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Abstract 

Epidemiological studies demonstrate an association between asthma and mental health disorders, 

although little is known about the shared genetics and causality of this association. Thus, we aim 

to investigate shared genetic and the causal link between asthma and mental health disorders.  

 

We conducted a large-scale genome-wide cross-trait association study to investigate genetic 

overlap between asthma from UK Biobank and 8 mental health disorders from Psychiatric 

Genomics Consortium, including: attention deficit hyperactivity disorder (ADHD), anxiety 

disorder (ANX), autism spectrum disorder, bipolar disorder, eating disorder, major depressive 

disorder (MDD), posttraumatic stress disorder, and schizophrenia, with a sample size of 9,537 to 

394,283. 

 

In the single trait genome-wide association analysis, we replicated 130 and discovered 31 novel 

independent loci that are associated with asthma. We identified that ADHD, ANX and MDD 

have strong genetic correlation with asthma at the genome-wide level. Cross-trait meta-analysis 

identified 7 loci jointly associated with asthma and ADHD, 1 loci with asthma and ANX and 10 

loci with asthma and MDD. Functional analysis revealed that the identified variants regulated 

gene expression in major tissues belonging to exocrine/endocrine, digestive, respiratory and 

hemic/immune system. Mendelian randomization analyses suggested that ADHD and MDD 

(including 6.7% samples overlap with asthma) might increase the risk of asthma. 

This large-scale genome-wide cross-trait analysis identified shared genetics and potential causal 

links between asthma and three mental health disorders (ADHD, ANX, and MDD). Such shared 

genetics implicate potential new biological functions that are in common among them. 
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Take home message: 

Our study discovered shared genetic components between asthma and ADHD, anxiety and 

depression. The shared pathways and potential causal effects from mental disorders to asthma 

highlight health care focus among patients with these disorders. 

 

 

 



INTRODUCTION 

Asthma is one of the most common chronic diseases, resulting in a substantial burden of disease 

worldwide. Accumulating studies have shown significant association between asthma and mental 

health disorders, such as anxiety, depression and attention deficit hyperactivity disorders (ADHD) 

[1]. Although consensus has emerged from the clinical, psychiatric, and biological literature that 

psychosocial factors affect asthma pathobiology in both children and adults [2, 3], their role in 

the pathobiology, morbidity, and symptomatology of asthma remains controversial [4]. For 

example, a recent large-scale systematic review and meta-analysis by Cortese et al. supports a 

significant phenotypic association between asthma and ADHD in both children and adults after 

controlling for possible confounders [3]. Also Lehto et al. recently have found shared genetic 

influences between asthma and depression and high neuroticism, but not anxiety, based on 

genome-wide genetic correlation and polygenic risk score [5]. However, the shared genetics 

between asthma and ADHD, potential genetic causal effect and direction, specific shared genetic 

variants and underline mechanisms are still unknown for these traits.  

We and colleagues have recently identified shared genetic architecture among respiratory, 

immune, cardio-metabolic and neurological/mental health disorders [6-9], indicating the 

potential pleiotropic effect. Asthma and mental health disorders are both highly heritable traits 

[10, 11]. Parallel epidemic trends in asthma and mental health disorders worldwide suggested 

shared genetic and environmental components for these both conditions [1]. However, there is 

limited knowledge about the shared genetic components between asthma and mental health 

disorders. Furthermore, asthma is highly heterogonous disease. Recent studies showed the 

genetic background of childhood- and adult-onset asthma can be partly distinct [12, 13]. 



Therefore, it is unclear if the shared genetics between asthma and mental health disorders can 

differ in these asthma subtypes.  

In the current study, we conducted a large-scale genome-wide association study (GWAS) for 

cross-trait analysis between asthma from UK Biobank and 8 mental health disorders from 

Psychiatric Genomics Consortium (PGC), including: ADHD, anxiety disorder (ANX), autism 

spectrum disorder (ASD), bipolar disorder (BIP), eating disorder (ED), major depressive disorder 

(MDD), posttraumatic stress disorder (PTSD), and schizophrenia (SCZ). Specifically, we 

investigated the genome-wide genetic correlation between asthma and these mental health 

disorders, and used cross-trait meta-analysis to identify shared individual genetic variants 

between them [14]. We carried out further GWAS functional analysis to delineate the biological 

impact of such shared genetics. Finally, we investigated the shared genetics between asthma and 

mental health disorder by childhood- and adult-onset asthma subtypes. 

 

METHOD 

Study population, design, data summary and quality control (QC) 

The overall study design is shown in Figure 1. In this current study, we have included 2 major 

data sources, UK Biobank and Psychiatric Genomics Consortium (PGC). 

UK Biobank data 

The details of UK Biobank cohort were described elsewhere [15] and Supplementary note. All 

participants provided informed consent to the UK Biobank. We performed a stringent sample QC 

procedure. We restricted the sample set to European population using the genetic ancestry based 

on principal components analysis of the genotypes (data field 22006). We excluded individuals 

with chronic obstructive pulmonary disease, emphysema, or chronic bronchitis (self-reports or 



ICD-10 codes) from asthmatic cases and controls. Asthma was treated as primary phenotype of 

interest. Three asthma subtypes were treated as secondary phenotype and defined in this study: 

childhood-onset asthma (asthma age of onset [AAO]≤12 years), adult-onset asthma (AAO≥26 

years) and young adult-onset asthma (12 years<AAO<25 years). The young adult-onset asthma 

was not included in the genetic analysis due to its higher heterogeneity [12, 13]. Thus 46,802 

asthma cases, 9,676 childhood-onset asthma cases, 22,296 adult-onset asthma cases and 347,481 

shared controls with high-quality genotyping and complete phenotype/covariate data were 

included for GWAS analysis. Detailed trait ascertainment, genotyping and QC procedures of UK 

Biobank were provided in Figure S1 and Supplementary note. 

PGC GWAS data for mental health disorders 

We retrieved summary statistics from publicly available GWAS studies, ADHD 

(ncase/ncontrol=19,099/34,194) [16], ANX (ncase/ncontrol=5,710/11,600) [17], ASD 

(ncase/ncontrol=6,179/7,377) [18], BIP (ncase/ncontrol=7,481/9,250) [19], ED 

(ncase/ncontrol=3,495/10,982) [20], MDD (ncase/ncontrol=59,851/113,154 after excluding 23andMe) 

[21], PTSD (ncase/ncontrol=2,424/7,113) [22] and SCZ (ncase/ncontrol=34,241/45,604) [23] from PGC. 

Details of each of the datasets can be found in Table S1. 

We applied standardization of GWAS summary statistics to minimize potential biases due to QC 

procedures. We converted GWAS summary statistics with hg18 genome built to hg19 using 

liftOver tool [24]. Indels and rare/low frequency variants with a minor allele frequency (MAF) of 

<1% were not included in this study. Additionally, we restricted our analysis to autosomal 

chromosomes. 

GWAS analysis in UK Biobank 



In this study, we focused on common variants for the analysis with minor allele frequency > 1%. 

We performed stringent GWAS quality control procedure. We included variants that did not 

deviate from Hardy–Weinberg equilibrium (P>1×10
−6

), per-variant and per-sample missing 

rates<10%, and an imputation quality score (INFO)>0.8. Quantile–quantile plots were produced 

and checked for each asthma phenotype. The LD score regression (LDSC) intercept was used to 

evaluate genomic inflation due to population stratification. A total of 8,274,727 SNPs passed QC 

on the whole genome, which were eligible for statistical association analyses. 

We performed the 3 GWAS analyses for all asthma, childhood-onset asthma, adult-onset asthma 

and shared controls adjusting for age, sex, genotyping array, assess center and 30 ancestry 

principal components. We did not remove any related samples in the UK Biobank since we used 

linear mixed model (LMM) method for phenotype-genotype association analysis, which proved 

to be robust to potential confounding due to relatedness [25]. The output of BOLT-LMM linear 

regression was transformed into log odds ratio for asthma binary phenotypes. We applied PLINK 

[26] clumping function (parameters: --clump-p1 5e-8 --clump-p2 1e-5 --clump-r2 0.05 --clump-

kb 500) to determine top loci that are independent to each other, i.e. variants with P-value less 

than 1×10
-5

, has r2
 more than 0.05 and less than 500 kb away from the peak will be assigned to 

that peak's clump. The peak variant was defined as a sentinel variant. We used the NHGRI-EBI 

GWAS catalog (search date: July 1st, 2019) for checking previous report status of genetic loci 

associating with asthma and identified novel loci. Novel asthma loci were defined as the clump 

regions which did not contain any previously reported variants in the NHGRI-EBI GWAS 

catalog.  

LD score regression (LDSC) analysis 



We conducted post-GWAS genome-wide genetic correlation analysis between asthma and 

mental health disorders using all SNPs after merging with HapMap3 SNP excluding the human 

leukocyte antigen (HLA) region. LDSC estimates genetic correlation between the true causal 

effects of two traits (ranging from −1 to 1) [27]. European-ancestry subjects were used in LDSC 

analysis for each trait if available. We corrected multiple testing for LDSC P-values by 

Bonferroni method, and a P-value of 0.00625 (0.05/8) was considered as significance level for 

LDSC analysis. Mental health disorders that showed significant genome-wide genetic correlation 

with asthma were included in the following analyses.  

Cross-trait meta-analysis 

After investigating the genetic correlations among all traits, we applied association analysis 

based on SubSETs (ASSET) to combine the association evidence for asthma with ADHD, ANX 

and MDD respectively at individual variants since it is designed for meta-analysis of binary traits 

[14, 28]. This method combines effect estimate and standard error of the GWAS summary 

statistics to test hypothesis of association between the SNP with any subset of studies.  

We focused on shared sentinel variants satisfying Pmeta<5×10
-8

 and clump specific False 

Discovery Rate (FDR)<0.05 to account for multiple testing. We used Variant Effect Predictor 

(VEP) based on Ensembl/GENCODE basic transcripts database for detailed variant annotation 

[29]. 

Fine mapping credible-set analysis 

To identify the 99% credible set of variants within each of the 500kb of sentinel variants, we 

identified a credible set of causal variants at each of the shared loci that met cross-trait meta-

analysis criteria using the Bayesian-likelihood fine-mapping algorithm [30]. The Bayesian fine-



mapping algorithm maps the primary signal and uses a flat prior with steepest descent 

approximation.  

Transcriptome-wide association study (TWAS) analysis 

To identify association of asthma with ADHD, ANX and MDD with regard to transcriptome 

gene expressions in specific tissues, we conducted a TWAS [31] using 3 gene expression data 

sources: 43 post-mortal GTEx tissues (naverage=214) [32], a CommonMind Consortium (CMC) 

brain (n=452) [33] and a Young Finns Study (YFS) blood (n=1,264) tissue expressions [34]. 

Multiple testing correction for each mental health disorder was applied to account for all gene-

tissue pairs based on TWAS P-values using FDR Benjamini-Hochberg procedure (FDR<0.05).  

Detailed statistical information can be found in the Supplementary note. 

GTEx eQTL colocalization analysis 

Since the GTEx eQTL signals by themselves are pervasive, we further conducted the 

colocalization analysis between signals from 3 cross-trait meta-analysis models (asthma with 

ADHD, ANX and MDD) and 48 single GTEx tissues cis-eQTL (version 7) to find if the same 

genetic variant related to expression and the diseases. We first extracted summary association 

data for variants within 500kb of the index SNP at each of the shared loci. Then, we calculated 

the posterior probability that the two traits (GWAS cross-trait meta-analysis and GTEx eQTL) 

were associated and shared one common causal variant (PPH4) [35]. Loci were considered to be 

co-localized with PPH4 greater than 0.7. We conducted the tissue enrichment using permutation 

test (1,000 permutations) and calculated the permutation P-values for each tissue. We considered 

significant enrichment based on P-value=0.001042 (0.05/48 tissues) after correcting for multiple 

testing of 48 tissues. 

Mendelian randomization (MR) analysis 



We applied generalized summary data-based Mendelian randomization (GSMR) [36] under 

default settings to infer putative causal relationships between asthma and mental health disorders 

from GWAS summary statistics. GSMR requires a minimum of 10 LD-independent instruments 

(r2
<0.05) that are associated with the exposure at GWAS-significant level (P<5×10

-8
), and 

removes SNPs displaying horizontal pleiotropy (HEIDI outlier P< 0.01). Accordingly, we 

restricted our analyses to traits that satisfy this criterion. Additionally, we performed outlier 

sensitivity analysis using a more exclusive HEIDI-outlier threshold of 0.1. Prior to running 

GSMR, we removed strand-ambiguous SNPs, poorly imputed SNPs (INFO<0.9), and SNPs in 

the MHC region (chr6:25-34M). 

Sensitivity analysis in childhood- and adult-onset asthma 

Recent studies have shown that asthma is a highly heterogeneous disease and its genetics are 

partially distinct between in childhood- and adult-onset asthma [12, 13]. Thus, we also 

investigated if the shared genetics between asthma and ADHD/ANX/MDD are different in 

respect to childhood- and adult-onset asthma, specifically in genetic correlation, cross-trait meta-

analysis, TWAS and MR analyses. 

 

RESULTS 

Phenotypic association between asthma and mental health disorders in UK Biobank. We 

conducted the phenotypic association analysis using logistic regression in UK Biobank between 

asthma and high quality mental disorders based on 2 models: (1) unadjusted; (2) adjusted for age, 

sex and education. In both models, we found asthma is significantly associated with ANX, BIP, 

MDD, ED and PTSD (Table S2). 

Genome-wide association and SNP-based heritability. There was no evidence of population 

stratification for 3 asthma GWASs (Figure 2a and Figure S2-3). We identified 161 independent 



loci associated with asthma at genome-wide significance level (5×10
-8

), which contains 130 

previously reported loci and 31 novel loci (Figure 2b and Table S3-S4). For the 31 novel loci, we 

conducted replication analysis in Transnational Asthma Genetics Consortium (TAGC) data 

(23,948 cases, 118,538 controls)[37]. Twenty-one of these loci were not found in TAGC, likely 

because TAGC meta-analysis was based on HapMap2 imputation. Thus we used the most 

significant SNP in the clump region that is available from HapMap2/TAGC as the surrogate SNP 

and extracted their association results from TAGC for replication purpose. As a result, we found 

surrogate SNPs for 14 loci, but the remaining 7 loci were not applicable for replication. Thus, a 

total of 24 loci were sought for replication in TAGC. Among them, we found 14 of them were 

nominally significant in TAGC multi-ancestry or European population (P-value<0.05), 10 of the 

14 loci had P-value<0.001 (Table S3). In addition, we found the effect sizes of the 24 loci were 

highly consistent between UK Biobank and TAGC (Figure S4-S5). Estimates of SNP-based 

heritability on the observed scale using GWAS summary statistics were 5.02% (SE: 0.62%) for 

asthma, 3.38% (SE: 0.66%) for childhood-onset asthma and 1.98% (SE: 0.24%) for adult-onset 

asthma. 

Genome-wide genetic correlation. We investigated the genetic correlations of asthma and 

mental health disorders using LDSC (Table 1). We observed positive genetic correlations 

between asthma and ADHD (Rg=0.197, P=1.21×10
-5

), ANX (Rg=0.406, P=1.61×10
-3

), and 

MDD (Rg=0.215, P=1.09×10
-8

). We did not find significant genetic correlation between asthma 

and other mental health disorders.  

Cross-trait meta-analysis between asthma and mental health disorders. We applied ASSET 

for genome-wide cross-trait meta-analysis to identify genetic loci associated with asthma and 

ADHD, ANX and MDD (Pmeta<5×10
−8

; single trait FDR<0.05). After pruning, we found 7 loci 



significantly associated with asthma and ADHD. The most significant SNP was rs2025758 

(Pmeta=4.52×10
-18

, FDRasthma=1.29×10
-14

, FDRADHD=1.09×10
-3

), located at an intergenic region. 

We also found the HLA locus (sentinel SNP: rs3117006, Pmeta=2.81×10
-8

, FDRasthma=6.61×10
-7

, 

FDRADHD=3.13×10
-2

) shared by asthma and ADHD. Further, we found 1 locus significantly 

associated with both asthma and ANX (sentinel SNP: rs1709393, Pmeta=4.29×10
-8

, 

FDRasthma=2.30×10
-4

, FDRANX=2.06×10
-6

). In addition, we identified 10 loci significantly 

associated with asthma and MDD. The top sentinel SNP was rs2855812 (Pmeta=2.1×10
-16

, 

FDRasthma=7.64×10
-13

, FDRMDD=1.07×10
-5

), where its clump covers many genes in the region, 

mainly including HLA genes. Notably, we found 2 regions shared by multiple traits; 5q21.2 and 

HLA region shared by asthma, ADHD and MDD (Table 2 and S5). 

Identification of causal exonic missense variants. We identified a credible set of causal SNPs 

using Bayesian fine-mapping at each shared locus meeting significance criteria in the asthma–

mental health disorders meta-analysis. The credible set of variants at each locus were 99% likely 

to contain the causal variant. A list of credible sets of SNPs for each locus is provided in Tables 

S6–S8.  

We found 1 locus (in BX927320.1) for asthma and MDD (Table S9), in which the credible set 

included exonic missense polymorphisms. However, we did not find any exonic missense 

polymorphisms in the credible set of SNPs for asthma/ADHD and asthma/ANX (Table S10-11), 

since most variants were either intronic or intergenic, aligning with the theory that most variants 

identified by GWAS involve gene regulatory effects rather than protein structure changes [38]. 

TWAS and GTEx eQTL colocalization. To investigate specific tissue-gene pairs that are 

shared by asthma and mental health disorders, we further performed TWAS analysis on asthma, 

ADHD, MDD and ANX using 3 gene expression data sources. We investigated the overlap of 



significant tissue-gene pairs in asthma, ADHD, MDD and ANX. There was an overlap in 18 

significant tissue-gene pairs in GTEx and 3 pairs in CMC brain for asthma and ADHD. There 

was an overlap in one significant tissue-gene pair in YFS blood for asthma and MDD (Table 3). 

No overlapped tissue-gene pair was found for asthma and ANX. Since CMC brain and YFS 

blood gene expression datasets have larger sample size than GTEx, for tissues of brain and blood, 

we considered CMC and YFS as discovery datasets and GTEx as replication dataset. We 

additionally extracted the association statistics of 4 significant gene-tissue pairs between asthma 

and mental health disorder (CISD2, KATNA1 and MANBA from CMC brain; POLI from YFS 

blood) from GTEx results. We replicated all of them in GTEx dataset accounting multiple testing 

for available genes (P<0.05/3 genes) except for KATNA1, which is not available in GTEx brain 

tissues (Table S12). 

We further conducted colocalization analysis for the shared genetic variants from cross-trait 

meta-analysis between asthma and ADHD, ANX, and MDD with GTEx eQTLs across 48 tissues. 

For asthma and ADHD, we found shared variants at the 10p14 region (e.g. GATA3), 4q24 (e.g. 

MANBA) and HLA region was the potential causal eQTL variant in many tissues (Table S13). 

Notably, in asthma and MDD, HLA was also the major causal eQTL colocaized region (Table 

S14). Through the permutation analysis, we observed significant amount of colocalized signals 

between asthma and ADHD/MDD in some specific tissues, belonging mainly  to 

exocrine/endocrine, digestive, respiratory and hemic/immune system (Figure S6-S7).  

MR results. We observed small but significant positive causal effect of ADHD on asthma 

(βADHD→Asthma=0.054, P=0.036), but not vice versa (Table 4), corroborating the putative model 

that ADHD causally increases the risk of asthma. We also observed strongly significant positive 

causal effect of MDD on asthma (βMDD→Asthma=0.21, P=1.80×10
-5

). However, since there is a 



small fraction of overlapping samples between MDD and asthma GWAS data (~6.7%) and 

potential unobserved confounders, our MR conclusion should be interpreted with caution. Due to 

limited power of the GWAS, we could not identify causal relationships between asthma and 

ANX.  

Sensitivity analysis in childhood- and adult-onset asthma. We found ADHD, ANX and MDD 

have a positive genetic correlation with adult-onset asthma (ADHD: Rg=0.28, P=9.91×10
-6

; 

ANX: Rg=0.50, P=3.29×10
-3

; MDD: Rg=0.34, P=1.52×10
-10

), We did not observe any genetic 

correlation between childhood-onset asthma and mental health disorders (Table S15). In terms of 

the 18 shared genetic sentinel variants, we found some of them have stronger association with 

childhood-onset asthma, but the others have stronger association with adult-onset asthma (Table 

S16). For shared genes in TWAS, we found most of them have approximately even association 

between childhood- and adult-onset asthma except for POLI, which have much stronger 

association with childhood-onset asthma (Table S17). Finally, we identified a modest but non-

significant causal effect between ADHD and childhood-/adult-onset asthma. We also observed a 

strong positive causal effect of MDD on adult-onset asthma (βMDD→Adult-onset asthma=0.26, 

P=3.00×10
-4

) (Table S18). 

 

DISCUSSION 

To our knowledge, this study is the largest genome-wide analysis that has investigated the 

genetic overlap between asthma and mental health disorders. In this study, we identified 161 

independent loci associated with asthma at genome-wide significance level, which contains 130 

previously reported loci and 31 novel loci. More than half of the novel loci were replicated in 



TAGC cohort. We also showed a strong positive genetic correlation between asthma and 3 

mental health disorders – ADHD, ANX and MDD.  

We also identified the genetic overlap between asthma and ADHD, ANX or MDD at individual 

variants level, including 7 loci shared by asthma and ADHD, 1 loci shared by asthma and ANX 

and 10 loci shared by asthma and MDD from cross-trait meta-analysis. We highlighted HLA 

region (several sentinel SNPs) for its significant role in between asthma and mental health 

disorders. HLA region harbors more than 200 genes located close to each other on chromosome 6. 

It is a gene complex that contains abundant pleiotropy for many complex diseases, especially 

involved in immune related process [39]. Wang et al. also identified HLA region showed the 

strongest role contributing to pleiotropic effect between psychiatric and immune disorders, 

although asthma was not assessed in their study [40]. For example, with the inclusion of HLA 

region, the pleiotropy significance between SCZ and rheumatoid arthritis was around 280 

magnitude stronger than with the exclusion of HLA region [40].  

Furthermore, we investigated whether shared genes between asthma and mental health disorders 

have potential functional connection with the human tissues. In the TWAS analysis, we found 

multiple shared tissue-gene pairs between asthma and ADHD, including exocrine/endocrine, 

digestive, respiratory and nervous system. Of them, CISD2 were found to be shared between 

asthma and ADHD in most of tissues and potentially have significant biological function. 

CDGSH iron sulfur domain 2 (CISD2) deficiency causes mitochondrial breakdown and 

dysfunction, and drive premature aging [41]. A transmission electron microscopy (TEM) study 

revealed that mitochondrial degeneration occurs in the brain cells and skeletal muscle cells in 

the Cisd2-/-
 mice [41]. Mitochondrial dysfunction was associated with allergic asthma [42] and 

affected digestive system. Mitochondrial defects are also detected in ADHD cybrids created 



from patients' platelets, implying mitochondrial dysfunction could be a contributory factor for 

ADHD pathology [43]. In addition, we found POLI gene in YFS whole blood tissue was shared 

by asthma and MDD. One possible mechanism for such connection is through DNA polymerase 

iota (η) enzyme, which is encoded by POLI gene. DNA polymerase η is the sole contributor of 

A/T modifications during immunoglobulin gene hypermutation in the mouse [44]. 

Immunoglobulin E (IgE) is a key component in the pathology of asthma. Recognition of allergen 

by IgE depends on a combination of choice of human immunoglobulin heavy-chain-variable 

genes, utilization of certain mutational hotspots, and improvement of affinity via additional 

mutations in complementarity-determining regions (CDR) [45]. DNA polymerase η also 

modulates DNA damage response and DNA damage is the key to treat many of the genetically 

inherited central nervous system disorders including depression [46]. 

In this study, we also investigated causal relationships between asthma and mental health 

disorders using MR. Our results suggested that ADHD and MDD might increase the risk of 

asthma, providing insights into the pathological mechanisms of asthma. Due to limited power, 

we were not able to perform bidirectional MR for ANX and asthma. In addition, our MR 

analyses using a more exclusive outlier P-value threshold of 0.1 showed most of the MR analysis 

results remain unchanged (Table S19). We emphasize that our inferred causal relationships are 

putative as all MR analyses in this study are based on GWAS summary statistics – unobserved 

confounders and overlapping samples may lead to false conclusion. Further analysis, such as 

gene function biological experiments, longitudinal studies, would confirm the inferred causal 

relationships. 

In the asthma subtype sensitivity analysis, we found the shared genetics between asthma and 

mental health disorders are distinct for childhood- and adult-onset asthma. In terms of the 



genome-wide genetic correlation, childhood-onset asthma did not show genetic correlation with 

any mental health disorders, where several studies observed robust phenotypic correlation 

between asthma and ADHD in children and adults [3, 47]. Such finding suggests the phenotypic 

correlation between asthma and ADHD in children maybe more attributed by environmental 

factors but no substantial from genetic origins [47]. Furthermore, our genetic correlation results 

suggest the genetic predisposition on ADHD (majority are children) might have more impact on 

genetic predisposition of adult-onset asthma. However, there is limited research demonstrate the 

phenotypic correlation between childhood-onset ADHD and adult-onset asthma, which could be 

investigated by longitudinal studies in the future. On the other hand, for the top genes identified 

in cross-trait meta-analysis and TWAS, we found the genetic effects are similar in both 

childhood- and adult-onset asthma, which suggested the shared genetics among complex diseases 

may be different at genome-wide polygenic level and top association level. Also Lehto et al. 

recently reported on the shared genetics between asthma and depression and high neuroticism in 

adults, based on their analysis of genome-wide genetic correlation and polygenic risk score [5]. 

In complement with the Lehto study, we further examined the shared genetics at variant, gene 

and tissue function level for both childhood- and adult-onset asthma. And we fully utilized the 

genetic effect to infer the potential genetic causality of the observed associations.  

We acknowledge several potential limitations in this study. First, as the statistical power of our 

GWAS analysis was restricted to the sample sizes of each of mental health disorders; the genetic 

correlation between asthma and additional mental health disorders may be discovered with larger 

sample sizes. Second, the asthma information in UK Biobank is about lifetime asthma diagnosis 

without information about current asthma or asthma duration. Thus, we were not able to align 

occurrence of asthma and mental health disorders. Third, in the asthma subtype analysis, it 



would be ideal to find corresponding well-powered childhood- and adult-onset mental health 

disorders for matched analysis with childhood- and adult-onset asthma. However, such mental 

health disorder GWAS data are currently unavailable. Also, other asthma endotypes, such as by 

IgE (allergic status) and eosinophil level (type 2 inflammation) [48], may provide additional 

insights of pathophysiological connection between asthma and mental health disorders. Finally, 

it is important to evaluate the common non-genetic risks for morbidity and mortality in asthma 

and mental health disorders, such as environmental and social factors. For example, inhaled 

corticosteroid, the most common medication for asthma, which is not available in UK Biobank, 

may have the potential adverse effects on mental health, such as depression and anxiety [49]. The 

current study was limited to assessing shared genetic factors between asthma and mental health 

disorders, and future studies on shared environmental factors between them are needed. 

 

CONCLUSION 

Understanding the genetic overlap between asthma and mental health disorders may be 

beneficial to the management of both conditions. Our study shows evidence of significant 

positive genetic correlations between asthma and 3 mental health disorders. Shared genetic 

variants were fine-mapped to improve resolution and identify potential shared causal variants 

with exonic missense polymorphisms. We also found multiple potential common biological 

mechanisms, which can advance our understanding of the connection between asthma and some 

mental health disorders and offer new avenues for future functional validation, disease 

prevention and clinical treatment. 
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FIGURE LEGENDS 

Figure 1. Overall study design. 

 

Figure 2. Results of genome-wide association analysis of UK Biobank cohort for asthma. a. 

Association test quantile-quantile plot showing departure from null hypothesis of no association. 

b. Manhattan plot for association test of 46,802 asthma cases and 347,481 controls. X-axis 

denotes the genomic position (chromosomes 1-22), Y-axis denotes the –log10(P-value) of 

association test. Total of 31 novel independent loci. The most significant novel SNP in each 

locus is highlighted in yellow orange diamond shape. Genome-wide significance level after 

accounting for multiple testing (P=5×10
-8

) is denoted by red line. 

 

Figure S1. Sample QC procedure in UK Biobank for 3 asthma phenotypes. 

 

Figure S2. Quantile-quantile plot of childhood-onset asthma. LDSC intercept=1.04 showed no 

evidence of population stratification bias. 

 



Figure S3. Quantile-quantile plot of adult-onset asthma. LDSC intercept=1.03 showed no 

evidence of population stratification bias. 

 

Figure S4. Correlation of effect size of 24 novel loci between UK Biobank and TAGC 

multiancestry population. R denotes Pearson correlation coefficient; P denotes P-value for 

Pearson correlation coefficient. Red line denotes diagonal line. 

 

Figure S5. Correlation of effect size of 24 novel loci between UK Biobank and TAGC European 

population. R denotes Pearson correlation coefficient; P denotes P-value for Pearson correlation 

coefficient. Red line denotes diagonal line. 

 

Figure S6. Colocalization of asthma and ADHD meta-analysis loci and GTEx eQTL. Tissues are 

categorized into organ/body system. X-axis denotes number of genes with posterior probability 

H4>0.7 (GWAS cross-trait meta-analysis and GTEx eQTL were associated and shared one 

common causal variant). Enrichment test based on 1000 permutations was performed. We 

assigned the 1 red asterisk to the tissue if it’s nominally significant enriched, 2 red asterisks if it’s 

significantly enriched after multiple testing correction for 48 tissues.  

 

Figure S7. Colocalization of asthma and MDD meta-analysis loci and GTEx eQTL. Tissues are 

categorized into organ/body system. X-axis denotes number of genes with posterior probability 

H4>0.7 (GWAS cross-trait meta-analysis and GTEx eQTL were associated and shared one 

common causal variant). Enrichment test based on 1000 permutations was performed. We 

assigned the 1 red asterisk to the tissue if it’s nominally significant enriched, 2 red asterisks if it’s 

significantly enriched after multiple testing correction for 48 tissues. 
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Table 1. Genome-wide genetic correlation between asthma and mental health disorders 

Phenotype 1 Phenotype 2 Rg Rg_SE Z P 

Asthma 

ADHD 0.1968 0.045 4.3763 1.21×10-05 

ANX 0.4056 0.1286 3.1548 1.61×10-03 

ASD 0.0167 0.0515 0.3237 7.46×10-01 

BIP 0.0845 0.0542 1.5603 1.19×10-01 

ED 0.0025 0.0547 0.0453 9.64×10-01 

MDD 0.2152 0.0376 5.7169 1.09×10-08 

PTSD 0.4579 0.4712 0.9718 3.31×10-01 

SCZ 0.0123 0.0262 0.4706 6.38×10-01 

Abbreviations: Rg: genetic correlation estimate 

 

  



Table 2. Genome-wide significant loci by cross-trait meta-analysis associated with asthma and ADHD, MDD or anxiety (P < 5×10
-8

; single trait FDR < 0.05) 

Traits Sentinel SNP Genome position A1 A2 FDR1 FDR2 P Genes within clumping region 

Asthma 
and ADHD 

rs2025758 chr10:8777640-8855244 T C 1.29×10
-14

 1.09×10
-03

 4.52×10
-18

 Intergenic region 

rs7094182 chr10:8452766-8543732 G C 1.09×10
-09

 4.89×10
-03

 5.15×10
-12

 Intergenic region 

rs325485 chr5:103769738-104048590 A G 2.64×10
-05

 5.31×10
-05

 1.94×10
-08

 Intergenic region 

rs227283 chr4:103550006-103885568 C G 8.60×10
-05

 5.58×10
-06

 2.67×10
-08

 CISD2,MANBA,SLC9B1,UBE2D3 

rs3117006 chr6:33096426-33124972 G A 6.61×10
-07

 3.13×10
-02

 2.81×10
-08

 HLA-DPB2 

rs6736411 chr2:63508703-63906628 G A 1.71×10
-06

 3.45×10
-02

 2.91×10
-08

 MDH1,WDPCP 

rs71565398 chr6:33581633-33775446 C G 9.68×10
-07

 2.18×10
-02

 3.70×10
-08

 IP6K3,ITPR3,LEMD2,MLN,UQCC2 

Asthma 
and ANX 

rs1709393 chr3:101684480-101713472 C T 2.30×10
-04

 2.06×10
-06

 4.29×10
-08

 LOC152225 

Asthma 
and MDD 

rs2855812 chr6:31078809-31835164 G T 7.64×10
-13

 1.07×10
-05

 2.09×10
-16

 

ABHD16A,AIF1,APOM,ATP6V1G2,ATP6V1G2-

DDX39B,BAG6,C6orf15,C6orf25,C6orf47,C6orf48,C

CHCR1,CDSN,CLIC1,CSNK2B,DDAH2,DDX39B,GP

ANK1,HCG26,HCG27,HCP5,HLA-B,HLA-

C,HSPA1A,HSPA1B,HSPA1L,LSM2,LST1,LTA,LTB,

LY6G5B,LY6G5C,LY6G6C,LY6G6D,LY6G6E,LY6G6

F,MCCD1,MICA,MICB,MIR4646,MIR6832,MIR6891,

MSH5,MSH5-

SAPCD1,NCR3,NEU1,NFKBIL1,POU5F1,PRRC2A,P

SORS1C1,PSORS1C2,PSORS1C3,SAPCD1,SLC44

A4,SNORA38,SNORD48,SNORD52,SNORD84,SNO

RD117,TCF19,TNF,VARS,VWA7 

rs2854275 chr6:32606970-32808299 C A 1.18×10
-13

 1.31×10
-02

 3.47×10
-13

 
HLA-DOB,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-

DQB2,TAP2 

rs396755 chr5:103791044-104088117 C G 3.80×10
-05

 9.59×10
-08

 1.55×10
-11

 Intergenic region 

rs150814685 chr6:28207991-29196418 T G 9.84×10
-09

 1.78×10
-04

 1.91×10
-11

 

C6orf100,GPX5,GPX6,HCG14,LOC401242,LOC100

129636,NKAPL,OR2B3,OR2J2,OR2J3,OR2W1,PGB

D1,TRIM27,ZBED9,ZKSCAN3,ZKSCAN4,ZNF311,Z



SCAN12,ZSCAN23,ZSCAN26,ZSCAN31 

rs149702363 chr6:29218513-29448128 T G 1.33×10
-08

 2.50×10
-03

 3.55×10
-10

 
OR2H1,OR5V1,OR10C1,OR11A1,OR12D2,OR12D3,

OR14J1 

rs493161 chr6:27357414-28304384 A T 9.84×10
-05

 9.38×10
-07

 9.69×10
-10

 

HIST1H1B,HIST1H2AI,HIST1H2AJ,HIST1H2AK,HIS

T1H2AL,HIST1H2AM,HIST1H2BL,HIST1H2BM,HIST

1H2BN,HIST1H2BO,HIST1H3H,HIST1H3I,HIST1H3J

,HIST1H4J,HIST1H4K,HIST1H4L,LINC01012,LOC10

0131289,NKAPL,OR2B2,OR2B6,PGBD1,TOB2P1,Z

KSCAN4,ZKSCAN8,ZNF165,ZNF184,ZNF192P1,ZN

F391,ZSCAN9,ZSCAN12P1,ZSCAN16,ZSCAN16-

AS1,ZSCAN26,ZSCAN31 

rs301817 chr1:8415235-8847380 C A 1.59×10
-09

 4.59×10
-02

 2.94×10
-09

 RERE 

rs148696809 chr6:28934352-28934352 T C 1.53×10
-03

 1.96×10
-07

 4.78×10
-09

 Intergenic region 

rs147121091 chr6:27174557-27765899 A G 1.87×10
-04

 4.58×10
-05

 2.63×10
-08

 
LINC01012,LOC100131289,POM121L2,PRSS16,VN

1R10P,ZNF184,ZNF204P,ZNF391 

rs10789340 chr1:72565800-72945128 A G 1.44×10
-03

 3.36×10
-06

 2.68×10
-08

 NEGR1 

 

  



Table 3. Significant overlap transcriptome-wide association analysis results between asthma and ADHD or MDD (FDR<0.05) 

Tissue Gene CHR NSNP 
Asthma Mental health disorder 

BEST.GWAS.ID FDR BEST.GWAS.ID FDR Trait 

GTEx.Adrenal_Gland CISD2 4 326 rs227375 0.046 rs227369 0.008 ADHD 

GTEx.Artery_Aorta CISD2 4 326 rs227375 0.038 rs227369 0.035 ADHD 

GTEx.Cells_Transformed_fibroblasts MANBA 4 389 rs227375 0.009 rs227369 0.001 ADHD 

GTEx.Cells_Transformed_fibroblasts UBE2D3 4 343 rs227375 0.045 rs227369 0.036 ADHD 

GTEx.Colon_Sigmoid CISD2 4 326 rs227375 0.046 rs227369 0.025 ADHD 

GTEx.Colon_Transverse CISD2 4 326 rs227375 0.027 rs227369 0.006 ADHD 

GTEx.Esophagus_Gastroesophageal_Junction CISD2 4 326 rs227375 0.049 rs227369 0.036 ADHD 

GTEx.Esophagus_Muscularis CISD2 4 326 rs227375 0.022 rs227369 0.025 ADHD 

GTEx.Lung CISD2 4 326 rs227375 0.038 rs227369 0.025 ADHD 

GTEx.Muscle_Skeletal CISD2 4 326 rs227375 0.004 rs227369 0.004 ADHD 

GTEx.Ovary CISD2 4 326 rs227375 0.032 rs227369 0.032 ADHD 

GTEx.Pancreas MANBA 4 389 rs227375 0.013 rs227369 0.039 ADHD 

GTEx.Pancreas UBE2D3 4 343 rs227375 0.007 rs227369 0.021 ADHD 

GTEx.Skin_Not_Sun_Exposed_Suprapubic CISD2 4 326 rs227375 0.045 rs227369 0.042 ADHD 

GTEx.Skin_Sun_Exposed_Lower_leg CISD2 4 326 rs227375 0.034 rs227369 0.028 ADHD 

GTEx.Small_Intestine_Terminal_Ileum CISD2 4 326 rs227375 0.025 rs227369 0.022 ADHD 

GTEx.Spleen MANBA 4 389 rs227375 0.038 rs227369 0.005 ADHD 

GTEx.Uterus CISD2 4 326 rs227375 0.038 rs227369 0.007 ADHD 

CMC.Brain CISD2 4 322 rs227375 0.003 rs227369 0.010 ADHD 

CMC.Brain KATNA1 6 469 rs112225 0.010 rs2342764 0.048 ADHD 

CMC.Brain MANBA 4 390 rs228617 0.009 rs227369 0.009 ADHD 

YFS.Blood POLI 18 347 rs3730783 0.016 rs4801003 0.046 MDD 
Abbreviations: CMC: CommonMind Consortium; YFS: Young Finns Study 

  



Table 4. Estimates of causal effect size between asthma and mental health disorders. 

Phenotype 1 Phenotype 2 Direction Causal Effect Size (S.E.) P No. Instruments 

ADHD 

 

Asthma 

 

→ 0.054 (0.026) 0.036 10 

← -0.034 (0.025) 0.16 126 

ANX 

 

Asthma 

 

→* N/A N/A N/A 

← -0.014 (0.055) 0.8 159 

MDD 

 

Asthma 

 

→# 0.21 (0.049) 1.80×10-05 20 

← 0.012 (0.015) 0.45 124 

“→” refers to the Phenotype 1 → Phenotype 2 causal direction, and “←” refers to Phenotype 2 → Phenotype 1 causal direction. 

*ANX GWASs does not have enough SNPs at genome-wide significance level for constructing instrument variable and is marked with “N/A”. 

#
MDD GWAS data include 23andme 
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UK Biobank dataset 

The UK Biobank study is a prospective study of >500,000 participants living in the UK. In total, 

503,325 participants who registered in the National Health Service with ages ranging 40–69 

years were recruited out of 9.2 million mailed invitations. Baseline data were collected using 

questionnaires, and anthropometric assessments were performed. All detailed genotyping, quality 

control, and imputation procedures are described at the UK Biobank website 

(http://biobank.ctsu.ox.ac.uk). Currently ~500,000 individuals in UK Biobank have been 

genotyped for ~800,000 SNPs using Affymetrix facilities. Population structure was captured by 

principal component analysis on ~500,000 UK Biobank samples using ~100,000 SNPs. Quality 

control filters were applied before phasing. Data were prephased using SHAPEIT3 [1]. 

Haplotype Reference Consortium (HRC) panel data was used as a reference panel for imputation. 

This reference panel has many more haplotypes (64,976) than the 1000G reference panel, and so 

is expected to produce better imputation performance [2]. 

We used 4 data fields to determine asthmatic cases: 6152, 20002, 41202 and 41204. Data field 

6152 is from the participant questionnaire to determine the doctor-diagnosed asthma phenotypes. 

This data field contains the question: ―Has a doctor ever told you that you have had any of the 

following conditions?‖ Participants could select more than one answer from the following: Blood 

clot in the leg (DVT); blood clot in the lung; emphysema/chronic bronchitis; asthma; hayfever, 



allergic rhinitis or eczema; none of the above; prefer not to answer. If participants chose either 

―none of the above‖ or ―prefer not to answer‖, they could not select other answers. Data field 

20002 denotes self-reported non-cancer illness code. Data field 41202 and 41204 denote ICD10 

main and secondary diagnoses from hospital. 

We used data fields 3786 (age of first asthma was diagnosed based on touchscreen questionaire) 

and 22147 (age of first asthma was diagnosed by doctor based on an online follow-up 

questionnaire finished only by subset of participants) to determine the asthma age of onset. Three 

asthma subtypes were used in this study: childhood-onset asthma (defined as asthma age of onset 

[AAO]≤12 years old), adult-onset asthma (AAO≥26) and young adult-onset asthma 

(12<AAO<25). The young adult-onset asthma was not included in the genetic analysis due to its 

higher heterogeneity. Since we used both data fields 3786 and 22147 to determine AAO, we 

performed addition quality control to handle inconsistencies between these 2 data fields. 

Specifically, we first excluded 8,307 subjects with missing AAO for both data fields; then we 

excluded 426 subjects with data fields 3786 and 22147 for AAO inconsistency > 10 years; 

finally we excluded 441 subjects with AAO inconsistency ≤ 10 years but have inconsistent age 

group from these 2 data fields. 

To assess phenotypic correlation between asthma and mental health disorders in UK Biobank, 

we additionally extracted phenotypes from UK Biobank, including depression (MDD) (data 

fields 20002, 20126, 20544), anxiety (ANX) (20002, 20544, 20544, 41202, 41204), 

posttraumatic stress disorder (PTSD) (20002, 41202, 41204), bipolar disorder (BIP) (20002, 

20126, 20544, 41202, 41204), eating disorder (ED) (20002, 20544, 41202, 41204) and 

schizophrenia SCZ) (20002, 20544, 41202, 41204). 



All participants from this study provided UK Biobank-acquired informed consent and provided 

data according to the UK Biobank protocol. We have complied with all ethical regulations 

according to UK Biobank policy. This research was approved and conducted using the UK 

Biobank under application number 16549 and 45052. 

Attention Deficit Hyperactivity Disorder (ADHD) dataset 

An international collaborative team including the Psychiatric Genomics Consortium (PGC) 

conducted a meta-analysis of GWAS of individuals with ADHD. Participants included both 

children and adults. A European subset of GWAS data was used in current study. Key summary 

information can be found in Table S1. 

ANX dataset 

The Anxiety NeuroGenetics STudy (ANGST) Consortium conducted a meta-analysis of GWAS 

of individuals with ANX and controls. All participants were adults and European ancestry. Key 

summary information can be found in Table S1. 

ASD dataset 

The ASD working group of the PGC conducted a meta-analysis of GWAS of individuals with 

ASD and controls. Participants included both children and adults. A European subset of GWAS 

data was used in current study. Key summary information can be found in Table S1. 

BIP dataset 

The BIP working group of the PGC conducted a meta-analysis of GWAS of individuals with 

bipolar disorder and controls. Participants included both children and adults. All subjects from 

this study are European ancestry. Key summary information can be found in Table S1. 



ED dataset 

This study is based on a meta-analysis of GWAS of individuals with ED and controls. 

Participants included both children and adults. All subjects from this study are European ancestry. 

Key summary information can be found in Table S1. 

MDD dataset 

The MDD working group of the PGC conducted a meta-analysis of GWAS of individuals with 

MDD and controls. Participants included both children and adults, but majority are adults. A 

European subset of GWAS data excluding 23andme was used in current study. However, for 

Mendelian randomization analysis, 10K top significant SNPs including 23andme samples were 

used. Key summary information can be found in Table S1. 

PTSD dataset 

The PTSD working group of PGC conducted a meta-analysis of GWAS of individuals with 

PTSD and controls. All participants were adults. A European subset of GWAS data was used in 

current study. Key summary information can be found in Table S1. 

SCZ dataset 

The SCZ working group of the PGC conducted a meta-analysis of GWAS of individuals with 

SCZ and controls. Although the meta-analysis of 49 cohorts contains 2 ancestries, majority of 

them are from European ancestry (46 of European and three of east Asian ancestry, 34,241 cases 

and 45,604 controls). These comprise the primary PGC GWAS data set. Participants included 

both children and adults. Key summary information can be found in Table S1. 

GWAS analysis of UK Biobank data 



To account for relatedness, the association between cardiac traits in UK Biobank data and 

imputed SNPs was carried out using BOLT-linear mixed model (LMM) [3]. The output of 

BOLT-LMM linear regression was transformed into log odds ratio (logOR) for HBP binary 

phenotype using the following equation: 
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Association analysis based on subsets (ASSET) 

ASSET is a generalized fixed-effects meta-analysis model that combines effect estimate and 

standard error of GWAS of related but distinct traits to identify promising directions to discover 

loci with small but common pleiotropic effects. The ASSET method explores subsets of studies 

for the presence of true association signals that are either in the same direction or opposite 

directions [4]. When S represents a set of study traits selected from K studies, meta-analysis 

statistics of the one-sided test ASSET is defined as:  

                     ( )          ∑√  ( )  
   

  

where S is all possible 2
K
–1 subsets of K studies, and   ( )     ∑       represents sample 

size of the study K relative to total sample size of the given subset S.  

An advantage of using ASSET is that it can account for correlation among studies/subjects that 

might arise due to shared subjects across distinct studies or due to correlation among related 

traits in the same study by using case–control overlap matrices. If Z(A) and Z(B) denote 

Z statistics for the association test for a SNP from case–control studies A and B with an arbitrary 



amount of overlap between subjects, then—under the null hypothesis of no association and the 

assumption that there is no covariate adjustment—the correlation between statistics is given by 
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where   
( )

,   
( )

, and NA are the number of cases, controls, and subjects, respectively, in study A; 

  
( )

,    
( )

, and NB are the number of cases, controls, and subjects, respectively, in study B; and 

   
(  )

 represents the number of subjects with different phenotype categories (i,j)   (0,1) that 

overlap between studies A and B. For example,    
(  )

  denotes the number of shared cases 

between studies A and B;    
(  )

  denotes the number of individuals who are treated as cases in 

study A but as controls in study B;    
(  )

  denotes the number of individuals who are treated as 

controls in study A but as cases in study B; and     
(  )

  denotes the number of shared controls 

between studies A and B [4]. 
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Figures 

Figure S1. Sample QC procedure in UK Biobank for 3 asthma phenotypes. 

Figure S2. Quantile-quantile plot of childhood-onset asthma. LDSC intercept=1.04 showed no evidence of 
population stratification bias. 

Figure S3. Quantile-quantile plot of adult-onset asthma. LDSC intercept=1.03 showed no evidence of 
population stratification bias. 

Figure S4. Correlation of effect size of 24 novel loci between UK Biobank and TAGC multiancestry population. 
R denotes Pearson correlation coefficient; P denotes P-value for Pearson correlation coefficient. Red line 
denotes diagonal line. 

Figure S5. Correlation of effect size of 24 novel loci between UK Biobank and TAGC European population. R 
denotes Pearson correlation coefficient; P denotes P-value for Pearson correlation coefficient. Red line 
denotes diagonal line. 

Figure S6. Colocalization of asthma and ADHD meta-analysis loci and GTEx eQTL. Tissues are categorized 
into organ/body system. X-axis denotes number of genes with posterior probability H4>0.7 (GWAS 
crosstrait meta-analysis and GTEx eQTL were associated and shared one common causal variant). 
Enrichment test based on 1000 permutations was performed. We assigned the 1 red asterisk to the tissue if 
it’s nominally significant enriched, 2 red asterisks if it’s significantly enriched after multiple testing correction 
for 48 tissues. 

Figure S7. Colocalization of asthma and MDD meta-analysis loci and GTEx eQTL. Tissues are categorized into 
organ/body system. X-axis denotes number of genes with posterior probability H4>0.7 (GWAS cross-trait 
meta-analysis and GTEx eQTL were associated and shared one common causal variant). Enrichment test 
based on 1000 permutations was performed. We assigned the 1 red asterisk to the tissue if it’s nominally 
significant enriched, 2 red asterisks if it’s significantly enriched after multiple testing correction for 48 
tissues. 



 

  



 

  



 

  



 

  



 

  



 

  



 

 

 

 

  

  



Online supplementary tables 

Dear Editor/Reviewers 

This paper contains 19 supplementary tables in Microsoft Excel file format, please use this link to get 

access to the supplementary table file. Thank you. 

 

https://www.dropbox.com/s/bz0slk38h0zqrm5/Supplementary%20tables_ERJ_revision.xlsx?dl=0 

 

 

 




