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To the Editor: 

Recent prospective clinical trials have shown antifibrotic therapies slow lung function decline in 

patients with idiopathic pulmonary fibrosis (IPF)1,2 and progressive fibrosing interstitial lung 

disease (ILD). Similar findings were demonstrated in scleroderma-associated ILD3 despite use 

of the immunosuppressive therapy mycophenolate mofetil (MMF). Prospective data for the 

treatment of other forms of ILD, such as chronic hypersensitivity pneumonitis (CHP) are lacking. 

Our groups previously reported that the treatment of CHP with MMF was associated with a 

decreased incidence of adverse events, a reduction in prednisone dose, and improved lung 

function when compared to prednisone alone4,5, but prospective studies are needed to confirm 

these findings.  Short leukocyte telomere length (TL) is associated with increased mortality in 

patients with ILD, including CHP and IPF6-8. A recent investigation also showed TL may 

influence the response to immunosuppressive therapy. In that study, patients with IPF and short 

TL had a higher risk of death, lung transplantation, and forced vital capacity (FVC) decline, 

when exposed to immunosuppressive therapy, including MMF9. In this investigation we sought 

to determine whether similar findings occurred in patients with CHP. We hypothesized that 

patients with CHP and short TL would experience a higher prevalence of death and disease 

progression when compared to those with longer TL.   

The study population consisted of a multicenter cohort of prospectively enrolled consenting 

patients with a confident multidisciplinary diagnosis of CHP at the University of Chicago 

(UChicago), University of California San Francisco (UCSF), University of California Davis 

(UCDavis), and University of Texas Southwestern, Dallas (UTSW) between September 2003 and 

December 2019 (IRB: UC#14163A, UCSF#10-01592 & #10-00198; UCD#585448-7 & #875917-

2, UTSW#082010-127; #AAAS0753). Genomic DNA was isolated from peripheral blood 

leukocytes, TL measurement performed using quantitative PCR in triplicate10, and age-adjusted 

TL calculated using normal controls. Standardized TLs were obtained by normalization across 

study sites and categorized into quartiles. The electronic medical record was used to extract 

pertinent clinical information and determine vital status, which was confirmed using the US 

Social Security death index. Patients who received azathioprine prior to or during the study 

period were excluded (n=19). A binary categorization was applied to the study population based 

on MMF therapy ≥ 500mg/day for at least a month during the study period. 

A propensity score approach was utilized to predict the conditional probability for an individual to 

receive MMF treatment, and model covariates included: age, sex, smoking status, prednisone 

therapy, physiologic indices of disease severity such as FVC and diffusing capacity of the lung 

for carbon monoxide (DLCO), severity of fibrosis, distribution of fibrosis, traction bronchiectasis, 

UIP pattern, ground-glass opacities, and mosaic attenuation. Inverse probability of treatment 

weighting (IPTW) was used to estimate the average treatment effect on time-to-event 

outcomes11. Survival functions were plotted using the Kaplan-Meier estimator. Cox models were 

used for hazard ratio estimation calculating transplant-free survival time as time from 

commencing immunosuppressive therapy to death, lung transplantation, loss to follow-up, or 

end of study period, while adjusting for imbalanced variables and controlling for center in all 

multivariable outcome models. We applied multiple imputation using chained equations to 

account for missing covariates (<20%). IPTW-weighted longitudinal trajectories of FVC% 



predicted, and DLCO% predicted were analyzed using linear mixed-effects models with 

restricted maximum likelihood modeling and an autoregressive structure4, and grouped PFTs 

into 90-day epochs allowing for time-course alignment all patients. The change in FVC% 

predicted, and DLCO% predicted was evaluated, and characteristics compared using two-sided 

t-tests, or chi-square tests, as appropriate. Statistical analyses were conducted using Stata 

(2019.R.16; StataCorp). 

In this investigation, 208 patients with CHP were enrolled, of which 19 were excluded because 

they had received azathioprine before or during the study period. The remaining 189 patients 

with 1,420 unique PFTs were included. Median age was 65 years (interquartile range, IQR 58–

71 years), 97 (51%) were female, 160 (85%) were white, 89 (47%) had a history of tobacco use 

and a mean of 15±22 pack years, and 129 (68%) had a history of environmental antigens. 

Baseline FVC% predicted and DLCO% predicted were 65%±19% and 53%±23%, respectively, 

99 (52%) patients had undergone surgical lung biopsy, and 142 (75%) received corticosteroids. 

Clinical characteristics across study centers are summarized in Fig. 1A. Median MMF exposure 

time was similar between patients with TL in the first quartile (Q1) and those in the second to 

fourth quartiles (Q2-Q4) (10months (IQR=5-16months) vs. 10months (IQR=4-23months); 

P=0.86). Use of corticosteroid therapy was similar between both groups (Q1=77.1% vs. Q2-

Q4=74.5%; P=0.72). Baseline FVC% predicted was lower in Q1 patients that received MMF 

when compared to those that did not receive MMF (63.2%±18.2% vs. 74.1%±14.7%; P=0.029). 

Similarly, baseline DLCO% predicted was lower in Q2-Q4 patients who received MMF than 

those that did not receive MMF (48.2%±20.3% vs. 58.2%±24.4%; P=0.011). 

Each quartile decrease in TL was associated with a step-wise decrease in transplant-free 

survival (Fig.1B). Crude mortality rates were higher for Q1 patients when compared to Q2-Q4 

(27.3 deaths per 100 person-yrs vs. 8.4 deaths per 100 person-yrs; P=0.0002). In propensity 

score adjusted analyses Q1 patients had increased mortality overall when compared to Q2–Q4 

(HR, 3.29; 95%CI, 1.56–6.95; P=0.002). When compared to Q1 patients who did not receive 

MMF, survival was improved in Q2–Q4 patients who received MMF (HR for interaction term, 

0.17; 95%CI; 0.05-0.61; P=0.007), but not in Q2–Q4 patients who did not receive MMF 

(P=0.13), or in Q1 patients who received MMF (P=0.87) (Fig.1C-D). Significant interaction 

existed between MMF and TL for Q3 (HR, 0.19; 95%CI, 0.05–0.70; P=0.013) and Q4 (HR, 0.18; 

95%CI, 0.06–0.57; P=0.003), but not for Q1 (P=0.72) or Q2 (P=0.37). Seven patients were 

censored due to lung transplantation, all with TL above the first quartile. Those who received 

MMF appeared more likely to undergo lung transplantation (n=6; 10%) compared to those who 

did not receive MMF (n=1, 2%; P=0.066). Importantly, irrespective of TL, annualized change in 

FVC and DLCO measurements did not differ with MMF use (Fig.1E-F).  

Our observation that MMF therapy is not associated with improved survival or lung function in 

patients with CHP and short telomeres is similar to the association in IPF, and likely reflects a 

final common pathway in the pathophysiologic processes of advanced fibrosis that underlie 

these two diseases. This is further evidenced by the demonstrated benefit of antifibrotic therapy 

in reducing lung function decline for patients with IPF or CHP, with increasing evidence of the 

benefit of nintedanib and pirfenidone in progressive fibrosis irrespective of TL12,13. As patients 

with CHP are often prescribed immunosuppressive medications, increased recognition of the 



potentially harmful effects of these therapies in IPF subjects with short telomeres has 

engendered increased scrutiny around their use in other types of pulmonary fibrosis. 

In the absence of short TL, the improved survival associated with MMF in CHP may suggest 

fundamental differences between IPF and CHP. While IPF is not characterized by inflammation, 

CHP has an inflammatory component, and immunosuppressive therapy may ameliorate the 

exposure-related alveolar inflammation earlier in the disease course. Additionally, while specific 

genetic variants are common to both diseases, the repertoire of telomere-related mutations and 

susceptibility associated gene polymorphisms such as MUC5B appear to differ in their 

associations with lung function decline and survival across different types of ILD8,14. Of note, in 

this observational study, we restricted our analysis to assessing the influence of MMF on CHP 

outcomes, and did not evaluate potential adverse effects such as hematological and hepatic 

effects. Thus, the retrospective nature of this study limits our findings to the identification of 

association, not causality; however, the consistency of our findings with previous investigations 

supports these results. 

Ultimately, as the management of CHP continues to evolve, larger carefully conducted studies 

examining the value of immunosuppressive therapy in patients with telomere mutation–related 

ILD remain much needed given the widespread use of these medications and their presumed 

value in diverse forms of ILD. 
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Propensity-score adjusted Cox regression model

Telomere Length Hazard ratio (95% CI) P-value

Q1, - MMF reference --

Q1, + MMF 1.10 (0.34 – 3.54) 0.869

Q2-Q4, - MMF 0.31 (0.07 – 1.43) 0.133

Q2-Q4, + MMF 0.17 (0.05 – 0.61) 0.007

A. B.

Figure 1. (A) Baseline characteristics of hypersensitivity pneumonitis (HP) study population. (B) Transplant-free survival in
patients with HP according to quartiles of telomere length (TL)*. (C) Propensity score adjusted Cox regression model
(reference= Q1 patients not receiving mycophenolate therapy [MMF]). (D) Propensity score adjusted transplant-free survival.
(E) Percentage predicted forced vital capacity (FVC) trajectory from baseline for the first 24 months grouped by MMF
therapy (blue squares and dotted lines) vs. no MMF therapy (red circles and solid lines) for first quartile (Q1), and second to
fourth quartiles (Q2-Q4) of TL. (F) Percent predicted diffusing capacity (DLCO) trajectory from baseline for the first 24
months grouped by MMF therapy vs. no MMF therapy for patients with TL in Q1, and Q2-Q4. ∆ = annualized change in
pulmonary function test (PFT). Categorical variables presented as n (%); continuous variables presented as mean (SD).
UCHICAGO=University of Chicago, UCDAVIS=University of California, Davis, CA; UCSF=University of California, San
Francisco, CA; UTSW=University of Texas Southwestern Medical Center, Dallas, TX. Env.Antigen=environmental antigen;
Tobacco pk-yrs=tobacco pack years; surgical biopsy=surgical lung biopsy; corticosteroid=prednisone use. *One subject was
censored after baseline evaluation as survival status could not be ascertained during the follow-up evaluation period. Whiskers
correspond to 95% confidence intervals. Median time of 1st MMF dose =1.4 months from 1st PFT. Median time of last MMF dose
=11.5 months from 1st PFT. Longitudinal analysis restricted to subjects with ≥2 PFTs over the first 24 months of study period.

Q1 +MMF

Q1 -MMF
Q2-Q4 –MMF

Q2-Q4 +MMF

Log rank P=0.023

Parameter
UCHICAGO

(n=78)
UCDAVIS

(n=49)
UCSF
(n=35)

UTSW
(n=27)

Age, yr 65 (9) 71 (10) 60 (11) 62 (9)
Male 39 (50) 23 (47) 14 (40) 16 (59)
White 66 (85) 40 (82) 30 (86) 24 (89)
Tobacco pk-yrs 16 (24) 11 (18) 17 (13) 16 (27)
Env. Antigen 24 (31) 49 (100) 35 (100) 21 (78)
FVC % 65 (20) 66 (20) 71 (15) 59 (19)
DLCO % 55 (25) 52 (24) 58 (13) 45 (19)
Surgical biopsy 43 (55) 15 (31) 25 (71) 16 (59)
Corticosteroid 54 (69) 38 (78) 26 (74) 24 (89)

C. D.

E. F.Q1 Q2-Q4 Q1 Q2-Q4

∆ FVC%
-MMF: 0.4 (-4.2 – 3.6)
+MMF: 0.3 (-2.7 – 3.3) 

∆ FVC%
-MMF: -1.2 (-6.4 – 4.2)
+MMF: -0.7 (-3.8 – 2.2) 

∆ DLCO%
-MMF: -0.2 (-7.6 – 7.1)
+MMF: 2.8 (-1.9 – 7.4) 

∆ DLCO%
-MMF: -2.3 (-10.4 – 5.7)
+MMF: -0.6 (-6.8 – 5.7) 

1.0

Q1

Q2

Q3
Q4

Log rank P=0·003


