Age first symptom - +  

Age -   

FEV1 +   

TLCO +   

present dyspnoea Yes No No 

present pneumothorax Yes No No 

present angiomyolipoma No Yes  

ever had pneumothorax Yes No No 

post menopause Post Pre  

surgery for pneumothorax Yes  No 

present with screening No Yes  

TSC  No Yes  

ever had angiomyolipoma No Yes  

intervention for angiomyolipoma No Yes  

ever had lymphatic disease    Yes 

 
 
 
 
 
 
 
 
 
 



Supplementary Table S7. Two-cluster model applied to the NHLBI cohort. 
 
Factor Cluster 1 Cluster 2 Mean diff p 

n 82 99   
Demographic * 

Age at assessment (yrs) 41.3 (8.4) 47.9 (8.9) -6.7 6.3x10
-7

 
Age 1st symptom (yrs) 34.1 (8.4) 41.5 (10.5) -7.4 4.1x10-7 

Presenting symptom † 
Dyspnoea 1.2 50.5 -38.5 < .00001 
Pneumothorax 69.9 5.1 64.8 < .00001 

Other respiratory 12.0 52.5 -40.5 < .00001 
Angiomyolipoma 9.6 0 9.6 .0053 
Screened 7.2 0 7.2 .03 

Chance finding 0 39.4 -39.4 < .00001 

Phenotype †     
Ever had pneumothorax 79.5 12.1 67.4 < .00001 

Ever had angiomyolipoma 22.9 8.1 14.8 < .00001 

Lymphatic disease 10.8 21.2 -10.4 .054 

TSC 15.7 5.1 10.6 .0002 
Lung function * 

FEV1 (% predicted) 78.7 (25.5) 72.1 (24.6) 6.6 0.068 

DLCO (% predicted) 63.5 (22.9) 52.7 (20.6) 10.7 0.00095 

Bronchodilator reversibility (%) 11.3 (10.3) 11.9 (10.5) -0.6 0.67 

* Mean value (standard deviation) compared by unpaired 2 tail t-test. † Percentage of cohort with this feature 
present compared by chi square test.  
 
 
 
 
 
Supplementary Table S8. Three-cluster model applied to the NHLBI cohort. 
 

 Cluster 1 Cluster 2 Cluster 3 p 

Number in cluster 145 11 28  

Demographic *     

Age at assessment (yrs) 44.7 (9.4) 39.4 (9.2) 43.3 (7.4) .026 

Age 1
st

 symptom (yrs) 37.5 (10.7) 34.4 (6.7) 43.3 (7.4) .040 

  Presenting symptom † 

Dyspnoea 35.9 0 0 < .00001 
Pneumothorax 43.4 0 0 < .00001 

Other respiratory 35.9 0 39.2 < .00001 

Angiomyolipoma 0 72.7 0 < .00001 
Screened 0.7 27.3 7.1 < .00001 

Chance finding 20.7 0 35.7 < .00001 

  Phenotype † 

Ever had pneumothorax 53.1 9.1 0 < .00001 

Ever had angiomyolipoma 8.2 100 14.3 < .00001 
Lymphatic disease 12.4 0 42.8 < .00001 

TSC 5.5 35.4 21.4 < .00001 

  Lung function * 
FEV1 (% predicted) 70.4 (24.1) 91.2 (21.7) 92.3 (21.7) <.0001 

DLCO (% predicted) 53.3 (20.6) 75.5 (23.1) 72.1 (20.7) <.0001 
Bronchodilator reversibility (%) 12.7 (10.6) 8.6 (8.2) 7.5 (9.1) .037 

* mean (+/-SD), analysed by one way ANOVA. † percentage of cohort, analysed by chi square test. 



  

Supplementary Figure S5 (a) Effect of missing data upon cluster assignment in the two-
cluster model. 112 subjects from the UK cohort with complete data were assigned to 
clusters and then reassigned with each variable removed in turn. The heatmap is red for 
correctly assigned subjects (columns) and tan when omission of that variable listed 
(rows) led to mis-assignment to cluster and yellow to cluster 2. (b) Percentage of 
misclassified subjects in each cluster after removal of single variables for each cluster.  

(A) 

(B) 



 

Supplementary Figure S6 Effect of missing data upon cluster assignment in the three-cluster 
model. 112 subjects from the UK cohort with complete data were assigned to clusters and 
then reassigned with each variable removed in turn. Percentage of misclassified subjects in 
each cluster after removal of single variables for each cluster. 
 
 
 
 
 
 
Supplementary table S9. Prospective lung function change the two-cluster model 
 

Cluster 1 2 Difference  p 

UK Untreated mean (SD) n mean (SD) n (95% C.I.)  

FEV1 change (ml/yr)  -83 (280) 58 -60 (180) 54 23 (-65 to 112) 0.6 

TLCO change (mmol/min/kPa/yr) -0.21 (.54) 54 -0.18 (.45) 51 0.032 (-.164 to .229) 0.7 

observation period (months) 54 (36)  49 (36)    

number of observations 6.1 (3.3)  5.6 (3.5)    

UK Rapamycin treated 

FEV1 change (ml/yr) -9 (22) 37 1 (59) 44 10 (-60 to 80) 0.7 

TLCO change (mmol/min/kPa/yr) -0.04 (.35) 37 -0.08 (.17) 44 0.04 (-.158 to .088) 0.5 

observation period (months)  42 (22)  451 (27)    

number of observations 6.6 (3.9)  10 (6.3)    

NHLBI Untreated 

FEV1 change (ml/yr)  -74.7 (115) 73 -103.4 (101) 101 -29 (-60 to 3) .08 

TLCO change (mmol/min/kPa/yr) -0.25 (.31) 71 -0.22 (.36) 100 0.02 (-0.073 to 0.13) .56 

observation period (months) 38.4 (17)  35.9 (16)    

number of observations 3.8 (1.3)  3.8 (1.3)    

     p value obtained by unpaired t-test.  
 
 
 

 



 
Supplementary Table S10. Prospective lung function change the three-cluster model 
 

Cluster 1 2 3 p 

UK Untreated mean (SD) n mean (SD) n mean (SD) n  

FEV1 change (ml/yr)  -76 (252) 71 -51 (213) 27 -88 (191) 14 0.86 

TLCO change (mmol/min/kPa/yr) -0.22 (.47) 70 -0.07 (.62) 27 -0.26 (.54) 14 0.38 

observation period (months) 55.1 (39)  43.1 (29)  47.9 (32)   

number of observations 6.3 (3.6)  5.0 (3.0)  5.1 (2.8)   

UK Rapamycin treated  

FEV1 change (ml/yr) 13 (102) 61 -17 (140) 17 -21 (74) 3 0.54 

TLCO change (mmol/min/kPa/yr) -0.034 (.22) 61 -0.13 (.41) 17 -0.16 (.39) 3 0.38 

observation period (months)  52.2 (26)  37.4 (22)  23.2 (8)   

number of observations 9.3 (5.8)  5.9 (3.8)  4.3 (1.2)   

NHLBI Untreated 

FEV1 change (ml/yr)  -94.9 (107) 136 -17.7 (142) 11 -103 (77) 27 .055 

TLCO change (mmol/min/kPa/yr) -0.22 (.31) 134 -0.27 (.30) 10 -0.26 (.46) 27   .078 

observation period (months) 37.2 (17)  39.2 (11)  34.8 (15)   

number of observations 3.8 (1.3)  3.9 (1.1)  3.7 (1.3)   

     p value obtained by one way ANOVA.  
 
 
 
 
 
Supplementary table S11. Prospective UK angiomyolipoma outcome according to cluster models. 
 
 Present = number (percent of cluster) with an angiomyolipoma. int. = number (percent of cluster) requiring an 

intervention for angiomyolipoma. F/U = mean follow up duration of subjects within that cluster in months. risk 
= rate of angiomyolpioma intervention / year of follow up of those in cluster with an angiomyolipoma. P = 
difference in risk between clusters analysed by chi square test.  
 
 
 
Supplementary table S12. Survival outcomes for two and three-cluster models in the NHLBI cohort.  

 
 median time to death or 

transplant (months) 
hazard ratio 

(95% C.I.) 
p 

cluster 1 2 3 1 2 3  

2 cluster  291 285  1.1 (0.66 to 2.0) 0.88 (0.51 to 1.5)  0.907 
3 cluster 285 N/A N/A N/A N/A N/A 0.0045 

N/A not available: survival >50% at end of analysis. 
 
  

Cluster 1 2 3 p 

Model  present int. F/U  risk present int. F/U risk present int. F/U risk  

2 cluster  69 (72) 16 (17) 47 0.059 43 (50) 5 (6) 52 0.025  <.00001 
3 cluster 63 (50) 20 (16) 56 0.069 38 (97) 1 (3) 34 0.001 11 (65) 1 (6) 36 .03 <.00001 



 
 
Supplementary Figure S7. Prospective incidence of pneumothorax in the 2 and 3 cluster models for the UK 
and NHLBI cohorts. Kaplan Meier analysis of the prospective risk of pneumothorax following cluster 
assignment in the UK and NHLBI cohorts separately for the two and three cluster model.  



Supplementary Figure S8. Time to death or lung transplant for the 2 and 3 cluster models in the NHLBI cohort. 
Kaplan Meier analysis of the combined risk of death or need for lung transplantation in the NHLBI cohort 
stratified using the three cluster model. 
  

2 cluster model 

3 cluster model 
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