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1. Overview of the document 

There is increasing research on oscillometry, and increased interest and feasibility in its clinical 

application. Respiratory oscillometry measures the mechanical properties of the respiratory system 

(upper and intrathoracic airways, lung tissue and chest wall) during quiet tidal breathing, by the 

application of small pressure or flow oscillations (input or forcing signal) most commonly at the 

mouth.  

Although the fundamental principles of oscillometry measurement are essentially the same for all 

devices, there are differences in hardware, data acquisition, and signal processing and analyses and 

breathing protocols that may lead to differences in impedance measurements. Furthermore, 

oscillometry is fundamentally a different measurement than traditional lung function measurements 

i.e. spirometry and lung volumes.  

Oscillometry has been applied across a wide range of clinical and research settings, but these 

important topics will not be covered in this document. The aim of the present document is to 

highlight technical factors, both hardware, software and factors during patient testing, that 

potentially affect oscillometric measurements. Addressing these factors is critical for standardisation 

and obtaining accurate oscillometry measurements of the highest standards. Consequently, it is 

critical that all technical details of the hardware design, signal processing and analyses, and testing 

protocols are transparent and clearly reported to allow standardisation, comparison and replication 

of clinical and research studies.  

This Taskforce Document contains general recommendations about oscillometric measurement 

including hardware, software, testing protocols and quality control. Given the wide range of 

scenarios in which oscillometry can be applied, many recommendations are general although some 

are more specific where appropriate. A summary of technical recommendations and clinical testing 

of oscillmetry are detailed in Table 1. The main differences of this update, compared with the 2003 

ERS Taskforce document [1] are detailed in Table 2.  



 

2. Introduction 

Oscillometry (also known heretofore as the forced oscillation technique or ‘FOT’) was first described 

in 1956[2].  Usually, this technique is used to measure the mechanical properties of the respiratory 

system in a passive manner, i.e. manoeuvres such as forced expiration are not required. Oscillations 

can be superimposed over spontaneous tidal breathing or respiratory support ventilation and can be 

highly utilized in a number of clinical settings that routine clinical tests cannot, including in young 

children and  during mechanical ventilation.  

In oscillometry testing, a stimulus is applied to the respiratory system at the mouth. The input signal 

is either the pressure or flow oscillation,  and the response (in terms of flow or pressure, 

respectively) is measured. The ratio of oscillatory pressure to oscillatory flow generated from this 

oscillatory stimulus is used to calculate input impedance, and represents the total mechanical 

properties of the respiratory system. The limitation of this representation of the respiratory system 

is that it is assumed to behave in a linear manner, whereas there is likely non-linear behaviour even 

in healthy lungs (primarily in the proximal and upper airways) and even more so in diseased lungs. 

Furthermore, ventilation is heterogeneous in healthy lungs and much more so in disease, which also 

affects this relationship. The most common and practical way to apply a forcing oscillation to the 

respiratory system is via the airway opening. Although there are other ways of applying a forcing 

oscillation to the respiratory system (for instance oscillating the chest wall[2]), this document will 

deal only with oscillometry where signals are applied at the airway opening as this is the most 

frequently encountered approach.  

Pressure oscillations in the frequency range of 4 – 50 Hz, are commonly generated by a loudspeaker.  

Lower frequencies (i.e., < 4 Hz and as low as around 0.5 Hz) may be used, usually being generated by 

a piston type mechanical device[3] or pneumatic proportional solenoid valves[4], or loudspeaker.  

However, lower frequencies require the suspension of spontaneous breathing[5], which may be 

difficult or impossible in many patient populations.  Hence,  discussion of low frequency techniques 

will be minimal in this document. Excitation frequencies >35 Hz are easily produced by woofer 

speakers or by an interrupter valve[6], and may be used under certain conditions, to assess the 

acoustic or mechanical properties of the large airways and their walls.  At present, such high 

frequencies are not commonly used in clinical settings, and will not be discussed further. 

Although forced oscillations are simple in principle to administer, there are potential sources of error 

and variation which include variations in patient breathing, bacterial filters, artificial airways, device 

hardware and signal analysis, data processing and quality control strategies. A technical standards 

document was published in 2003[1]. Since then, there has been a large body of published research 

involving oscillometry in relation to improving the measurement technique as well as clinical studies, 

necessitating this update.  

2.1 Key concepts of oscillatory mechanics of the respiratory system 

Respiratory system impedance (Zrs) assesses the relationship between pressure and flow changes 

during oscillatory flow in and out of the lungs. Zrs has two basic components: resistance (Rrs) and 

reactance (Xrs): 



 

 Zrs = Rrs +jXrs (j is √-1; the unit imaginary number).   

The Xrs component of Zrs can be further defined as: 

 Zrs = Rrs + j(ωIrs -Ers/ω) where Irs = respiratory system inertance and Ers = respiratory 

system elastance and ω = 2πf and f is the oscillation frequency. 

Respiratory system resistance (Rrs) may be largely interpreted as airway calibre.  Thus narrower and 

longer airways have higher resistances due to greater frictional pressure loss as air flows through 

them. Rrs is also affected by the heterogeneous distribution of resistances and reactances (see 

below) across the airway tree, where increasing heterogeneity increases the effective resistance at 

any given frequency[7]. There are also contributions from the parenchymal tissues and chest wall to 

the effective Rrs.  Since Rrs reflects opposition to changes in flow, it is the component of Zrs which is 

in phase with flow and increased resistance will decrease flow for a given pressure input.  It will not 

cause a ‘time delay’ (i.e. phase lag) in flow change, in relation to pressure change. 

Respiratory system reactance (Xrs), in contrast to resistance, represents pressures changes that are 

out of phase with flow but in phase with volume changes. Therefore, Xrs has also been called the 

‘out of phase’ component or the ‘imaginary’ component due to the nature of its mathematical 

description described above, involving‘j’, the unit imaginary number.  The term ‘imaginary part of 

impedance’ is potentially confusing and is best avoided in clinical settings. Therefore, reactance is 

the preferred term for this component of Zrs.   

Reactance is comprised of both inertance and elastance. Respiratory system elastance (Ers), which is 

1/compliance, is a measure of the stiffness of the entire system (chest wall, lungs and airway walls) 

which, at commonly used oscillometry frequencies, includes compressibility of gas in the airways 

and alveoli. As volume changes, the resultant elastic forces cause pressure changes to lag behind 

flow changes (‘time-delays’ or phase lags) and hence elastance causes reactance to be negative. 

More negative reactance therefore indicates greater elastance or stiffness under oscillatory 

(dynamic) conditions (according to the Zrs equation above). Reactance is also affected by the 

heterogeneous distribution of airway calibres and lung compliances across the airway tree i.e. time 

constants (resistance x compliance)[8, 9]. This typically occurs in obstructive airways diseases. 

Heterogeneity (of time constants) makes the effective elastance (and hence Xrs) very sensitive to 

frequency (frequency-dependent). Increasing heterogeneity decreases the effective reactance (i.e. 

increases stiffness – elastance) at any given frequency.  

Respiratory system Inertance (Irs) is an index of pressure losses mostly due to acceleration of the 

gas column in the central airways.  Besides this airway component, which is determined by gas 

density and the ratio of airways length to surface area, Irs also has a lung - chest wall component, 

which is determined by the ratio of their respective masses to the squared surface area. In normal 

circumstances, the lung – chest wall component of Irs is small compared to the airway component. 

Irs becomes significant at higher frequencies where the bulk of gas and structures in the lung are 

oscillated at higher speeds. Inertance represents opposition to these accelerative forces, which act 

in the opposite direction (180o out of phase) to elastance. Inertance therefore causes pressure to 

lead ahead of flow oscillations, and causes reactance to be positive.  



 

When the respective magnitudes of inertance and elastance are equal, the elastic contribution 

exactly equals the inertive contribution. Being in opposite directions they cancel each other out and 

reactance becomes zero. This point is termed resonant frequency (Fres) and its corresponding 

frequency typically occurs in healthy adults at about 8-12Hz[10] and increases with decreasing age, 

where Fres can be >30Hz in young children. Hence when Xrs = 0, Zrs = Rrs. At frequencies above 

Fres, Xrs is positive in value because it is dominated by the apparent inertia of the gas and tissues.  

Resistances, elastances and inertances of airways and subtending lung vary in magnitude, and are 

distributed in a variable manner within the lung i.e. there is inherent heterogeneity in the 

respiratory system. This heterogeneous distribution of Rrs and Ers properties in the lung explain an 

important mechanical characteristic of oscillometry; that of frequency dependence.   

2.2 Frequency dependence 

Respiratory system resistance (Rrs), elastance and inertance (hence reactance (Xrs)) vary with 

frequency, i.e. they are frequency dependent (see Figure 1). Heterogeneity across the airway tree, 

tissue viscoelasticity, the airway wall shunt and pendelluft, all contribute to frequency dependence. 

As frequencies decrease below 5Hz, Rrs increases rapidly while reactance becomes more negative as 

the mechanical properties of the lung (tissue viscoelasticity) and chest wall (elastance) dominate. As 

frequency increases within the commonly used frequency range (4-50 Hz), the lung and chest wall 

contributions diminish, and Rrs tends to be largely frequency-independent in healthy adults and is 

dominated by the airway properties. In healthy children, Rrs continues to show negative frequency 

dependence. As described above, with increasing frequency, the apparent elastance continues to 

decrease, i.e. Xrs becomes less negative, as inertia begins to dominate Xrs, i.e. positive frequency 

dependence.  

In infants Zrs at a frequency < 1-2 Hz contains information on resistive and elastic properties of the 

tissue (lungs and chest wall)[11]. The contribution of the chest wall to Zrs decreases with increasing 

frequency and increases with increasing age[12]. Rrs is dominated by nasal resistance in infants 

because they are habitual nose breathers, and measurement therefore requires the use of facial 

mask[13]. The presence of heterogeneous ventilation due to airways disease may affect frequency 

dependence. At frequencies between 5-15 Hz, Zrs contains information on airway resistance, and at 

frequencies > 50 Hz, Zrs is dominated by acoustic properties of the central airways, as well as the 

mechanical properties of the airway walls[14, 15]. 

The negative frequency dependence of impedance may be conveniently represented as the 

difference between a high-frequency value of Rrs and a low-frequency value. However, the 

physiologic information depends on the frequencies that are used. At normal tidal breathing 

frequency and below, frequency dependence of impedance reflects mostly the viscoelastic 

properties of the respiratory system tissues in healthy lungs. In disease, frequency dependence over 

normal tidal breathing frequency and higher, is enhanced by the increased heterogeneity of Rrs and 

Ers due to increased variations in airway structure within a lung. Indeed, frequency dependence of 

Rrs in asymptomatic smokers with normal spirometry has been correlated with frequency 

dependence of compliance measured by esophageal manometry [16]. The shunting of applied flow 

oscillations into the upper airways (cheeks, pharynx, etc.) arises from increased glottic and subglottic 

airway impedance, can also increase overall frequency dependence of impedance[3, 17-21]. 



 

Modeling studies[19, 22] suggest that Rrs5 – Rrs20 may reflect the way in which the lung, behaving 

effectively as a single compartment (and with no involvement of tissue resistance), interacts with 

the upper airway structures into which flow oscillations are shunted. Hence, the physiological 

interpretation of frequency dependence remains uncertain, despite the common statement that 

parameters such as Rrs5-Rrs20 reflect small airway caliber. Unfortunately, there are as yet no 

published findings correlating pathology to frequency dependence. Therefore, this remains an area 

that requires further research. 

2.3 Clinical settings in which oscillometry is applied 

The oscillometry can be used in various clinical settings which include clinical lung function 

laboratories, field testing, home monitoring and intensive care. Oscillometry measurements have 

mostly been applied in airways diseases and paediatric lung diseases where oscillometry may have 

the most widespread clinical application. There are a number of available commercial devices, as 

well as local bespoke devices.  Different devices or modifications of the hardware, oscillatory signals 

or data analysis methods may make them more suitable for different applications, e.g. testing 

children or in the intensive care unit.  

Low frequency impedance (i.e., at frequencies encompassing typical breathing rates) can be 

measured in adults and infants, although this generally will require apnea and relaxation of the chest 

wall muscles[3, 5].  However, newer devices and signal processing techniques may allow 

measurement of low frequency Zrs during spontaneous breathing[23].  In infants, apnea can be 

induced using the Hering-Breuer reflex, by delivering positive airway pressure via face mask.  

Oscillometry can also be acquired during quiet sleep if apnoea is not required e.g., when single-

frequency or higher frequency excitations are used.  A wave tube technique is feasible as early as 1-3 

days after birth[24-26]. 

Rrs, Xrs, Fres and other oscillometric indices provides data which complements ‘traditional’ 

measurements such as spirometry, lung volumes, specific conductance and diffusing capacity. 

Oscillometric measurements provide information in patients who are unable to perform spirometry 

e.g. poorly cooperative or frail.  Oscillometry is an alternative to spirometry for conducting bronchial 

challenge testing in adults[9, 27-38]. It may be  particularly useful in children given the difficulties 

with spirometry at young age[39-45] although there are additional technical issues to consider[46, 

47].  

Oscillometry has been applied to occupational health screening and large adult and paediatric 

population studies[25, 26, 48]. The short testing times and ease of administration for subjects are 

potential advantages in this setting. Oscillometry can be more sensitive than spirometry for 

detection of airways disease due to occupational exposure[48-55] but this area requires further 

research. 

Self-administered, daily oscillometry made at home has been shown to be highly feasible in asthma 

and COPD patients[56, 57, 58 ]. The large amount of daily data allow analysis of day-to-day 

variability using sophisticated time-series techniques that may potentially be clinically useful for the 

diagnosis of asthma, monitoring its response to therapy and clinical phenotyping[59] . In a COPD 

study, early intervention triggered by worsening of oscillometric indices was not associated with any 



 

differences in hospitalisation, or symptoms. However there was a significant reduction in repeat 

hospitalisations, leading to significantly reduced health care costs[60].  

The use of oscillometry also has potential for optimising mechanical ventilation in the intensive care 

unit or operating room[61-63], although this is still an area of ongoing research. Impedance has been 

measured from spectrally enhanced, ventilation waveforms, of which some may allow uninterrupted 

ventilation[64-68] or by modification of the hardware of the ventilator, without having to add 

components.  

 

 



 

3. Methods 

This Task Force was initiated by its two co-chairs Gregory King and Ellie Oostveen, who developed 

the aims and outline of the document and brought together the members of the Task Force. All 

attempts were made to include representatives from key research groups who have been active in 

publishing research involving oscillometry. The Taskforce was initially a joint ATS/ERS project and 

subsequently an ERS project. The ATS withdrew support for the project at the end of 2018 due to 

slow progress.   

The Task Force sought to produce a "state of the art" document bringing together the existing 

literature on oscillometry so that the evidence to guide device design, quality control and 

measurement are presented in an integrated, coherent manner. We also sought to identify areas of 

research needed to stimulate work and fill gaps in knowledge. 

The Taskforce comprised 21 international members, identified from their profiles in the 

international research literature in oscillometry.  The members were representative of a wide range 

of countries; Australia, Belgium, Brazil, Canada, France, Italy, Japan, The Netherlands, Spain and USA. 

There was  representation from paediatric (GLH, EL, SJS, CD and EO) and adult (GGK, JB, JIB, PC, PLM, 

RLD, RF, II, CGI, DWK, DAK, JK, ENM, FM, BWO, CT, MvdB, EO)  oscillometry researchers. Members 

included medical practitioners (GGK, KIB, PC, DWK, DAK, EL, BWO, MvdB). All members were 

experienced in the practical use of oscillometry.  

All members provided signed declarations of Potential Conflicts of Interest which were managed 

according to the ATS and ERS rules and were updated regularly and at the conclusion of the project. 

No members were excluded because of potential and disclosed conflicts of interest.   

The individual sections were initially outlined by GGK and EO and agreed to by the Taskforce at face-

to-face meetings at the ATS and ERS congresses. The Sections were assigned to working groups that 

were organised by GGK and EO.  The literature searches for each section were conducted by the 

Section authors, who used Pubmed, Google Scholar and Medline, limiting searches to English 

language publications but without limitation by year of publication.  

The Section drafts were collated, checked and edited for stylistic consistency by GGK. All Sections 

were reviewed by all Taskforce members.  Specific issues relating to content were discussed by email 

and at face-to-face meetings. The Taskforce met regularly between 2015 and 2018 at the ATS and 

ERS congresses, which were organised and chaired by GGK and EO, and were supported by both the 

ATS and ERS. Technical recommendations and standards of this document are a result of the 

Taskforce interpretation of the current literature including the previous ERS Technical Standards 

(2003) or other widely used and accepted reference values and technical documents. In case of 

conflicting conclusions technical recommendations and standards had to have the agreement of at 

least 18 of the 21 Taskforce members, including its Chairs 

 

 

 



 

4. System design and testing  

4.1 Input Signals  

The physiological information contained in Zrs is strongly dependent on the frequency range over 

which it is measured. For example, in healthy adult humans, the  viscoelastic properties of the lung 

and chest wall tissues have a major influence on Zrs below about 2 Hz.  Conversely, the flow 

resistance of the airway tree and the mass of the gas contained within it become important 

determinants of Rrs and Xrs, respectively, above 2 Hz.. Therefore, the oscillatory frequencies used to 

measure Zrs must be appropriate to the physiological function that is being investigated.  

When determining Zrs in spontaneously breathing humans, it is important to ensure that 

measurements of oscillatory pressure and flow are not significantly affected by unknown 

contributions from respiratory muscle activity. This can be achieved by having the lowest frequency 

in the applied oscillatory flow signal being greater than the frequency of breathing and its 

harmonics. The practical lower limit of frequency of the oscillatory signal in spontaneously breathing 

adults is thus typically 4-5 Hz[1, 69, 70], although this may vary depending on the breathing 

frequency. Even so, noise correlated with the breathing signal may still be present[71], as may occur 

with the high respiratory rates of infants and toddlers, or during tachypnoea in adults. There are, 

however, no data on the effect of respiratory rate on Rrs or Xrs in children. In adults, increased 

respiratory rates have been shown to increase Rrs and Xrs at 20 Hz in healthy and in symptomatic 

subjects with normal spirometry[72].   

The best signal-to-noise ratio for Zrs measurements is obtained from a composite input signal 

consisting of the sum of discrete sinusoidal components with frequencies that provide good 

coverage over the entire frequency range of interest. Broadband waveforms may consist of small-

amplitude random noise [73] or multiple sinusoids[71, 74]. Excitation waveforms consisting of 

frequencies that are mutually prime, such that none is an integer multiple of any other[67, 75], may 

be advantageous to minimize nonlinear distortions of impedance[76]. A convenient way to construct 

a mutually prime signal is to choose a desired fundamental frequency (e.g., 1 Hz) and then include 

frequencies that correspond to prime numbers above this fundamental (e.g. 2, 3, 5, 7… Hz) while not 

including the fundamental frequency itself i.e. 2-26 Hz pseudorandom signals. Some input signals are 

comprised of harmonics of a fundamental frequency such as, for example, in the Jaeger IOS (5Hz) 

and i2M (2Hz) devices.  Harmonic distortion may occur with such waveforms if they induce large 

volume fluctuations in relation to the underlying breathing volume [64, 65, 76-78], especially when 

the respiratory system behaves in a substantially non-linear fashion i.e. in the presence of severe 

airflow obstruction or cyclic lung recruitment and derecruitment.  

A comparison between oscillometry and IOS showed that Rrs measured by IOS was higher than by 

the 2-26 Hz pseudorandom signals, which was directly related to the magnitude of Rrs[79]. There 

were also subjectively similar differences between Rrs and frequency-dependence between 5 

different devices in healthy subjects, although these differences could have been due to differences 

between populations between centres[10].  



 

The size of the sinusoidal components in a composite oscillatory signal should be such that there is 

sufficient signal-to-noise ratio at each frequency. The peak-to-peak excursion should be ≤0.3 kPa. A 

convenient example is to have equal power at each frequency[77] in the flow signal. The phases of 

the sinusoidal components should be chosen to minimize the peak-to-peak amplitude of the 

oscillatory signal, again to minimize the influence of nonlinear behavior in the lung[74]. Details of 

signal composition, including signal-to-noise ratio, for all oscillometry devices should be publicly 

available.  

4.2 Technical recommendations and standards for manufacturers:  

4.2.1 Calibration 

Although a variety of configurations have been used[69], Zrs is most commonly measured from the 

signals of two sensors placed at the mouthpiece level: a pressure transducer and a flowmeter based 

on a pneumotachograh with a differential pressure transducer. Sensor calibration ensures adequate 

corrections to compensate for inadequate device performance[80]. Firstly, on the assumption that a 

sensor is linear, static calibration should ensure correct gain and zero offset (taking into account 

possible temperature and position drifts). Secondly, dynamic calibration should compensate for a 

sensor’s frequency response by digitally compensating Zrs for the measured dynamic responses of 

the pressure and flow transducers or other instrumentation[81]. Dynamic calibration must ensure 

that the sensor signals are unaffected by mechanical vibrations at the desired oscillation 

frequencies. The common-mode rejection ratio (CMRR) of the pressure transducer attached to the 

pneumotachograph should be sufficiently high to minimize potential errors[82]. Alternatively, 

dynamic calibration procedures are available to compensate for both instrumentation frequency 

response and CMRR during oscillometric measurements[83]. As the dynamic response mainly 

depends on the physical dimensions of sensors and tubing[84], their frequency response usually 

does not change over time. Therefore dynamic calibrations, in contrast to static calibrations of gain 

and zero offset, are not periodically required.  

4.2.2 Test load 

Achieving accurate measurements of Zrs depends on many subtle details in the utilised hardware 

(sensors) and software (data processing). Procedures for characterizing and calibrating for sensors 

responses are well defined, and if followed correctly should not result in significant errors in Zrs 

measurements. By contrast, there is no unique data processing procedure (e.g. filtering, averaging, 

frequency analysis, data rejection criteria) that is ideal. Furthermore, there are many suitable 

numerical algorithms to implement these procedures. Manufacturers must provide documentation 

on the accuracy of their devices for measuring resistances and reactances of a static test load. The 

magnitude of that load impedance should be above the absolute value of Zrs that is expected for any 

given patient or subject population in which the oscillometric device is to be used, including 

impedances encountered in children and adults during bronchial challenge testing. Therefore, it is 

recommended that test loads for adult testing be approximately 15 hPa.s.L-1 and for children around 

40 hPa.s.L-1.Test loads of insufficient impedance may potentially lead to errors in measurement[85]. 

This test load should be supplied to the end-user for daily verification. At present, most test loads 



 

consist solely of a mechanically resistive component. Ideally, test loads should also include the 

elastic and inertial components of impedance. 

Testing and comparing how different specific oscillometric devices behave in practice requires 

something more than ensuring that they meet general recommendations and how they measure 

static loads. Ideally, robust and accurate Zrs measurements should require a patient simulator with 

well-controlled (but variable) mechanical properties, breathing patterns and artefacts[86]. Devices 

that simulate human physiology are common in medical device testing, especially for respiratory and 

gas flow measurements. For example, the ATS-ERS provide very specific recommendations for 

performance testing of spirometric devices, using devices that simulate high-fidelity flows typical of 

forced expiratory manoeuvres[87]. There are equivalent albeit less specific recommendations, for 

evaluating automatic CPAP devices[88] and mechanical ventilators[89], where using a well-

characterized patient simulator as a reference is required. It is therefore equally important that such 

a test load be developed for objective assessment and comparison of oscillometry devices under 

realistic conditions. 

4.3 Verification by end-users 

End-users of commercial devices perform verification with impedance test loads and not calibration. 

Thus the following recommendations pertain to verification. Like other lung function equipment, 

verification with test loads should be performed daily or each day that the instrument is used, 

particularly if being used for clinical testing, as would be common practice for other lung function 

equipment in the pulmonary function laboratory[90]. More frequent verification may be needed 

during field testing when environmental conditions may change. Research papers should report how 

often device verifications occur, the mechanical characteristics of the load(s) verified, and the 

accepted tolerance of the verification.  The recommended tolerance for the verification is ≤ ±10% or 

±0.1hPa.s.L-1, whichever is met first. If volume changes are to be measured in patients, then the 

accuracy of volume measurements should be verified against a calibration syringe and comply with 

ATS standards[87].  

4.4 System resistance and dead space 

The oscillometric system and the additional bacterial filter can add dead space and additional 

resistance to breathing. It is important to compensate for the bacterial filter resistance and 

combined dead space of filters and connectors for measurement accuracy and advisable to maintain 

low overall oscillometric system resistance and dead space to minimize potential effects on 

breathing pattern which can increase tidal volume depending on measurement duration. The 

oscillometric system without a bacterial filter in place should have a resistance of <1 hPa.s.L-1 at 5Hz 

or less.  There are numerous bacterial filters available for use with oscillometric systems, which will 

have a range of resistances. A single study showed differences in impedance measured with 

different filters by IOS in healthy adults[91]. A single study using the interrupter method in asthmatic 

children aged 4-16 years, found a mean increase of 1.2 hPa.s.L-1 but there was a wide variance of 

±3.4 hPa.s.L-1[92]. General recommendations are to use low resistance filters of <1 hPa/L/s at 5Hz or 

less, to regularly measure the resistances of the filters and to compensate for the combined 



 

resistances of the oscillometric system + filter. The total equipment resistance of an oscillometric 

system should thus be  <2 hPa.s.L-1 at 5Hz or less.  

The recommended dead space for oscillometric devices used for testing adults is the same as for 

lung volume testing[90]; <100ml inclusive of the bacterial filter. Due to the mixing caused by the 

oscillatory flow, the effective dead space can be less than the physical volume. In pre-school 

children, it should be <70ml inclusive of the bacterial filter[93]. 

  



 

5. Signal Processing for Oscillometry 

Processing for oscillometric signals has major impacts on the overall accuracy of oscillometry 

measurements. Signal processing, either analog, digital or a combination of the two, addresses five 

main tasks: 1) estimation of respiratory system impedance (Zrs) from raw flow and pressure data; 2) 

filtering to reduce the noise that is always present in the signals; 3) compensation for the frequency 

response characteristics of the sensors and other components; 4) accounting for instrument dead 

space, 5) derivation of impedance parameters and 6) calculation of indices for quality control of the 

measurements. 

A description of signal analysis methods used in oscillometry to derive impedance parameters 

appears in the on-line supplement.  

In summary, in modern oscillometric devices, signal processing constitutes a critical component that 

has major effects on the performances of the overall system. Given the variety and the complexity of 

the algorithms used, manufacturers should make the information listed in Table 4, available to the 

users, either by reporting them in research publications or making them available on request. Also, 

manufacturers are responsible for extensive validation of oscillometric devices in a variety of 

conditions, including simulations of both healthy and diseased conditions, and to disclose the 

validation set-ups and procedures and the values of test loads used.   

 

 



 

6.  Testing Protocols and Procedures 

Unlike spirometry, oscillometry can be acquired using varying protocols and under varying breathing 

conditions, depending on the mechanical properties of interest.  Oscillometric measurements are 

most commonly made during resting tidal breathing but have also been made during larger volume 

excursions e.g. from FRC to TLC or TLC to RV[94-96].  Like spirometry, oscillometry is also potentially 

affected by upper airway artefact, in the form of swallows, vocal cord closures, coughs, incorrect 

positioning of the tongue and mouth leaks (see Figure E1).  

For all oscillometric acquisitions, patients should be breathing in a relaxed and stable manner, 

seated in upright posture with correct head position, cheek support, mouthpiece seal and tongue 

position. Therefore, careful instructions should be provided so that during the acquisition, patients 

breathe with the same tidal volumes and frequencies as during stable, relaxed conditions. Prior to 

the measurement, a quick visual check for leaks around the mouth and use of a nose clip is essential, 

as well as ensuring that a stable period of tidal breathing is achieved. Table 5 lists the minimum 

instructions and information that should be provided to the patients prior to testing.  

Adequate training of clinical staff and/or researchers administering the oscillometry test is required, 

given the potential for artefacts to affect the final results.  This is particularly important in children.  

Oscillometry testing protocols will vary according to the many applications that oscillometry is suited 

for, e.g. infants, preschool and school-aged children, elderly, epidemiological studies, occupational 

screening, home-monitoring.  There are however, general principles on which an oscillometry 

acquisition protocol should be based and these are listed immediately below.  

6.1 Minimum number of technically acceptable replicate measurements 

The number of technically acceptable measurements used to determine a mean value will affect the 

variability of the test. Recent work in adults suggests that 2 technically acceptable measurements 

result in the same mean resistance and reactance values as 3 or more replicate measurements, 

regardless of measurement duration[97]. There is no comparable information of the effect of the 

number of replicates in children. However, it is recommended to use at least 3 replicates, which are 

deemed acceptable after application of specified quality criteria: visual inspection, within-session 

coefficient of variability (CoV) and automated signal processing. The replicates that are used to 

derive the indices should all be completely free of artefacts. Note that in some applications, 

artefacts may be removed prior to calculations of mean indices (see section 8; Quality Control).  

It is recommended that the 3 replicates used to derive indices should have a CoV of Rrs, at the 

lowest oscillation frequency, of ≤10% in adults and ≤15% in children, although there are currently no 

published data to support these cut-offs. Use of an arbitrary CoV to select replicates to calculate 

indices will force the selection of values that are close to each other, and will exclude outlying 

values. Use of CoV and its specified threshold value to select replicates, should be declared in the 

report or methods of publications. 

While multiple replicate measurements remains the norm in laboratory testing, longer recording 

durations with a single measurement may be more practical and feasible in field testing or 

unsupervised home monitoring due to practicality and feasibility[56, 58].  



 

6.2 Duration of acquisition 

The length of acquisition during infancy will depend on the method used. For example, low 

frequency oscillometry is measured during an apnea (via the Herring-Breuer reflex) and therefore 

should not exceed a reasonable breath-hold time period (typically 5 to 8 seconds). However, in 

quietly breathing sleeping infants, there is no reason why the suggested 30 or 60 second collection 

time (to maximise the number or respiratory cycles) could not be also considered in this population. 

In school aged children, data acquisitions of 60 seconds resulted in better within-session and 

between day reproducibility than 30s, 16s or 8s acquisitions[98]. Longer acquisitions are likely to be 

more challenging in younger paediatric populations.  In healthy adults and adults with asthma or 

COPD, within-session variability also decreased as acquisition duration increased from 16s, 30s and 

60s[97].  Additionally, there were small but statistically significant differences in mean Rrs or Xrs, 

between triplicate measurements of 16s, 30s and 60s, in healthy adults or those with asthma or 

COPD[97].  

A suggested minimum acquisition time that would be suitable for high-school aged children and 

adults is 30 seconds and for children <12 years of age is 16 seconds. This would allow recording of at 

least 3 artefact free breaths, but be short enough to be practical and to avoid movement or fatigue. 

There are however, a range of acquisition times that have been used, which has been dependent on 

the clinical application and the populations studied, e.g. infants and toddlers vs adults; research 

studies versus clinical measurements; and the severity of the disease. The wide range of testing 

situations arising from the combinations of patient, disease and laboratory conditions implies that 

the duration of oscillometry acquisition will vary to suit the population being tested, with the goal of 

achieving reproducible measurements as described above. As such, the testing durations used 

should be stated in the laboratory report or research publication to allow replication and 

comparison of results. 

6.3 Effect of volume history 

Volume history potentially affects impedance measurements in individuals with airways disease[99-

101] and also in healthy subjects during bronchial challenge testing[102]. Deep inspirations have 

variable effects on lung function that differs between diseases[99-101, 103-106].  

Deep breaths (i.e. inflation to TLC) during testing potentially affect results in asthmatics because of 

the known bronchodilator effects of deep breaths in asthma[107-109]. Thus, standardisation of lung 

volume history is necessary.  The response to deep breaths during bronchial challenge tests also 

differs between asthmatics and non-asthmatics[99-101].  In non-asthmatic subjects, deep breaths 

prior to inhalation of an airway smooth muscle agonist protect against airway narrowing, while deep 

breaths after inhalation leads to sustained airway dilation. In asthmatic subjects, deep breaths may 

have reduced but variable effects in protecting against airway narrowing or dilating airways post-

bronchoconstriction, depending on disease state or severity[99-101]. Indeed, deep breaths can even 

worsen baseline airway obstruction, measured by either spirometry[110] or oscillometry[111]. 

Therefore, bronchial challenge using oscillometry may be more sensitive for detecting airway 

hyperresponsiveness, particularly when it is mild. Since oscillometry is measured during tidal 



 

breathing and without deep inspirations, the sensitivity of such tests may differ compared with tests 

using spirometry. However, further studies on this are needed.  

Until the effects of volume history on oscillometry parameters and bronchial challenges are better 

characterised, oscillometric testing is recommended before tests requiring deep breaths (exhaled 

nitric oxide, spirometry, diffusing capacity), as well as allowing a standardised length of time during 

which deep breaths are withheld before performing oscillometry. The order of testing and duration 

of withholding of deep inspirations should be standardised locally and documented in reports and 

publications. 

 

  



 

7. Quality control: criteria for test acceptability 

The exclusion of artefacts occurring during the test (cough, glottis closure, leaks, etc.) critically 

impacts on the accuracy of impedance measurements. This will require a quality control processes 

that identify common artefacts such as leaks, swallows, coughs, incorrect tongue placement.  Real-

time display of volume, flow and pressure traces allows the operator to identify the presence of 

artefacts (see Online supplement Figure E1)[71, 74] , which in most situations requires repeating 

acquisitions until at least three measurements have been recorded that are free of artefact.  

7.1 Identification of artefacts 

Subjective quality control criteria include ensuring that the tidal volumes and rate during acquisition 

should be stable and, that there are no pauses in volume signal accompanied by zero flow, sudden 

changes or spikes in resistance and pressure, which may represent swallowing, breath holds, glottic 

closures and mouth leaks (see Online supplement Figure E1)[98]. A protocol with criteria for test 

acceptability by visual inspection should be developed for any laboratory or project, and be freely 

available, to ensure capture of sufficient, artefact-free replicates as stipulated in the protocol. 

Differing acceptability criteria for consistency of tidal rate and volume may affect mean Rrs and Xrs 

values, and their repeatability, particularly in disease[112] where Rrs and Xrs may be highly flow 

dependent. Study of the effects of varying acceptability criteria on impedance values are needed.  

Windows containing negative resistances should be excluded as they are physiologically implausible. 

They may result from poor design of hardware or signal processing, or noise artefacts such as 

cough[113]. Leaks manifest as sudden large decreases in |Zrs|, although the changes  in flow-time 

and volume-time traces may at times, be subtle.  Swallowing or transient airway occlusion manifest 

as large values of impedance at zero flow[98, 114]. Artefact removal can be based on statistical 

filtering of impedance values from individual windows[20, 115] or on the basis of complete 

breaths[98]. The latter reflects interest in within-breath indices[116], and results in lower test 

variability.  

Automated strategies for removing artefacts, particularly when within-breath parameters are 

derived, are still a topical area of research. These include use of parameters such as the flow shape 

index, which represents how the shape of the time course of the oscillatory flow approximates the 

theoretical one[117] or other criteria[113, 118]. Laboratories and research studies may exclude 

individual breaths, only the affected segments, or entire recordings. Such exclusions should be 

reported or made readily available, as well as the exclusion criteria used.  

7.2 Use of coherence 

Originally, when the cross-spectra method for calculating Zrs was used, the coherence (γ2) between 

flow and pressure at each frequency was commonly used to determine whether a measurement 

contained too many artefacts, and thus should be discarded. Coherence can be interpreted as a 

causality index between the input (flow) to the respiratory system and its ‘linearly’ -dependent 

output (pressure)[119], or vice versa.  Coherence values range between 0 (no causality at all) and 1 

(perfect causality) but values less than 0.90 or 0.95 were typically discarded[3, 21, 120, 121], as low 

coherence values can result from various processes such as poor signal-to-noise ratio, non-



 

linearities, cardiogenic oscillations, or band-overlap between the excitation and spontaneous 

breathing waveforms. However, there are potential problems with using coherence in this mnner, 

including: 1) varied approaches used by manufacturers to calculate its value; 2) for single-frequency 

tracking of impedance over time, coherence is dependent on windowing[122]; 3) coherence is often 

reduced in disease[36] such that an arbitrary cutoff would bias results; and 4) high coherence values 

do not ensure the absence of artefacts or measurement errors. While low coherence is generally 

indicative of noise or artefact, because of the differences between devices and between different 

diseases, coherence is no longer recommended as criterion for quality control.  

 

7.3 Use of biological controls 

Use of biological controls should be standard practice in research and clinical laboratories. A 

biological control is a healthy non-smoking subject, e.g. a lung function scientist. First, sufficient Zrs 

data (e.g. at least 10 separate measurements) should be obtained in a relatively short time-interval 

(e.g. a few weeks) so that the average and confidence intervals of Zrs are known. If a subsequent 

measurement is outside the confidence interval, the oscillometric system should be carefully 

evaluated. Manufacturers are encouraged to develop automated quality-control software to assist 

and enhance the utility of the biological control. The weekly use of a biological control subject is 

recommended for oscillometry equipment that is used on a regular basis. 



 

8. Reporting of results 

8.1 Reporting of measurement details: 

Details of the hardware and testing procedures should be reported to allow comparison and 

replication (see Table 6). For scientific publications, this will require an online supplement in many 

journals given the significant volume of detail that should be reported.   

8.2 Reporting acceptability and repeatability criteria 

It is important to report the number (or range) of individual recordings that are used to calculate 

impedance, after the rejection criteria and quality control are met. This will allow comparison and 

reproduction of results between laboratories. The CoV should also be included in the report and if 

the CoV is higher than the specified upper limit, the results should be flagged so that this is taken 

into account and the results may be interpreted with caution. Manufacturers must make these 

features available in real-time to ensure that adequate data can be collected in a testing session. The 

laboratory quality control processes should be documented and included in research publications 

(see Table 6). Currently, there is little information on which oscillometric parameters should be 

included in a basic report.  Such parameters should be determined by the users and manufacturers 

should allow flexibility in report design. However, testing protocols, quality control criteria and 

verification procedures should be reported.  Hence Figure 2 is an illustrative example only, of what 

might be included in a report. Note that this is not a recommended reporting template. The 

‘Technical Notes’ might be made available in the Laboratory resources, rather than appear on the 

laboratory report.  

 

8.3 Reference values 

There are numerous published values in different populations, for children and adults[123] (see 

Table E1 in the Online Supplement ).  As with all lung function tests, the appropriateness of any 

predicted equations for a particular oscillometric device, should be determined for the population in 

which it is to be applied by each laboratory. There is a need to obtain normative values, including 

bronchodilator responses, for children and adults from different countries using standardise 

breathing protocols and signal analyses, from which multi-ethnic normative values similar to the GLI 

values for spirometry[124] may be derived. The possible differences in measurements between 

devices[10, 79, 125-127] also requires further study. In the absence of this data, reference values 

derived from a device that is most similar to the device being used is recommended. It is also 

recommended that Z-scores for each parameter be included in the output, where the necessary 

statistical data are available. This avoids the problem of having a predicted value close to zero, when 

use of percent predicted can become very large and problematic in terms of clinical interpretation.  



 

8.3.1 Children 

Standing height is the dominant predictor of Rrs[128], although sex is also an independent predictor 

in one report[129] but not in others of preschool and school aged children[130, 131]. Most 

normative studies on Rrs in preschool children have observed no significant effect of weight or age 

on Rrs. In adolescents, sex-related differences in Rrs have observed, but were small with predicted 

Rrs for girls being < 5% larger than that for boys[129, 132, 133]. Except for one study[134], Xrs in 

preschool children was described as a linear function of height (see Figure E2, left panel)[128, 134]; 

and both height and sex[129]. There is a large scatter in the prediction of Rrs and Xrs at low 

frequency in young children and therefore, the appropriate predicted equation for any given 

pediatric population should be determined for that population. In the absence of local regional or 

geographic data, use of the reference equations from studies in which the devices and population 

most closely approximate the local situation is recommended.  

8.3.2 Adults  

Older studies were undertaken with equipment no longer on the market and few published studies 

were conducted with currently available commercial devices. The most comprehensive and recent 

study involves multiple centres and multiple, currently available oscillometric devices[10].   

 

9. Bronchodilator and bronchoconstrictor responses 

9.1 Bronchodilator responses 

Whenever possible, baseline data should be expressed as Z-scores since raw values are dependent 

on height and age. The dose of salbutamol used to assess bronchodilation should also be reported. It 

is still debatable whether the bronchodilator response should be expressed as relative or absolute 

change[135, 136]. In children and adults, the absolute change in Rrs and Xrs is dependent on the 

baseline value[137] but the separation using absolute values is greater between subjects with 

disease and control subjects[138], compared to when relative values are used. Therefore, a Z-score 

postBD change has also been proposed[139], which would overcome these problems. This would 

require the bronchodilator responses in a healthy population to be determined, from which an 

upper 95th percentile could be determined for each relevant oscillometry parameter. The 

distribution of responses may not be normal and arithmetic transformations, e.g. log-transformation 

of the ratio of postBD to preBD values[140], may normalize the data. 

Rrs and Xrs are both volume dependent[95, 141]. Since bronchodilatation reduces lung 

hyperinflation, this would also potentially increase Rrs and decrease Xrs, which would be in opposite 

directions to the direct effects of bronchodilator on airway caliber and airway closure. The 

interpretation of bronchodilator responses of Rrs and Xrs therefore, may not be straightforward and 

could cause some disparity with spirometry response.  



 

Table E2 in the Online Supplement shows the published papers on bronchodilator responses in 

healthy children, which were chosen based on the presence of the 95th percentiles for the responses, 

which allowed determination of a threshold value. The thresholds for bronchodilator responsiveness 

are remarkably similar, which for Rrs is around -40% in preschool-aged children at 4-6 Hz forcing 

frequency, and for Xrs being between 40 – 60% and -80% for AX. In older children, the threshold may 

be slightly lower for Rrs at around -35% but similar for Xrs and AX being 40% and -80%, respectively. 

Therefore, it is recommended that the thresholds for defining a positive bronchodilator response, 

for both adults and children, are -40% decrease in Rrs5, +50% increase in Xrs5 and -80% decrease in 

AX.  

Table E3 in the Online Supplement shows the published papers on bronchodilator responses in 

healthy adults. There are only 3 published papers in healthy adults, with only 1 paper with sufficient 

numbers to provide confident thresholds[135]. Therefore, the thresholds from this paper could be 

used to define bronchodilator responsiveness thresholds but the limitations of this should be 

recognised.  More studies of bronchodilator responsiveness in healthy children and adults are 

therefore required, both to provide better validation, comparison between populations and 

between devices, and to allow definition of thresholds based on Z-scores. 

9.2 Bronchial challenge testing 

Oscillometry is an alternative to spirometry for conducting bronchial challenge testing in adults[9, 

27-38] and children[39-45]. However, particularly in children there may be underestimation of the 

change in Rrs during challenge testing due to upper airway artefact and wall shunting[46]. This effect 

may be reduced by using admittance (1/Zrs) instead of Rrs[47, 142].  

So-called cut-offs for oscillometry during bronchial challenge testing have been determined in older 

children and adults, by referencing the standard cut-offs from spirometry (see Table E4 in the Online 

Supplement). However, potentially better cut-offs to define normality could be derived from studies 

of general populations samples, without reference to spirometry gold standards. Such cut-offs could 

have better clinical utility than spirometry based tests.  Airway hyperresponsiveness measured by 

oscillometry is reproducible[28, 30, 41, 143] and is correlated with responsiveness measured by 

FEV1.   

The sensitivity and specificity of suggested cut-offs for a positive challenge test using Rrs, Xrs, Grs 

and dose response slopes, for a number of different forcing frequencies, can be calculated for the 

published studies (see Table E4). There is a wide variability across studies, which may be explained 

by differences in methods used and differences in study populations. It is unlikely that differences in 

measurements between different devices significantly affect the measurements of airway 

hyperresponsiveness, but direct comparisons (i.e. replicate challenges with different oscillometry 

devices) have not been made. Given the variability discussed above, it is currently recommended 

that local thresholds should be developed which would be appropriate for the specific population 

with a specific device. 

There is some discordance in detectring airway hyperresponsiveness between bronchial challenges 

done with oscillometry versus with challenges done with spirometry, in which case changes in 

oscillometry indices may provide additional information to spirometry. For example, some subjects 



 

report symptoms during the challenge test without accompanying changes in FEV1 but have changes 

in Rrs and AX, which suggests airway narrowing and closure [144, 145]. This disparity between 

spirometry and impedance changes are likely related to differences in volume history (see Section 

6.3 Volume History). In obese asthmatic and non-asthmatic individuals, bronchial challenge is 

associated with greater expiratory flow limitation measured by Xrs. This measurement was shown to 

correlate better with symptoms than did FEV1[146].  

 

10. Future research to improve the technical performance of oscillometry 

More research on quality control methods for oscillometric parameters and their effects on 

repeatability, across various age ranges and in different respiratory diseases and clinical settings e.g. 

the intensive care setting and population screening; will further improve the quality and 

standardisation of measurements. This may include studies of tidal volume and rate, automated 

detection of artefacts, effects of CoV cut-offs and effects of gas mixtures and ventilation hardware in 

the ICU. Large studies to determine multi-ethnic population normal values, equivalent to the Global 

Lung Initiative values for spirometry[124], are needed. Dynamic impedance, similar to the 

waveforms used for spirometry validation, should be developed and could be used to standardise 

oscillometry devices.  

Improving the performance standards of oscillometry devices, standardising and improving the way 

in which it is administered, and improving the quality control of the final measurements, will 

increase the overall quality of impedance measurements in the clinical and research settings. Hence, 

the authors are of the strong belief that this will allow the benefits of oscillometry in medicine to be 

realised.  
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Figure Legends 

Figure 1. Diagram of frequency dependence of resistance (solid line) and of reactance (dashed line). 

Resonant frequency is the frequency at which reactance is 0.  

Figure 2a and Figure 2b. Illustrative example of a oscillometry PFT report. Note that the oscillometry 

parameters included in a report should be determined by end-users.  NB: The parameters in this 

example report are not a recommendation of which ones to report.  

 

 

  



 

 

  



 

 

 

 



 

 

 

 



 

 

Tables 

Table 1. Summary of technical recommendations and clinical testing of oscillometry. 

Technical recommendations Section 

1 New test loads should be developed: a dynamic test load that simulates 
patient breathing and a static load that includes elastic and inertive 
components. 

4.2 

2 Verifications should be performed daily and publications should report 
the input frequencies at which verifications are performed, the resistive 
loads used and the acceptable tolerances. The recommended tolerance 
for the verification is ≤ ±10% or ±0.1hPa.s.L-1, whichever is greater. The 
test loads should cover the range of Zrs encountered in normal 
oscillometry use. For adults being around 15 hPa.s.L-1 and for children 
around 40 hPa.s.L-1. 

4.2 

3 Details on signal processing for generation of impedance indices, and 
their validations, should be published or be made freely available from 
the relevant laboratories, in references and from device manufacturers. 

5 

4 Coherence should not be used to exclude data points. There are a 
number of quality control methods that can be used which should be 
formalised and disclosed by laboratories, in publications and from 
device manufacturers. 

7.2 

   

Clinical testing  

1 Reference values and cut-offs for bronchial challenge tests be assessed 
for the local population which would also be oscillometry device 
specific. 

9.2 

2 Ensure acquisition of sufficient, artefact free replicates, at the time of 
testing. Thirty second acquisitions are recommended for adults, which 
allows recording over at least 3 breaths. Sixteen second acquisitions are 
recommended for children <12 years of age. The coefficient of variation 
between replicates is suggested to be ≤15% for children and ≤10% for 
adults.  

6.1 

3 Oscillometry testing should precede tests requiring deep breaths (e.g. 
exhaled nitric oxide, spirometry, diffusing capacity) and allow a 
standardised length of time during which deep breaths are withheld, 
before performing oscillometry. 

6.3 

4. The recommended thresholds for positive bronchodilator responses in 
both children and adults is -40% in Rrs5, +50% in Xrs5 and -80% in AX. Z-
scores are recommended for future definition of a significant response, 

9.1 



 

which will require data of bronchodilator responses in healthy 
populations.  

4 Patient acquisition protocols e.g. duration of recording, replicates, 
should be reported in the laboratory reports and research publications. 

8 

 

Table 2. Main differences between current and previous ERS technical standards for 

oscillometry[1]. 

New/updated technical recommendations and standards 

1. The ideal forcing frequencies when applied to spontaneous breathing is ≥4 Hz (changed 
from ≥2 Hz) 

2 Not using coherence function for quality control and use of CoV ≤10% in adults and 
≤15% in children 

3. The data supporting the thresholds that define bronchodilator responsiveness by 
oscillometry have been updated (not defined in 2003). The recommended thresholds for 
both children and adults is -40% in Rrs5, +50% in Xrs5 and -80% in AX. Z-scores are 
recommended for future definition of a significant response.   

4. For manufacturers (commercial and non-commercial) to report device accuracy for 
measuring test loads 

5. Test loads would ideally include inertive and elastic components 

6. Report testing procedures and protocols, and quality control parameters in clinical 
laboratory reports and in research papers 

7. Oscillometry should be performed before tests which require a deep breath e.g. 
spirometry, exhaled nitric oxide, and after a standardised period during which deep 
breaths are withheld. The order of tests and period of withholding deep breaths should 
be reported. 

8. Modern analysis tools allow removal of breaths entire breaths affected by artefact, so 
that an acquisition may remain technically acceptable, as long as there are at least 3 
breaths remaining in that acquisition 

9. Reference papers (Table E1) has been updated. In adults, 2/6 were retained and 5 newer 
reference papers were added. In children, 2/9 were retained and 10 newer reference 
papers for school-aged children and 1 for preschool-aged children were added.  

10. Threshold values for bronchial challenge testing should be developed for local 
populations which would be device specific. 

  

Recommendations that were not included in the current Document 

1. Input peak pressure upper limit (still valid) 

2. Use of 4-30 Hz frequency range to explore frequency dependence of Zrs (still valid) 

3. Clinical application in respiratory diseases and potential for differentiating disease from 
non-disease (not within the scope of the current Taskforce) 



 

Table 3. Studies comparing cut-offs during bronchial challenge testing using Oscillometry 

vs spirometry.  

Reference Population Oscillometry 
device 

Oscillometry cut-off 

Paediatric studies 

Lebecque 1987 
[147] 

17 children with AHR 
& 14 non-AHR 

Oscillaire 50% increase R6 with 
histamine 

Bouaziz 1996 [148] 38 asthmatic children Pulmosfor 4-
32Hz or 6 & 
12Hz 

70% change R12 and 1 
hPa/l/s decrease in 
X12 with methacholine 

Jee 2010 [149] 50 asthmatic pre-
school children & 41 
children with cough 

IOS 80% decrease in X5 
with methacholine 

Bailly 2011[150] 227 children with 
suspected asthma 

IOS 50% decrease X5 with 
methacholine 

Schulze 2012 [151] 48 children IOS 45% increase in R5 or 
0.69 kPa/L/s decrease 
in X5 to methacholine 

Adult studies 

van Noord 1989 
[152] 

53 adults Custom device 47% increase in R5 
detecting 15% 
decrease in FEV1 to 
histamine 

Hsuie 1993 [153] 141 adults (asthma, 
cough, psychogenic 
dyspnoea and 
healthy) 

? ? 

J. Pairon 1994 
[154] 

119 adults with 
normal FEV1 from 
occupational 
screening.  

Custom device 65% increase in R0 
with methacholine 

A.B. Bohadana 
1999 [27] 

71 adults with 
suspected asthma 

Pulmosfor 4-
32Hz 

0.060 % rise Rmean(4-
32Hz)/μg carbachol 
(DRS) or 0.066 % rise 
R10/ μg carbachol 

M. McClean 2011 
[30] 

52 asthmatic and 15 
healthy adults 

Custom device 27% decrease in Grs6 
or 0.93 cm H2O/l/s 



 

decrease in X6 with 
mannitol 

IOS – impulse oscillometry system; R0, R5, R6, R10, R12, X5, X12 – respiratory system resistance at a 

specified oscillation frequency. 

 

Table 4. Key information that should be reported on signal processing in oscillometry 

measurements  

Key information (see Section E1) 

Method for impedance calculation 

Window length, overlap 

Filtering (low and band pass) specifications 

Ensemble averaging details 

Breath detection method 

Quality control and rejection criteria 

 

 

  



 

Table 5.  Minimum instructions to be provided to subjects prior to oscillometry 

acquisition. 

Explain to the patient the duration of a single acquisition and the number of replicates that 

are likely to be recorded 

Describe the nature of the sensations generated by the pressure oscillations, e.g. that they 

will sense a gentle ‘vibration’ or ‘fluttering’ in their mouth and cheset during the 

measurement. A practice run before data acquisition may be useful, particularly in young 

children.  

Encouragement to be relaxed and to ‘breathe as normal’ 

Explain that an initial brief period of observation while breathing on the mouthpiece will 

occur before the oscillation starts, which is to ensure breathing is normal and stable before 

the acquisition starts 

Correct head position – ask the subject to have an upright posture with a very slight ‘chin-

up’ position if seated (which should be the case for most clinical tests in adults and young 

children) 

Avoiding swallowing  

Instruct and demonstrate how the teeth and lips should grip and maintain a firm seal on the 

mouthpiece to avoid leaks. 

Ask the patient to keep the tongue relaxed and below the mouthpiece and do not block the 

orifice 

Instruct and demonstrate if necessary, support of the cheeks with the palm and fingers, and 

of the floor of the mouth with the thumb positioned below the chin. In children, cheek 

support must be done by staff or parents.  

 

 

  



 

Table 6. Measurement details for reporting 

Device name, model, software version and manufacturer 

Input signal frequencies 

Duration of individual recordings 

Number of repeats 

Definition of how impedance values were derived e.g. mean of entire 

recordings, whole breaths only, inspiratory or expiratory.  

Description of breathing protocols e.g. specific breathing maneuvers, 

tidal breathing, volume history 

Use of nose-clip, and method of cheek support.  

Head and body position 

 

 

Table 7: Oscillometry measures to report relating to quality control (see Sections 7 and 8). 

Strategies for artefact removal that were used, e.g. visual checks, 

statistical filtering, whether individual window vs complete breath 

removal vs entire replicate were rejected 

Measurement duration 

Number replicate measurements used 

Within session CoV and the cut-off used to define acceptability 
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Section E1. Estimation of impedance from flow and pressure raw data 

There are several approaches for estimating Zrs from flow and pressure signals[1-5]. The most 

common one is based on the calculation of Zrs as the ratio between the estimated cross-spectrum 

between flow and pressure signals and the estimated auto-spectrum of the flow signal[6]. With this 

method, the entire recording of pressure and flow signals is divided into smaller data segments 

made of a predefined number of data points. Each segment is eventually multiplied by a function 

that varies from 0 at the beginning of the segment, increases to 1 in the center, and gets back to 0 at 

the end of the segment (a procedure called windowing). The estimation of Zrs spectra can then be 

obtained by averaging periodograms computed by using the Fast Fourier Transform (FFT) algorithm 

on each data segment. 

Using this approach, the estimated impedance corresponds to the average value of the mechanical 

properties over the entire recording, implying the hidden assumption of stationarity of the 

mechanical properties of the respiratory system over this time. Impedance may change within a 

breath even in healthy subjects[7] but it may change markedly within a breath due to the presence 

of tidal expiratory flow limitation[8, 9]. There may also be large intra-tidal differences in Zrs between 

breaths because of fluctuations in end-expiratory lung volume[10] and/or breathing pattern[11]. 

Therefore, different approaches for data processing and interpretation are required in presence of 

these conditions. The so-called “within-breath analysis” uses data processing algorithms able to 

estimate Zrs over very short time periods (i.e. over one or two oscillations), addresses this issue. This 

approach relies on forcing signals composed of fewer frequencies, which improves signal-to-noise 

ratio compared to signals with many frequency components, for the same total power of the 

signal[12]. In this case the impedance can be obtained from algorithms based on cross-

correlation[11, 13], FFT [14, 15], or least squares[16] and their output is a time course of Rrs and Xrs 

over time (i.e. R(t) and X(t), respectively) for one[11] or more[17] frequencies.  

It has been demonstrated that these mathematical approaches are theoretically equivalent and that 

the choice of the algorithm used per se, does not affect the results[13]. Alternatively, 

implementation of such algorithms in the computer software may lead to different results due to 

variations in numerical processing and round-off errors across different hardware platforms. 

Therefore, these algorithms require extensive validation to establish the accuracy of the estimated 



 

impedance regardless of the mathematical approach used. The results of validations should also be 

transparent and freely available.  

E1.1 Derivation of mean impedance parameters   

Once the Zrs is derived from the raw pressure and flow data, it may be reported as either spectra of 

Rrs and Xrs, or that of modulus and phase as functions of frequency, or as functions of time at each 

specified frequency when the within-breath approaches are used. Even if these data are reported 

graphically, it is necessary to report specific indices to quantitatively characterize the results of the 

test. 

When the analysis is in the frequency domain (spectra), the values should include at least the values 

of Rrs and Xrs at a frequency representative of the low-frequency spectra (typically 4 to 6Hz), of mid-

frequency spectra (typically between 8 to 12Hz) and of higher frequency spectra (typically 18-30 Hz 

or higher). Resonant frequency is identified by interpolating Xrs(f) from oscillation frequencies 

adjacent to the ones at which Xrs changes from negative to positive values. In some systems, the 

area under the Xrs(f) curve from the lowest frequency to Fres, termed AX[18], is also reported. This 

index increases with disease[19-28],  and is attractive since it  uses all the reactance data from the 

lowest frequency to resonance. However, a but a standardized approach for measurement (starting 

frequency, frequency resolution and numerical integration method) is still lacking. Also, in some 

children or in severely obstructed patients, Xrs(f) may not cross zero in the frequency range 

employed by the device, in which case AX cannot be measured since the values of Xrs at higher 

frequencies cannot be reliably extrapolated.  The methods of AX derivation should be described in 

reports/publications.  

E1.2 Derivation of Intra-breath impedance parameters 

When within breath analysis is implemented, Rrs(t) and Xrs(t) can be divided into inspiratory and 

expiratory portions.  Several parameters can be derived for both Rrs and Xrs, separately for 

inspiratory and expiratory phases of breathing. The parameters include the minimum, maximum, 

average, end-inspiratory and end-expiratory values of Rrs and of Xrs. Also, the differences between 

inspiratory and expiratory parameters have been described[8, 29, 30]. More recently, Rrs(t) and 

Xrs(t) were plotted against volume and against flow, and values such as the area of the Rrs or Xrs vs. 

volume loops were reported[9, 29, 31]. Intra-breath analysis therefore, allows measurement of the 

lung’s dynamic behavior in relation to flow-dependence and volume-dependence. The rationale 

behind intra-breath analyses is that airways diseases may affect Rrs and Xrs differently in inspiration 

and expiration, due to physiological asymmetry of lung mechanics. This asymmetry leads to 

phenomena happening during only specific breathing phases, such as expiratory flow limitation or 

airway closure. These differential mechanical responses during different parts of the respiratory 

cycle are exaggerated in disease due to for example, airway remodeling and alveolar dilation and 

destruction. More importantly, separation of Rrs and Xrs parameters into the inspiratory and 

expiratory phases potentially provides clinically useful information, over that of mean values, with 

potential for detailed characterization and phenotyping of airways and other lung diseases. This 

needs to be tested in clinical studies.  



 

Different approaches for calculating impedance indices may result in different Rrs and Xrs values. To 

improve repeatability of results when the impedance is calculated over several breaths, a number of 

full breaths should be used i.e. data obtained from the start of inspiration to the end of expiration, 

instead of a constant time window, which could include partial tidal breaths[32].  This is because if 

the within-breath variations of Rrs and Xrs are large, inclusion of partial breaths at the start and end 

of the measurements may lead to variable results. For example, if the time window includes an extra 

inspiration in one test and an extra expiration in another, the number of inspiratory or expiratory 

segments within the recording will differ and may bias the results. 

When within-breath approaches are used, manufacturers and users should specify the averaging 

process that is used. Averaging Rrs and Xrs data points from inspirations or expirations from all 

breaths is not equivalent to averaging data points from inspiration and expiration of each single 

breath and then averaging these for all breaths, as the duration of each breath is variable. Also, the 

different methods used to detect the beginning and the end of a breath may lead to differences in 

results and therefore, the method used should be disclosed by manufacturers and users.    

 

 

 

 

Tables 

Table E1.  Published reference values for Rrs and Zrs for children and adults.  

 Authors year n ethnicity age 
range 
(yrs) 

setup 

Children      

 preschool 

 Hellinckx [33] 1998 247 Cau 2-6 IOS 

 Malmberg [34] 2002 109 Cau 2-7 IOS 

 Shackleton [35] 2013 584 Mex 3-5 i2M 

 school 

 Frei [36] 2005 222 Cau 2-10 IOS 

 Ducharme [37] 2005 197 Cau 3-17 Custovit 

 Dencker [38] 2006 360 Cau 2-11 IOS 



 

 

n: 

num

ber 

of 

partic

ipant

s; 

Cau: 

Cauc

asian

s; 

Mex: 

Mexi

cans; 

Jpn: 

Japan

ese; 

Viet: 

Vietn

ames

e; 

UAE: 

Unite

d 

Arab 

Emar

ati. *: IOS, I2M, Oscilink, 2 home-build setups. IOS: Impulse Oscillometry System.  

Table E2. Threshold values for bronchodilator response derived from healthy children. 

Study Age (yrs) n* Drug (dose) Cut-off 

Helinckx 1998 [33] 3-7 228 Salbutamol (200 

g) 

Rrs5: -41%  

Nielsen 2001 [53] 2-6 37 Terbutaline (500 

g) 

Rrs5: -29%, Xrs5: +42% 

Malmberg 2002 [34] 2-7 89 Salbutamol (300 

g) 

Rrs5: -37% 

Thamrin 2007 [54] 4-5 78 Salbutamol (600 

g) 

Rrs6: -42%, Xrs6: +61% 

 Amra  [39] 2008 509 Iranian 5-19 IOS 

 Vu  [40] 2008 175 Viet 6-11 In-house 

 Nowowiejska [41] 2008 626 Cau 3-18 IOS 

 Hagiwara [42] 2013 537 Jpn 6-15 IOS 

 Calogero [43] 2013 760 Cau 2-13 I2M 

 Gochiocoa-Rangel [44] 2015 283 Mex 2-15 IOS 

 Kanokporn [45] 2017 233 Thai 3-7 i2M 

 AlBlooshi  2018 291 UAE 4-12 tremeFlo 

Adults      

 Landser [46] 1982 407 Cau - In-house 

 Pasker [47] 1996 140 Cau 21-81 In-house 

 Guo [48] 2005 223 Cau 65-100 Oscilink 

 Brown [49] 2007 904 Cau 18-92 In-house 

 Oostveen [50] 2013 368 Cau 18-84 multi*  

 Schulz [51] 2013 397 Cau 45-91 IOS 

 Ribeiro [52] 2018 288 Braz 20-86 In-house 



 

Oostveen 2010 [55] 4 144 Salbutamol (200 

g) 

Rrs4: -43%, AX: +81%  

Calogero 2013 [43] 2-13 508 Salbutamol (200 

g) 

Rrs6: -32%, Xrs8: +50%, AX: -81% 

* n: the number of children who received bronchodilator 

Bronchodilator response is defined as ((post-pre)/pre)*100.  

Table E3. Threshold values for bronchodilator response derived from healthy adults. 

 

* n: the number of healthy adults who received bronchodilator Bronchodilator response is defined 

as ((post-pre)/pre)*100.  

 

 

 

Table E4. Studies comparing cut-offs during bronchial challenge testing using FOT vs 

spirometry.  

Reference Population FOT device FOT cut-off 

Paediatric studies 

Lebecque 1987 
[58] 

17 children with AHR 
& 14 non-AHR 

Oscillaire 50% increase R6 with 
histamine 

Bouaziz 1996 [59] 38 asthmatic children Pulmosfor 4-
32Hz or 6 & 
12Hz 

70% change R12 and 1 
hPa.s.L-1 decrease in 
X12 with methacholine 

Study n* Drug (dose) Cut-off 

Houghton 2004 (salbutamol 800μg) 
[56] 

12 Salbutamol 

(800 g) 

Rrs5: -16%, Xrs5: +27% 

Houghton 2005 (ipratropium) [57] 12 Ipratropium 

(200 g) 

Rrs5: -23%, Xrs5: +19% 

Oostveen 2013 [50] 368 Salbutamol 

(400 g) 

Rrs5: -32%, Xrs: +44%, AX: -
65% 



 

Jee 2010 [60] 50 asthmatic pre-
school children & 41 
children with cough 

IOS 80% decrease in X5 
with methacholine 

Bailly 2011[61] 227 children with 
suspected asthma 

IOS 50% decrease X5 with 
methacholine 

Schulze 2012 [62] 48 children IOS 45% increase in R5 or 
0.69 kPa.s.L-1 decrease 
in X5 to methacholine 

Adult studies 

van Noord 1989 
[63] 

53 adults Custom device 47% increase in R5 
detecting 15% 
decrease in FEV1 to 
histamine 

Hsuie 1993 [64] 141 adults (asthma, 
cough, psychogenic 
dyspnoea and 
healthy) 

? ? 

J. Pairon 1994 [65] 119 adults with 
normal FEV1 from 
occupational 
screening.  

Custom device 65% increase in R0 
with methacholine 

A.B. Bohadana 
1999 [66] 

71 adults with 
suspected asthma 

Pulmosfor 4-
32Hz 

0.060 %rise Rmean(4-
32Hz)/μg carbachol 
(DRS) or 0.066 %rise 
R10/ μg carbachol 

M. McClean 2011 
[67] 

52 asthmatic and 15 
healthy adults 

Custom device 27% decrease in Grs6 
or 0.93 cm H2O.s.L-1 
decrease in X6 with 
mannitol 

IOS – impulse oscillometry system; R0, R5, R6, R10, R12, X5, X12 – respiratory system resistance at a 

specified oscillation frequency. 

 

Figures 

Figure E1. Oscillometry traces showing examples of artefacts caused by (A) obstruction of the 

mouthpiece by the tongue, (B) swallows and (C) mouth leaks due to the lips not sealing around the 

mouth piece. Obstructions cause obvious changes in flow, perhaps with accompanying changes in 

the volume-time curves during breathing.  Changes in flow and volume-time curves when leaks 

occur may be more subtle and difficult to detect by visual inspection.  



 

Figure E2. Prediction equations of Rrs (left panel) and Xrs (right panel) at 5 or 6 Hz as a function of 

height from studies of preschool-age to adolescent children. The shaded grey panel in the right 

panel are the upper and lower limits of normal values of Rrs5 and Xrs5 in young adults according to 

Oostveen et al [50]. 
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