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Abstract 

Rationale: Transplantation of lungs from donation after circulatory death (DCD) in addition to 

donation after brain death (DBD) became routine worldwide to address the global organ 

shortage. The development of ex vivo lung perfusion (EVLP) for donor lung assessment and 

repair contributed to the increased use of DCD lungs. We hypothesize that better understanding 

of the differences between lungs from DBD and DCD donors, and between EVLP and directly 

transplanted (non-EVLP) lungs, will lead to discovery of the injury specific targets for donor 

lung repair and reconditioning.   

Methods: Tissue biopsies from human DBD (n=177) and DCD (n=65) donor lungs assessed 

with or without EVLP, were collected at the end of cold ischemic time. All samples were 

processed with microarray assay. Gene expression, network and pathway analyses were 

performed using R, Ingenuity Pathway Analysis and STRING. Results were validated with 

protein assay, multiple logistic regression and 10-fold cross validation. 

Results: Our analyses showed that lungs from DBD donors have up-regulation of inflammatory 

cytokines and pathways. In contrast, DCD lungs display a transcriptome signature of pathways 

associated with cell death, apoptosis and necrosis. Network centrality revealed specific drug 

targets to rehabilitate the DBD lungs. Moreover, in DBD lungs, TNFR1/2 signalling pathways 

and macrophage migration inhibitory factor associated pathways were activated in the EVLP 

group. A panel of genes that differentiate the EVLP from non-EVLP group in DBD lungs was 

identified. 

Conclusion: The examination of gene expression profiling indicates that DBD and DCD lungs 

have distinguishable biological transcriptome signatures.  
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Introduction 

Lung transplantation is a life-saving therapy for patients with end-stage lung disease. However, 

there is a significant shortage of donor lungs to meet this therapeutic need.  When compared to 

other organs, the utilization rate of donated lungs is the lowest, which further exacerbates the 

organ shortage and leads to an increased mortality rate for patients on the transplant wait list [1]. 

This is partially caused by the lower availability of lungs from conventional donation after brain 

death (DBD), compared with other organs [2], as lungs are more vulnerable during retrieval and 

preservation.  

Utilization of lungs from donation after circulatory death (DCD), in addition to DBD lungs has 

become world-wide practice to increase the number of donor organs for transplantation [3, 4]. 

According to the International Society for Heart and Lung Transplantation Registry report, the 

percentage of lung transplants from DCD donors was 20.9% in 2017, and the post-transplant 

survival for recipients receiving lungs from DCD versus DBD donors is comparable [5, 6].  

The development of the ex-vivo lung perfusion (EVLP) technology has increased the utilization 

of donor lungs, as it enables further organ assessment, treatment, and rehabilitation of donor 

lungs at body temperature [7, 8]. By providing the donor lung with perfusion and ventilation in a 

normothermic environment, EVLP can help restore physiological metabolism so that more 

accurate assessments and more effective therapies are possible prior to transplantation. The use 

of EVLP for extended criteria donor lungs has led to a 20% increase in available donor lungs for 

transplant as of 2015 [9], and this number has surged even further over the past four years. Lungs 

assessed by EVLP that progress to transplant have similar post-transplant outcomes compared 

with standard donor lungs [10, 11]. Better understanding of the differences between DCD and 



DBD lungs, and identification of the indications for proceeding to EVLP will be crucial to 

finding precise therapeutic targets and deciding which lungs would benefit from EVLP. 

The present study aims to answer the following two questions: (i) are DBD and DCD donor 

lungs different at the transcriptional level, and (ii) do EVLP and non-EVLP lungs have different 

gene signature at cold ischemic time? 

There is a lack of systematic investigation of transcriptional signatures specific to donor types. A 

pilot study using microarray data from 12 DBD and 6 DCD human lung samples, performed by 

our group [12], showed more inflammation-related genes in DBD lungs compared to lungs from 

DCD donors.  However, the sample size at the time was very small, lacking in statistical power, 

details on the inflammatory genes and pathways were very limited, and a comparison of EVLP 

vs. non-EVLP samples was not performed. The objective of the current study was to examine a 

large data set of human lungs to conduct comprehensive bioinformatics and systems biology 

analyses to answer the questions above, and to validate the findings of our previous work, giving 

that the validation using a different cohort of samples is extremely important.  

Materials and Methods 

Donor lungs, RNA Extraction and Microarrays 

The donor peripheral lung tissue biopsies were collected at the end of cold ischemic time (CIT) 

before EVLP or transplant, and snap frozen in liquid nitrogen by the Toronto Lung Transplant 

Program, at University Health Network, from 2010 to 2015. Total RNA was extracted, then 

purified using RNeasy Mini Kit (Qiagen; Hilden, Germany). RNA quality was verified by 

Nanodrop spectrophotometer (VWR; Radnor, PA) and Bioanalyzer (Agilent; Santa Clara, CA). 



All samples were processed with Clariom D™ Assay (Thermo Fisher Scientific; Waltham, MA). 

Raw data and processed files are accessible at GEO, series accession number GSE128204 

(Reviewer Access Token: “sdspwogkzvuhzah”). 

General clinical indications to select donor lungs for EVLP were defined by following criteria: 

ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (PO2:FiO2) less 

than 300 mm Hg, presence of pulmonary edema or infiltrates on chest imaging. 

This study was approved by the University Health Network research ethics boards (REB#11-

0509 and REB#12-5488) and ethics review board of the Trillium Gift of Life Network. All 

patients provided written consent for tissue bio-banking. 

Bioinformatics analyses 

The entire flow of bioinformatics analyses and the corresponding methods is depicted in 

Supplementary Figure 1. 

Gene expression and clustering analysis 

We have selected only those samples that were transplanted directly or following EVLP. The 

lungs rejected for transplant were not considered. 

There are several group comparisons defined in this study (Table 1). (I) all DBD (n=177) vs. all 

DCD (n=65); (II) non-EVLP DBD (n=123) vs. non-EVLP DCD (n=22); (III) EVLP DBD (n=54) 

vs. EVLP DCD (n=43); (IV) EVLP DCD (n=43) vs. non-EVLP DCD (n=22); and (V) EVLP 

DBD (n=54) vs. non-EVLP DBD (n=123) lung samples. 



Differential gene expression, principal component analysis and hierarchical clustering were 

performed in R [13] version 3.5.0 with various packages: affy [14], limma [15] annotate [16], 

pca3d [17]. For heatmap visualization, we employed MetaboAnalyst [18] software. Microarray 

data was pre-processed by RMA utilizing the affy [14] package. We used the entrez gene ID 

alternative annotation package from Brainarray [19]. P-values for differential gene expression 

were obtained using limma [15] package. Batch effects were minimized by adjusting for 

microarray lot within the limma models. A gene was considered differentially expressed (DE) 

between two groups if a p-value corrected for False Discovery Rate (FDR) using the Benjamini-

Hochberg [20] method, was less than 0.05 (FDR < 0.05). In addition, stronger effects were 

defined for DE genes with fold change: FC ≥ 2 (up-regulation) or FC ≤ 0.5 (down-regulation), or 

otherwise indicated. 

Pathway and network analysis 

The lists of the DE genes and their statistical and experimental parameters (FDR-corrected p-

value, log2FC) corresponding to each group comparison in this study were uploaded to the 

Ingenuity Systems


 (www.ingenuity.com) to perform ingenuity pathway analyses (IPA). For 

network analysis we employed STRING Database version 10.5 [21] and igraph package [22]. 

Multiple Logistic Regression and 10-fold cross validation 

We investigated the correlation between the seven highly DE genes in EVLP DBD vs. non-

EVLP DBD comparison using stepwise multiple logistic regression method. We validated the 

best model with 10-fold cross validation method. Area under the Curve (AUC) was calculated 

with ROCR [23] package. 

http://www.ingenuity.com/


More details on bioinformatics methods are included in the Supplementary Material. 

Protein Assays 

EVLP perfusate samples of the donor lungs were collected at 1 hour into perfusion. Samples 

were taken directly from the pulmonary venous outflow and tested on an automated ELISA for 

IL-6, IL-8 and IL-1β as per manufacturer’s instructions (Protein Simple, San Jose, CA). 

Results  

Clinical data of donors are provided in Table 2.  The donors were similar in terms of age, sex, 

smoking status, chest x-ray infiltration and mechanism of injury leading to brain death (head 

trauma or anoxia/cardiac arrest) or the decision to withdraw life sustaining therapies in the case 

of DCDs. The donors with cerebrovascular/stroke were 58.8% in DBD group, compared to 

41.5% in DCD group (p-value=0.02). The ratio of last arterial partial pressure of oxygen (PaO2) 

to fraction of inspired oxygen (FiO2), (PaO2:FiO2), was significantly higher in DCD group (p-

value=0.019), with proportionally more DCD cases being assessed by EVLP (66.15%) as per 

institutional practice. 

Transcriptional signatures show significant differences between DBD and DCD donor lungs  

Differential gene expression analysis at FDR ≤ 0.05 revealed 5,196 DE genes in all DBD vs. all 

DCD comparison, 1,972 DE genes in non-EVLP DBD vs. non-EVLP DCD, and 2,792 DE genes 

in EVLP DBD vs. EVLP DCD group comparison. These genes displayed a fair separation 

between DBD and DCD groups by Principal Component Analysis (Supplementary Figure 2 a-c). 

Genes with fold change FC ≥ 2 or FC ≤ 0.5 (Supplementary Table 1) showed a very good 

delineation between DBD and DCD samples, as presented by heat maps with unsupervised 



hierarchical clustering (Figure 1). The large numbers of DE genes and the distinct gene 

clustering between DBD and DCD lungs indicate that the pathophysiological conditions of these 

two types of organ donations are quite different.  

Inflammation is dominant in DBD lungs and cell death is associated with DCD lungs 

Within the list of highly DE genes in DBD vs. DCD samples identified based on FDR and fold 

change (FC ≥ 2 or FC ≤ 0.5), 18 are common to all 3 group comparisons and are highly up-

regulated (Supplementary Table 1). Among them are: (i) members of the chemokine family 

(CCL2, CXCL2, CXCL8 (i.e., IL-8)) involved in immunoregulatory and inflammatory processes 

[24]; (ii) genes from Nuclear Receptor Subfamily 4 (NR4A1, NR4A2, NR4A3), shown to regulate 

neutrophil lifespan and homeostasis [25];  (iii) several metallothioneins (MT1M, MT1G, MT1X, 

MT1A, MT1JP) involved in cellular homeostasis, but also in differentiation and proliferation of 

normal and tumour cells, tumor angiogenesis [26],  and (iv) others, e.g. AMADTS4 and SELE 

with established roles in fibrosis [27], and FOSB - a regulator of cell proliferation, 

differentiation, and transformation [28].   

There are nine DE genes shared between EVLP and All samples, of which chemokine CCL20 

and cytokine IL-6 are well known for their role in inflammatory responses. There are several DE 

genes exclusive to the EVLP group. Of these, activation of IL-1β and PTX3 have been linked to 

donor lung injury or poor outcome after lung transplantation [29, 30]. The up-regulated 

NFKBIZ gene in EVLP lung group, which encodes the transcription factor IκBζ, is associated 

with increased susceptibility to invasive pneumococcal disease [31]. IER3, found to be activated 

in EVLP category of lungs, has roles in immune responses, inflammation, and tumorigenesis and 

rheumatoid arthritis [32].  



Following the gene expression analysis, we investigated the pathways, diseases and functions 

associated with DE genes using IPA. In comparison with DCD lungs, the majority of canonical 

pathways are up-regulated and very few are down-regulated in DBD samples (Table 3). Among 

the up-regulated pathways common to all three comparisons, IL-6 Signaling, HMGB1 Signaling, 

TREM1 Signaling, and p38 MAPK Signaling are known to play roles in pulmonary 

inflammation, infections and immune responses.  Of the pathways, specific to EVLP samples 

were: IL-1 Signaling, LPS-stimulated MAPK Signaling, NRF2-mediated Oxidative Stress 

Response, Role of IL-17F in Allergic Inflammatory Airway Diseases and iNOS Signaling are 

activated in DBD donor lungs. These are pathways prominent in inflammation [7, 33-35]. The 

detailed information on p-value and z-score of these pathways are given in Supplementary Table 

2.  

IPA predicted a wide range of activated diseases and functions in DBD vs. DCD samples. More 

specifically, cell viability and cell survival pathways frequently seen in tumor-related research 

are activated in DBD, while cell death, apoptosis and necrosis related pathways are activated in 

DCD samples (Figure 2).  

Network centrality reveals specific drug targets to potentially rehabilitate DBD lungs 

For network analysis, we performed a STRING analysis using the three short lists of highly DE 

genes (Supplementary Table 1), without protein-protein interactors from the database. The 

resulting networks have protein-protein interaction enrichment p-values < 1.0E-16 (Figure 3), 

suggesting that these are very strong biological networks solely based on DE genes between 

DBD and DCD lung samples.  

The central node is IL-6 for biological networks derived from either all DBD vs. DCD lungs 

(Figure 3a; betweenness score = 29.3) or using EVLP only samples (Figure 3c; betweenness 



score = 41.8). These results also reflect the pathway analysis that lists IL-6 as the top altered 

pathway (Table 3).  For non-EVLP samples only (Figure 3b), the central node was NR4A1 

(betweenness score = 18.5). The centrality analysis could be important for drug targeting. For 

instance, targeting IL-6 may result in the inhibition of the entire network, thus triggering 

inhibition of inflammation. More mechanistic and experimental studies are necessary to test this 

hypothesis.  

EVLP lungs are different from non-EVLP lungs at the transcriptomic level  

Comparisons of the EVLP DBD (n=54) and non-EVLP DBD (n=123) samples revealed 401 DE 

genes. Pathway analysis showed the involvement of genes in TNF family member receptors, 

TNFR1/2 signaling pathways, and in macrophage migration inhibitory factor (MIF) - related 

pathways in the EVLP lungs (Supplementary Figure 3), which supports inflammatory responses 

as potential therapeutic targets for DBD lung repair during EVLP [36]. These pathways are 

known to exert potent pro-inflammatory effects and regulate immune responses [35, 37, 38]. 

Several genes are shared by these pathways, including NFKB1 (NFB subunit 1), NFKBIE 

(NFB inhibitor epsilon), NFKBIA (NFB inhibitor alpha), BIRC3 (also called Inhibitor of 

Apoptosis Protein 1), and PLA2G5 (Phospholipase A2 Group V, a secretory enzyme that can 

induce inflammatory responses in neighbouring cells) (Supplementary Table 3), indicating these 

pathways are highly related to each other. 

Further filtering the DE genes by FDR < 0.05 and FC ≥ 1.5 or FC ≤ 0.7 identified eight genes 

(SCGB1A1, C20orf85, CFAP126, SNTN, FAM216B, MS4A8, TSPAN1, LOC101928817) down-

regulated in EVLP samples (Figure 4a). From this list we excluded the non-characterized gene 

(LOC101928817) with unknown function. To validate these results, we performed multiple 



logistic regression analysis, which showed high correlation among the other seven DE genes 

(Figure 4b). This implies that each of these genes could be predictive of EVLP assessment on its 

own. The step procedure determined that the best model was with CFAP126 (Cilia and Flagella 

Associated Protein 126); the 10-fold cross validation showed 70% prediction accuracy, with an 

area under the curve value (AUC) = 0.70, (Figure 4c). 

Comparison of non-EVLP DCD lungs (n=22) vs. EVLP DCD lungs (n=43) resulted in no 

significant differences at the transcriptional level. This may be due to the small number of DCD 

donor lungs in our dataset, and to the fact that EVLP has been more frequently used for DCD 

lungs at our center (66% in Table 2). 

Experimental validation 

In an effort to recapitulate our findings at the transcript level, we performed parallel protein work 

using perfusate samples collected during EVLP after the first hour.  Consistent with our 

transcript data, there was a significantly higher concentration of IL-6, IL-8 and IL-1β proteins 

from DBD donors in comparison with DCD donors (Figure 5).  

Discussion 

Our study demonstrated that the lung injuries in DBD and DCD lungs arise from different 

biological mechanisms, as evidenced by their different respective transcriptomic signatures. With 

this work, we have validated the results from our previous pilot study showing that lungs from 

DBD donors present higher inflammation [12], and we further revealed details on activation of 

immunological diseases and immune responses. IL-6, HMGB1, TREM1, and p38MAPK 

signaling pathways were found to be activated in DBD vs. DCD comparisons. In addition, as a 

novelty of our study, we also found that the activation of cell death, apoptosis and necrosis 



pathways were associated with DCD donor lungs. We further identified IL-6 as a central node 

for a network of highly DE genes in DBD lungs, especially in lungs assessed with EVLP. These 

results will be very valuable for further drug targeting studies, since it demonstrates that the two 

types of donor lungs may require different types of treatment. 

To our knowledge, this is the first large-scale study of human lungs, aiming to identify the 

transcriptional differences, molecular pathways and networks between DBD and DCD donor 

lungs used for transplantation. The results at the transcript level between DBD and DCD lungs 

were also partially confirmed at the protein level, in perfusate samples taken at one hour after the 

start of EVLP. This confirms that the pathway activation reported here does lead to translational 

changes at the protein level in the lung, as demonstrated by the protein assays on the common 

molecules (IL-6, IL-8, IL-1β) present in IL-6, HMGB1 and TREM1 signaling pathways.  

EVLP provides the means to evaluate extended criteria donor lungs, thus increasing the number 

of utilized lungs for transplantation, and reducing the risk of using poor quality donor lungs. 

EVLP also provides the opportunity to repair or to improve donor lung quality. Identification of 

possible drug targets for different types of lung injuries is critical, and our study revealed genes 

and pathways that mediates inflammation and/or cell death as potential targets for lung repair 

during EVLP. Recently, we have shown alpha-1 antitrypsin reduced porcine donor lung injury 

by inhibiting acute inflammatory responses and cell death during EVLP [39]. It is possible to use 

this or other anti-inflammatory and/or anti-cell death drugs to repair human donor lungs during 

EVLP. Hozain and colleagues have developed xenogeneic cross-circulation for extracorporeal 

recovery of injured human lungs [40], which provides a new platform for donor lung repair.  

In current transplantation practice, clinical experience dictates which extended lungs are directed 

to EVLP. Our analyses revealed molecular differences between EVLP and non-EVLP samples. 



First, the heat maps of DE genes of the DBD vs. DCD lungs comparisons look more similar 

between all samples and EVLP-only samples, than with non-EVLP lungs (Figure 1). Second, 

significant pathways from all sample comparison shows more overlap with EVLP-only samples 

than with non-EVLP samples (Table 3). Thirdly, the biological networks derived from highly DE 

genes from all or from EVLP-only samples shared the same central node, IL-6 (Figure 3).  

We have further shown that activation of inflammatory pathways is characteristic of lungs 

selected for EVLP, as TNFR1/2 signalling pathways and MIF-mediated pathways are activated 

in the EVLP group. A group of genes highly differentiate the EVLP group from the non-EVLP 

group in DBD samples. This panel of DE genes could be further tested and developed, to 

facilitate clinical decision making on which DBD donor lungs should be subjected to EVLP 

assessment, and repair.  One of the limitations of this study is the smaller number of non-EVLP 

vs. EVLP samples in the DCD lungs group, as DCD was a relatively new practice during 2011-

2015 when the samples were collected. Due to the uncertainty of using DCD lungs, the majority 

of DCD lungs have been proceeded to EVLP in our program. The differences between non-

EVLP and EVLP group in DCD group are currently unknown. The second limitation is the 

relatively small number of EVLP perfusate samples tested for IL-6, IL-8 and IL-1 by protein 

assays. These cases were part of a prospective validation study for cytokine biomarkers to assess 

the donor lung repair. As such we used all samples so far collected. We also recognize the 

importance of investigating the outcome from lung transplant, e.g. using gene expression as 

biomarkers to predicate donor lungs that may develop primary graft dysfunction after 

transplantation, which constitutes the objective of a future investigation and cannot be addressed 

in the present study.  



Overall, our findings constitute important information for the clinical lung transplantation 

community, delineating different types of donor specific lung injuries, and providing important 

clues to potential actionable drug targets to facilitate donor lung recovery for subsequent 

transplantation. The EVLP signature reflects that based on current criteria on which EVLP was 

assigned, these lungs have distinct transcriptomic features that are different from those of 

directly transplanted lungs. These results provide deeper understanding on donor lung biology, 

and although the immediate clinical implication of these findings remains unclear, it is hoped 

that they will ultimately help us to improve donor lung management, increase the number of 

lungs available for transplantation and potentially even improve lung allograft outcomes. 
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Figure legend 

Figure 1. Differentially expressed genes between DBD and DCD lungs. Heat maps with 

differentially expressed genes by strict filtering (FDR≤0.05, FC≥2 or FC≤0.5) with unsupervised 

hierarchical clustering: a) all samples, DBD vs. DCD; b) Non-EVLP samples, DBD vs. DCD; c) 

EVLP samples, DBD vs. DCD. FC, fold change; DBD, donation after brain death; DCD, 

donation after circulatory death; EVLP, ex-vivo lung perfusion.  

Figure 2. Ingenuity Pathway Analysis shows different diseases and functions for all samples, 

DBD vs. DCD comparison. DBD, donation after brain death; DCD, donation after circulatory 

death. 

Figure 3. Highly differentially expressed genes are functionally connected as networks. 

STRING networks with differentially expressed genes by strict filtering (FDR < 0.05; FC≥2 or 

FC≤0.5): a) all samples, DBD vs. DCD; b) Non-EVLP samples, DBD vs. DCD; c) EVLP 

samples, DBD vs. DCD. The black arrows with the corresponding text indicate the central nodes. 

Only connected nodes are shown. FDR, False Discovery Rate; FC, fold change; DBD, donation 

after brain death; DCD, donation after circulatory death; EVLP, ex-vivo lung perfusion. 

Figure 4. Differentially expressed genes in DBD lungs (EVLP vs. non-EVLP). a) Volcano plot 

showing highly differentially expressed (DE) genes (blue dots) by filtering criteria: FDR < 0.05 

and FC ≥ 1.5 or FC ≤ 0.7, in DBD samples (EVLP vs. non-EVLP); b) Logistic regression model 

shows high correlation between the seven differentially expressed genes for DBD (EVLP vs. 

non-EVLP) lungs at the end of CIT. The numbers represent the correlation coefficients and the 

red stars denote statistical significance, p-value<0.001; c) ROC curve for the best model 

(CFAP126) determined by stepwise procedure. CIT, cold ischemic time pre-transplant or pre-



EVLP. DBD, donation after brain death; FDR, False Discovery Rate; FC, fold change; EVLP, 

ex-vivo lung perfusion. 

Figure 5. Selected cytokines levels (aligned dot plots with median and interquartile range) in: a) 

lung tissue – microarray data; b) EVLP perfusate – protein level. DBD, donation after brain 

death; DCD, donation after circulatory death; EVLP, ex-vivo lung perfusion. Statistical analyses 

were performed with 2-tailed non-parametric Mann-Whitney test. 

 

  



Table 1. Human lung samples used in this study. 

 Sample type DBD DCD 

Non-EVLP 123 22 

EVLP 54 43 

Total 177 65 

   DBD, donation after brain death;  

DCD, donation after circulatory death;  

EVLP, ex-vivo lung perfusion. 

 

 

Table 2. DBD and DCD donor characteristics. 

 Characteristic DBD (n=177) DCD (n=65) p-value 

Age (years)   45.65 (17.60)  45.97 (17.57) 0.902 

Sex   

  

0.772 

M   87 (49.15%)   34 (52.31%)  

F   90 (50.85%)   31 (47.69%)  

Donor smoking     89 (42.94%)   37 (61.66%) 0.545 

Mechanism leading to 

brain death or 

irreversible brain 

injury     

 

 

Cerebrovascular/Stroke 104 (58.76%)   27 (41.54%) 0.020 

Head trauma   37 (20.90%)   19 (29.23%) 0.173 

Anoxia/Cardiac arrest   27 (15.25%)   16 (24.61%) 0.128 

Donor last PaO2/FIO2  386.9 (105.0) 421.87 (86.9) 0.019 

Chest X-ray infiltration    80 (45.20%)   35 (53.85%) 0.429 

EVLP    54 (30.51%)   43 (66.15%) 7.69e-07 

Data are n (%) or mean standard deviation (SD). Statistical p-value is calculated  



with Fisher’s exact test, except for numerical data (age, donor last PaO2/FIO2)  

where t-test was applied. PaO2, partial pressure of arterial oxygen; FIO2,  

fraction of inspired oxygen; DBD, donation after brain death; DCD,  

donation after circulatory death. 

 

 

 

 

 

 

 

 

Table 3. Summary of the pathways activated or inhibited in DBD vs. DCD sample 

Pathway 

All 

samples 

Non-

EVLP EVLP 

IL-6 Signaling y y y 

HMGB1 Signaling y y y 

TREM1 Signaling y y y 

p38 MAPK Signaling y y y 

ERK5 Signaling y y y 

MIF-mediated Glucocorticoid Regulation y y 

 Acute Phase Response Signaling y 

 

y 

Hypoxia Signaling in the Cardiovascular System y 

 

y 

LXR/RXR Activation y 

 

y 

Pyridoxal 5'-phosphate Salvage Pathway y 

 

y 

B Cell Receptor Signaling y   

Complement System y   

MIF Regulation of Innate Immunity y   



Th1 Pathway y   

iCOS-iCOSL Signaling in T Helper Cells y   

1D-myo-inositol Hexakisphosphate Biosynthesis II  y 

 AMPK Signaling 

 

y 

 Chondroitin Sulfate Biosynthesis y 

 Dermatan Sulfate Biosynthesis 

 

y 

 ERK/MAPK Signaling 

 

y 

 Valine Degradation I 

 

y 

 IL-1 Signaling 

  

y 

LPS-stimulated MAPK Signaling 

  

y 

NRF2-mediated Oxidative Stress Response 

 

y 

Role of IL-17F in Allergic Inflammatory Airway Diseases y 

iNOS Signaling 

  

y 

IL-17A Signaling in Gastric Cells   y 

4-1BB Signaling in T Lymphocytes 

 

y 

Aryl Hydrocarbon Receptor Signaling 

 

y 

Lymphotoxin β Receptor Signaling  y 

PI3K Signaling in B Lymphocytes   y 

Salvage Pathways of Pyrimidine Ribonucleotides y 

In grey are shown the inhibited pathways in DBD lung (or activated in DCD).  

Everything else is activated in DBD samples. EVLP, ex-vivo lung perfusion.  

DBD, donors after brain death; DCD, donation after circulatory death. 
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Supplementary Methods 

Differential gene expression analysis 

We have performed microarray gene expression analysis using limma package [1] in R (Version 

3.5.0). For data normalization we employed the Robust Multi-array Average (RMA). After having 

fit the model with lmFit function (linear model), the differential gene expression was calculated 

using eBayes function (moderated t-test, p-value, B stats). The differential gene expression was 

calculated between DBD and DCD samples in the three group categories (All samples, EVLP, 

non-EVLP), or between EVLP and non-EVLP samples within DBD or DCD lung samples. 

Differentially expressed genes were defined as having an FDR<0.05 using the Benjamin-Hochberg 

procedure [2] first, and then by fold change, as per main text.  

Pathway and network analysis 

The lists of the DE genes and their statistical and experimental parameters (FDR-corrected p-

value, log2FC) corresponding to each group comparison in this study, as explained above, were 

uploaded to the IPA (Ingenuity Systemsâ, www.ingenuity.com) to perform pathway and network 

analyses. IPA uses its own, manually curated “Knowledge Database” which gathers data from 

experiments already validated and published in peer-reviewed journals.  A pathway is predicted to 

be activated or inhibited based on a calculated z-score using a specific algorithm meant to reduce 

the chance that random data will generate significant predictions. A z-score ≥ 2 implies high 

activation, and z-score ≤ -2 defines strong inhibition. Statistical p–values were also calculated for 

each pathway and network, based on the number of input genes and the total number of molecules 
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known by the IPA Knowledge Database to be present in that network, using a right-tailed Fisher’s 

exact test [3].  

Alternatively, for network analysis we also employed STRING Database version 10.5 [4]. The 

input to STRING was the short list of DE genes identified for each group comparison, strictly 

filtered by FDR-corrected p-value and fold change cut-off, FC ≥ 2 or FC ≤ 0.5. The networks 

created by our input molecules were used for further centrality calculations.   

Network centrality analysis 

The central nodes of the networks and the betweenness scores were identified and calculated 

using igraph package [5] (version 1.01) in R (Version 3.5.0), by computing the shortest paths 

between all the pairs of nodes in the network. Using the betweenness function, we calculated the 

centrality score of the nodes (vertices) in the corresponding network. A node with higher 

betweenness centrality would have more control over the network, because more information will 

pass through that node. 

Multiple Logistic Regression and 10-fold cross validation 

We investigated the correlation between the seven highly DE genes in EVLP, DBD vs. non-

EVLP, DBD comparison using stepwise multiple logistic regression method with a selection of 

packages: dplyr [6],  PerformanceAnalytics [7] and  corrplot [8]. We validated the best model with 

10-fold cross validation method, using caret [9] package. Area under the Curve (AUC) was 

calculated with ROCR [10] package. 
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Supplementary Table 1. Fold change (DBD vs. DCD lungs) of highly differentially 
expressed genes (FDR corrected p-value£ 0.05 and fold change FC ³2 or FC £ 0.5). 

gene all samples non-EVLP samples EVLP samples 

CCL2 3.4 2.3 4.8 

CXCL2 2.6 2.3 3.2 

CXCL8 2.9 2.3 4.1 

    NR4A1 2.3 2.0 2.6 

NR4A2 3.4 2.7 4.5 

NR4A3 3.5 2.7 4.9 

    MT1M 2.4 2.7 2.4 

MT1G 2.3 2.1 2.8 

MT1X 2.3 2.6 2.2 

MT1A 2.2 2.2 2.4 

MT1JP 2.0 2.1 2.1 

    ADAMTS4 4.2 3.5 5.3 

SELE 3.3 2.5 4.8 

FOSB 4.8 4.1 6.3 

SERPINE1 2.0 2.0 2.1 

S100A12 2.8 2.6 2.9 

CH25H 2.3 2.1 2.7 

AREG 2.2 2.2 2.5 

IL1R2 2.0 2.1 
 

CCL20 2.5 
 

3.8 

IL6 2.1  2.6 

PTGS2 2.2 
 

2.7 

NAMPTP1 2.1 
 

2.5 

SOCS3 2.1 
 

2.3 

MYC 2.0 
 

2.2 

LOC102724428 2.0 
 

2.2 

HAS2 2.0 
 

2.8 

SLC19A2 2.0 
 

2.0 

LOC101926959 
 

0.50 
 

RND1 
  

2.6 

IL1β 
  

2.2 

PTX3 
  

2.2 

NFKBIZ 
  

2.2 

IER3 
  

2.2 

PIGA 
  

2.1 

CSF3 
  

2.1 

EVLP, ex-vivo lung perfusion. DBD, donors after brain death; DCD, donation after 
cardiac death.  



Supplementary Table 2. Pathway analysis detailed information. In orange are shown activated pathways,
in blue inhibited pathways. DBD, donation after brain death; DCD, donation after circulatory death; 
EVLP, ex-vivo lung perfusion.

Group Ingenuity Canonical Pathway  -log(p-value) zScore
All ERK5 Signaling 2.73E+00 3.00
(DBD vs DCD) IL-6 Signaling 4.37E+00 2.65

TREM1 Signaling 3.57E+00 2.65
HMGB1 Signaling 3.62E+00 2.59
Hypoxia Signaling in the Cardiovascular System 2.46E+00 2.50
Acute Phase Response Signaling 3.27E+00 2.41
B Cell Receptor Signaling 3.97E+00 2.21
MIF-mediated Glucocorticoid Regulation 2.37E+00 2.14
MIF Regulation of Innate Immunity 1.51E+00 2.14
Pyridoxal 5'-phosphate Salvage Pathway 1.39E+00 2.06
p38 MAPK Signaling 2.95E+00 2.06
LXR/RXR Activation 3.83E+00 -2.54
Complement System 1.71E+00 -2.53
Th1 Pathway 3.32E+00 -2.33
iCOS-iCOSL Signaling in T Helper Cells 3.99E+00 -2.06

Non-EVLP Chondroitin Sulfate Biosynthesis 1.54E+00 3.00
(DBD vs DCD) Dermatan Sulfate Biosynthesis 1.45E+00 3.00

TREM1 Signaling 3.29E+00 2.84
HMGB1 Signaling 1.42E+00 2.84
p38 MAPK Signaling 3.09E+00 2.83
IL-6 Signaling 4.54E+00 2.60
MIF-mediated Glucocorticoid Regulation 1.31E+00 2.45
AMPK Signaling 1.82E+00 2.36
ERK/MAPK Signaling 1.38E+00 2.29
1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian)1.90E+00 2.24
ERK5 Signaling 1.68E+00 2.11
Valine Degradation I 1.35E+00 -2.00

EVLP IL-6 Signaling 4.50E+00 3.77
(DBD vs DCD) p38 MAPK Signaling 3.78E+00 3.13

Pyridoxal 5'-phosphate Salvage Pathway 1.69E+00 3.05
NRF2-mediated Oxidative Stress Response 2.08E+00 2.98
Role of IL-17F in Allergic Inflammatory Airway Diseases2.07E+00 2.71
ERK5 Signaling 2.84E+00 2.67
HMGB1 Signaling 1.60E+00 2.56
IL-1 Signaling 2.39E+00 2.52
LPS-stimulated MAPK Signaling 1.39E+00 2.50
PI3K Signaling in B Lymphocytes 1.97E+00 2.40
TREM1 Signaling 3.06E+00 2.36
Acute Phase Response Signaling 3.91E+00 2.26
4-1BB Signaling in T Lymphocytes 1.74E+00 2.24
Salvage Pathways of Pyrimidine Ribonucleotides 1.52E+00 2.18



Hypoxia Signaling in the Cardiovascular System 2.64E+00 2.12
iNOS Signaling 1.31E+00 2.12
Lymphotoxin Œ≤ Receptor Signaling 2.34E+00 2.11
Aryl Hydrocarbon Receptor Signaling 1.53E+00 2.06
IL-17A Signaling in Gastric Cells 1.33E+00 2.00
LXR/RXR Activation 3.34E+00 -3.13



 EVLP, ex-vivo lung perfusion.

Ingenuity Canonical Pathways  -log(p-value) zScore Molecules
TNFR2 Signaling 3.01E+00 1.00 NFKB1,NFKBIE,NFKBIA,BIRC3
TWEAK Signaling 2.76E+00 -1.00 NFKB1,NFKBIE,NFKBIA,BIRC3
MIF-mediated Glucocorticoid Regulation 2.67E+00 1.00 NFKB1,NFKBIE,NFKBIA,PLA2G5
MIF Regulation of Innate Immunity 2.32E+00 1.00 NFKB1,NFKBIE,NFKBIA,PLA2G5
Nicotine Degradation II 2.28E+00 -2.24 CYP4B1,CYP4X1,INMT,FMO2
TNFR1 Signaling 2.19E+00 1.00 NFKB1,NFKBIE,NFKBIA,BIRC3
Induction of Apoptosis by HIV1 1.89E+00 -1.00 NFKB1,NFKBIE,NFKBIA,BIRC3
Protein Kinase A Signaling 1.67E+00 1.63 HIST3H3,NFKB1,PPP1R14A,EYA1,PPP1R3C,PTP4A1,CNGA4,AKAP14,

PTPRT,NFKBIE,NFKBIA,MYLK3
Antioxidant Action of Vitamin C 1.56E+00 -1.00 NFKB1,NFKBIE,NFKBIA,PLA2G5

activated pathway
inactivated pathway

Supplementary Table 3: IPA Pathway analysis results in details, for DBD lungs, EVLP vs non-EVLP. DBD, donation after brain death;
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Supplementary Figure 1. Flow chart of bioinformatics analysis



Supplementary Figure 2. Principal Component Analysis: a. All samples;
b. non-EVLP samples only; c. EVLP samples only. The numbers in
parenthesis show the percent variance explained by the principal component.
DBD, donation after brain death; DCD, donation after circulatory death;
EVLP, ex-vivo lung perfusion

c. EVLP

b. Non-EVLP

a. All samples

DBD
DCD



-log(p-value)

Supplementary Figure 3. Pathways predicted to be activated or inhibited in EVLP vs. non-EVLP, DBD samples
DBD, donation after brain death; EVLP, ex-vivo lung perfusion


