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“Take home” message: ALS has a heterogenous progression to respiratory failure. A 

clinician can use our clinical prognostic rule to estimate a six-month risk of respiratory 

failure onset, thus facilitating referrals and respiratory interventions. 

 
 
 

 
 
 

 
 
 

 
 
 

 

  



Abstract 
 
 

A clinically useful model to prognose onset of respiratory insufficiency in amyotrophic 

lateral sclerosis (ALS) would inform disease interventions, communication, and clinical 

trial design. We aimed to derive and validate a clinical prognostic model for respiratory 

insufficiency within six months of presentation to an outpatient ALS clinic. 

 

We used multivariable logistic regression and internal cross-validation to derive a 

clinical prognostic model using a single-center cohort of 765 ALS patients who 

presented between 2006 and 2015. External validation was performed using the 

multicenter Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database 

with 7,083 ALS patients. Predictors included baseline characteristics at first outpatient 

visit. The primary outcome was respiratory insufficiency within six months, defined by 

initiation of non-invasive ventilation, forced vital capacity < 50% predicted, tracheostomy, 

or death.  

 

Of 765 patients in our center, 300 (39%) had respiratory insufficiency or death within six 

months. Six baseline characteristics (diagnosis age; delay between symptom onset and 

diagnosis; forced vital capacity; symptom onset site; ALS Functional Rating Scale-

Revised (ALSFRS-R) total score; and ALSFRS-R dyspnea score) were used to 

prognose the risk of the primary outcome. The derivation cohort c-statistic was 0.86 (95% 

confidence interval (CI), 0.84 – 0.89). Internal cross validation produced a c-statistic of 

0.86 (95% CI, 0.85 – 0.87). External validation of the model using the PROACT cohort 

produced a c-statistic of 0.74 (95% CI, 0.72 – 0.75).  



We derived and externally validated a clinical prognostic rule for respiratory insufficiency 

in ALS. Future studies should investigate interventions on equivalent high-risk patients. 

 

Keywords: amyotrophic lateral sclerosis, respiratory failure, prediction modeling, 

prognosis, non-invasive ventilation  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with 

high morbidity and universal mortality. ALS is usually sporadic with an incidence of 

approximately 1 to 2/100,000 people in the US per year with a prevalence of 



approximately 3-5/100,000.[1] Impairment of key respiratory muscles including the 

diaphragm, accessory muscles of respiration, and bulbar muscles leads to death 

through mechanisms of aspiration, diminished airway clearance due to ineffective cough, 

recurrent pulmonary infections, and chronic hypercapnic respiratory failure.[2-5] The 

cornerstone of respiratory care in ALS involves non-invasive ventilation (NIV), which 

has been shown to improve quality of life and potentially survival.[6] Despite the key role 

of respiratory failure in the morbidity and mortality associated with ALS, there remains 

uncertainty concerning the optimal timing of initiating respiratory care for this disease.[7]  

Shortcomings in current clinical strategies for predicting the onset of respiratory 

insufficiency have hindered development of practice guidelines and clinical trials. Also, 

the absence of a reliable prognostic model has prevented clinicians from anticipating 

mechanically-assisted ventilation, thereby limiting the opportunity to prepare patients for 

shared decision making, improving timeliness of referrals for respiratory interventions, 

and developing clinical trial design. Accordingly, the aim of this study was to develop 

and validate a prognostic model for the onset of respiratory insufficiency or death within 

six months of presentation to an ALS center.  

 

 

 

Methods 

Study Design and Population 

For derivation and internal validation of the prognostic model we performed a 

retrospective cohort study of patients at the University of Pennsylvania Comprehensive 



ALS Center (Philadelphia, Pennsylvania) with first visit between January 1, 2006 and 

December 31, 2015.  

The source population for the validation cohort was the Pooled Resource Open-

Access ALS Clinical Trials (PRO-ACT) database. Details on the PRO-ACT dataset are 

found in the online data supplement. 

This study was approved by the University of Pennsylvania institutional review board 

and adheres to TRIPOD guidelines for transparent reporting of prediction models.[8] 

 

Study Samples and Data Collection 

The Penn cohort data were prospectively entered into a secure online data portal 

with follow-up until September 1, 2016. Starting in 2006, patients diagnosed with ALS 

by an attending neurologist using the World Federation of Neurology El Escorial Criteria 

were approached for consent.[9]  

We excluded patients with unusable data or non-physiologic values, NIV use before 

diagnosis, tracheostomy before diagnosis, tracheostomy before NIV, and baseline FVC 

< 50%. We also excluded anyone with less than six months of follow-up time who were 

censored as “alive”. See the online supplement for further details regarding data 

collection for the Penn dataset.  

The PRO-ACT database includes de-identified data from 23 phase II/III clinical trials 

(see online supplement). PRO-ACT inclusion criteria commonly included being 18 years 

of age or older; ability to provide informed consent; clinical diagnosis of ALS; FVC ≥ 50% 

predicted; serum creatinine < 1.5 mg/dl (133 mol/L) and disease duration of ≤ 5 years 

from symptom onset. Exclusion criteria for trials from PRO-ACT included recent 



exposure to the study drug; exposure to other investigational agents within the last 30 

days; malnourishment; substance abuse within the last year; and active significant 

medical or psychiatric disease.  

See online supplement for ALSFRS-R score. 

 

Outcomes 

We sought to establish a discriminating clinical prognostic rule for “respiratory 

insufficiency” within six months of outpatient clinic presentation. Respiratory 

insufficiency included any one of the following outcomes: initiation of NIV, FVC < 50% of 

predicted, tracheostomy placement, or death. We performed sensitivity analyses as 

discussed in the online supplement. 

 

Statistical Analysis 

We created a prognostic model with multivariable logistic regression to identify 

associations between baseline characteristics and respiratory insufficiency within six 

months. After deriving the model on the Penn cohort and internally cross-validating, we 

externally validated with the PRO-ACT cohort. We graphically represented our model 

performance using receiver operating characteristic curves, Kaplan-Meier curves and 

calibration plots. See online supplement for further details.  

 



Results 

Penn cohort 

One-thousand sixty-one patients with ALS were evaluated at Penn during the study 

period. After excluding those with NIV or tracheostomy at baseline (n=33), baseline FVC 

< 50% (n=168), unusable data or non-physiologic values (n=64), or those with less than 

6 months follow-up (n=31), there were 765 individuals in the Penn study sample. Mean 

age at diagnosis was 63 years, 58% were male, and 87% were Caucasian (Table 1). 

The average FVC at baseline was 81%, and mean baseline ALSFRS-R total score was 

37. Fifty-three percent of the cohort classified themselves as “never” smokers. Median 

follow-up time was 2.3 years (interquartile range, 1.5-4.0 years). Thirty-nine percent 

(n=300) of the cohort had respiratory insufficiency (or death) by six months of 

observation.  

We compared baseline characteristics of patients who had respiratory insufficiency 

by six months to those who did not (Table 2). Patients reaching the composite outcome 

had significantly older diagnosis age; shorter diagnosis delay; higher proportion of 

Definite ALS El Escorial criteria; higher proportion of bulbar symptom onset; lower FVC, 

lower ALSFRS-R total score; lower ALSFRS-R dyspnea and orthopnea scores; more 

coronary artery disease; and greater chance of diabetes mellitus at baseline compared 

to those who did not reach the composite outcome. There were no significant 

differences in sex or race.  

In the Penn cohort, 167 (22%) initiated NIV; 246 (32%) had FVC < 50% predicted; 

two (0.3%) underwent tracheostomy; and 88 (12%) died by six months.  

 



Prognosis of Respiratory Insufficiency or Death 

 Univariate analysis predictors are depicted in Table 3. After purposeful backward 

selection in a multivariable analysis, six predictors were retained, including age at 

diagnosis, diagnosis delay, symptom onset site, FVC, ALSFRS-R total score, and 

ALSFRS-R dyspnea score. The model was well-calibrated by both Hosmer-Lemeshow 

test (p=0.45, Table E1 in the online data supplement) and standardized Pearson 2 test 

(p=0.31). The ROC curve produced from the multivariable model had a c-statistic of 

0.86 (95% CI 0.84 – 0.89, Figure 1A).  To perform internal validation, we performed a 

4-fold (4 to 1) cross validation of the multivariate logistic model in the Penn cohort for 

the composite outcome. The ROC from internal cross validation on out-of-sample data 

produced a c-statistic which was almost identical to the full derivation cohort (0.86, 95% 

CI 0.85 – 0.87, Figure E1). Using the internally cross-validated ROC curve, we selected 

a cut-point of 0.45 for the odds of reaching respiratory insufficiency (including death) at 

six months, corresponding to a sensitivity of 83% and specificity of 81% (Table 4). The 

underlying risk of having respiratory insufficiency (including death) in the Penn cohort 

was 39%, so a “positive” prediction (odds of an event ≥ 0.45 from the model) nearly 

doubled the risk of reaching this end point (positive predictive value (PPV) = 77%), 

whereas a “negative” prediction reduced the chances of having an outcome to only 14% 

[negative predictive value (NPV) = 86%). In the 616-person internal derivation cohort, 

239 patients had a “positive” test, identifying one third of the population at high risk of 

respiratory insufficiency within six months.  

Patients with a positive-predicted odds of respiratory insufficiency had significantly 

higher risk of the primary outcome within six months (Figure 1B) and at one year 



(Figure E2, both p<0.001). The median time to respiratory insufficiency for the group 

with a positive prediction (odds of an event ≥ 0.45) was 123 days (interquartile range, 

77 – 239 days), and for those with a negative prediction was 469 days (interquartile 

range, 259 – 889 days).  

A calculator for prognosticating the risk of respiratory insufficiency at six months is 

included in the online supplementary material. 

 

Mortality 

We also used the multivariate logistic model in the Penn cohort to prognose death 

alone. The ROC produced from the multivariable model had a c-statistic of 0.84 (95% CI 

0.80 – 0.89, Figure E3) for death. Four-fold internal cross-validation produced a c-

statistic of 0.83 (95% CI 0.82 – 0.84, Figure E4). For internal cross-validation, a cut-off 

of 0.11 had sensitivity 83% and specificity 81%, similar to the respiratory insufficiency 

model (Table 4). 

 

PRO-ACT  

The PRO-ACT cohort contained 10,723 subjects. We excluded 2,473 patients with 

less than six months of follow-up time and those with prior tracheostomy or prior NIV 

(n=108), as well as anyone with FVC < 50 at start of observation (n=1,059). The final 

PRO-ACT cohort contained 7,083 individuals. The mean age was 56 years, 62% were 

male, and 96% were Caucasian (Table 5). The average FVC at baseline was 88%, and 

mean baseline ALSFRS-R total score was 37. The median follow-up time was 0.98 



years (interquartile range, 0.65-1.32 years). Thirty-five percent (n=2453) had respiratory 

insufficiency (including death) by six months of observation.  

We compared baseline characteristics of individuals who did and did not meet our 

composite outcome within six months of diagnosis (Table E2). Subjects reaching the 

composite endpoint were significantly older, were less likely to be male, had a shorter 

diagnosis delay, had bulbar-onset symptoms, had lower FVC, and had lower ALSFRS-

R total score compared to those who did not reach the composite outcome. There was 

no significant difference in race.  

At six months, 2453 (35%) individuals had respiratory insufficiency; 360 (5%) were 

initiated on NIV; 1398 (20%) had an FVC less than 50% predicted; and 1,168 (16%) 

died. No one received a tracheostomy. 

 

Prognosis of Respiratory Insufficiency or Death 

We applied the prognostic model and cutoff from the Penn cohort to PRO-ACT. The 

model yielded a c-statistic of 0.74 (95% CI, 0.72 – 0.75) (Figure 2A). Table 4 shows the 

model performance using the outcome probability cut-off of ≥ 0.45, which produced a 

sensitivity of 53% and specificity of 82%. The Hosmer-Lemeshow goodness-of-fit test 

was (p<0.001) (Table E3) and standardized Pearson 2 test was (p=0.001). The 

calibration plot (Figure E5) illustrates excellent precision estimates, with somewhat 

higher than expected events in the lower-risk groups and lower than expected events in 

the higher-risk groups. 

Patients with a high probability of respiratory insufficiency had an increased risk of 

respiratory insufficiency at six months (p<0.001, Figure 2B). Median time to respiratory 



insufficiency for the group with a positive prediction (odds of an event ≥ 0.45) was 182 

days (interquartile range, 91 – 344 days), and for those with a negative prediction was 

381 days (interquartile range, 204 – 581 days).   

 

Mortality  

Applying the clinical prognostic rule to death in PRO-ACT produced a c-statistic of 

0.72 (95% CI, 0.71 – 0.74) (Figure E6). Applying a cut-point of 0.11 produced a 

sensitivity of 47% (95% CI, 44 – 50%), specificity of 82% (95% CI, 81 – 83%), PPV of 

36% (95% CI, 34 – 38%), and NPV of 88% (95% CI, 87 – 89%) (Table 4). 

 

Sensitivity Analyses 

 See online supplement. 

 

Discussion 

We found that younger age, less diagnostic delay, lower FVC, bulbar symptom onset 

site, lower ALSFRS-R total, and ALSFRS-R dyspnea ≤ 2 at baseline were significantly 

associated with a higher risk of respiratory insufficiency or death at six months in a large 

single-center cohort and a dataset of multiple clinical trials in ALS.  The model had high 

sensitivity, specificity, PPV and NPV in the derivation cohort and maintained high 

specificity, PPV, and NPV in the validation cohort. 

 Other studies have developed prognostic models of ALS disease progression, using 

methods such as longitudinal support vector regression, random forest algorithms, and 

machine learning. These studies have found baseline ALSFRS score, ALSFRS slope, 



symptom onset site, executive dysfunction and diagnosis delay time to be significantly 

associated with overall survival.[10-14] However, these approaches are computationally 

intensive, require variables not available in typical clinical practice, necessitate repeat 

assessments over time, or focus on overall disease progression rather than respiratory 

events.  

A recent study created a prognostic model for time from symptom onset to a 

composite end point of tracheostomy, dependence on non-invasive ventilation (>23 

hours per day), or death in ALS.[15] However, our study differed in several important 

ways. Our model included variables which 1) are routinely clinically available on all 

patients, 2) are assessed at baseline, and 3) prognose the short-term risk of respiratory 

failure onset, which is an important clinical event for patients and could be used to 

create an “enriched” study population for clinical trials. Sensitivity, specificity, PPV, and 

NPV were not presented in the Westeneng study, making it more difficult to apply the 

findings at the bedside for an individual patient. Perhaps most importantly, our clinical 

rule focuses on early stages of respiratory insufficiency, thus facilitating referral to 

respiratory physicians for timely interventions. 

Prior literature on prognostic factors for ALS have found a significant association 

between age, bulbar onset disease, and diagnosis delay with worsened survival, 

consistent our study.[16-19] Kimura and colleagues found that change in ALSFRS-R 

score and symptom duration at diagnosis (analogous to diagnosis delay in the current 

study) identified two groups with distinct survival.[12] Crowdsourcing initiatives have 

used advanced machine-learning algorithms to identify 16 predictors (including time 

from symptom onset, FVC, age, site of symptom onset, and ALSFRS-R total score) for 



distinguishing between relatively “fast” versus “slow” disease progressors by change in 

ALSFRS score.[13] It was estimated that with such information clinical trial enrollment 

sample size could be reduced by 20%. 

 

Strengths and Limitations 

Our study has several strengths. Most notably, we leveraged two large databases of 

prospectively collected data from ALS patients. To our knowledge, this is one of the 

largest studies to date for prognosing respiratory outcomes in ALS. In addition, our 

validation of the model in a separate, multicenter, international patient population (with 

different inclusion from the derivation cohort) attests to its generalizability.  

We recognize several limitations to our study. The c-statistic, sensitivity, and NPV of 

the Penn cohort model decreased in the PRO-ACT cohort. While the prognostic rule 

was quite discriminating and well-calibrated (at least in the higher-risk group) in the 

PRO-ACT validation cohort, the cutoff selected from the Penn cohort was less sensitive. 

There are several possible reasons for this. First, the Penn cohort included most 

patients evaluated at our ALS center over 10 years, potentially making the prognostic 

rule generalizable to other centers, whereas the PRO-ACT cohort is composed of 

selected patients from clinical trials with multiple inclusion and exclusion criteria. 

Therefore, the two cohorts may have important differences, even if many of the 

demographics appeared similar.  

Heterogeneity in PRO-ACT study design and variability in end point assessment 

could lead to bias, but this would likely be independent of our predictors. Thus, any bias 



introduced by study heterogeneity would likely bias towards the null. Our strong model 

performance despite a very heterogenous dataset attests to its generalizability.  

While six-month risk of respiratory insufficiency was essentially identical between the 

two cohorts (~35-39%), the incidence of the individual outcomes was somewhat 

different (e.g., NIV initiation was 22% in Penn cohort vs 5% in PRO-ACT). Given that 

PRO-ACT is a multicenter clinical trial database from cohorts around the world, our 

results may be affected by substantial practice variation regarding interventions for 

respiratory insufficiency. In the United States, guidelines and most medical insurance 

carriers recognize an FVC < 50% predicted normal as a threshold for initiation of NIV. 

However, some centers in our study may initiate NIV at a higher FVC (70-80%) while 

others prefer to wait for alternate physiologic changes (e.g., impaired gas exchange) 

even though the FVC is below 50% predicted normal. In addition, the threshold for 

tracheostomy placement likely differs between centers and regions. 

Measurement error could have affected FVC. However, the Penn cohort used a 

spirometer in a neurology clinic after clinical trial training of a nurse practitioner and 

nurse. In addition, PRO-ACT is comprised of randomized controlled trial (RCT) data, 

which obtained FVC values using rigorous clinical research-grade methodologies. Of 

course, measurement error would likely bias to the null, unless related to both the actual 

value of the FVC itself and the risk of the outcome.  

FVC is often used as a criterion for NIV initiation, and so our model may be 

influenced by using FVC as a predictor. However, we found that our model performs 

significantly better over using FVC alone (data not shown, p<0.001).  



Performing a logistic regression rather than a time-to-event analysis has potential for 

introducing selection bias. There are several reasons why we chose the former over the 

latter. First, time-to-event analyses assume non-informative censoring, which likely 

would have been violated by including those with short follow-up times. A very large 

external validation cohort of 7,083 individuals likely mitigates any selection bias  in our 

study. Second, we felt that a risk associated with a fixed time point (as in a logistic 

regression) is more practical for clinicians and patients rather than an arbitrary hazard 

ratio associated with no time point (as in a time-to-event analysis). Lastly, we felt that 

the six month time window was appropriate for guiding immediate interventions and 

discriminating “high-risk“ versus “low-risk” individuals. 

Patients may have entered the Penn cohort after receiving a prior diagnosis of ALS; 

however, we accounted for this by using initial clinic presentation as time zero in our 

model. This approach facilitated validation in the PRO-ACT cohort, which began 

collecting data at the start of clinical trial enrollment, rather than at diagnosis date.  

Unmeasured confounding is possible; however, this would not impact the ability to 

predict events using this prognostic rule. Both the Hosmer-Lemeshow and standardized 

Pearson 2 tests indicated good calibration in the Penn cohort but less so in the PRO-

ACT cohort. However, these tests are limited since they are non-specific for model fit, 

non-significant p-values do not indicate direction of calibration, and large sample sizes 

make it difficult to find a parsimonious model with a p-value above 0.05.[20] We feel that 

the large sample size enabled high precision estimates and thus low p-values.  

 

  



Conclusions 

A prognostic model for respiratory insufficiency or death in ALS may allow future 

studies to: (1) examine the impact of the “high-risk” phenotypes on important outcomes, 

(2) study novel mechanisms of disease, (3) develop an early intervention on a “high-risk” 

phenotype for respiratory insufficiency, and (4) identify characteristics associated with 

different trajectories of respiratory function, thus allowing for personalized medicine. 

Further study would be necessary to validate this as a tool prospectively to identify a 

high-risk subgroup suitable for clinical trial enrollment. In clinical practice, application of 

the prognostic model may help inform the optimal timing for referral of ALS clinical 

patients for respiratory care with the goal of delaying (or at least preparing for) the onset 

of respiratory insufficiency.  
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Figure Legends 

Figure 1A. Receiver operating characteristic curve for prognosis of respiratory 

insufficiency (including death) within six months in the Penn cohort.  

 

Figure 1B. Kaplan-Meier curves with 95% confidence intervals stratified by prognostic 

probability of respiratory insufficiency in the Penn cohort, truncated at 180 days. 

 

Figure 2A. Receiver operating characteristic curves for derivation and external 

validation of respiratory insufficiency within six months. Test of equality, p<0.001.  

 

Figure 2B. Kaplan-Meier curves with 95% confidence intervals stratified by prognostic 

probability of respiratory insufficiency in the PRO-ACT cohort, truncated at 180 days. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1A.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1B.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2A and 2B.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Baseline characteristics of Penn cohort (n=765) 

Variable 

Age at diagnosis, years 63 ± 12 

Male sex, n (%) 440 (58) 

Race, n (%) 
 

     Caucasian 662 (87) 

     African-American 53 (7) 

     Other 50 (6) 

BMI class, n (%) 
 

     <18.5 kg/m2 
     18.5 - 24.9 kg/m2 

30 (4) 

318 (42) 

     25 - 29.9 kg/m2 270 (35) 

     >30 kg/m2 147 (19) 

Diagnosis delay, years 1.0 (0.6, 1.7) 

El Escorial criteria, n (%) 
 

     Definite ALS 152 (20) 

     Possible ALS 197 (26) 

     Probable ALS 239 (31) 

     Suspected ALS 177 (23) 

Symptom onset site, n (%) 
 

     Limb 596 (78) 

     Bulbar 169 (22) 

FVC % predicted 81 ± 18 

ALSFRS-R total score 37 ± 6 

ALSFRS-R dyspnea, n (%) 
 

     4 454 (59) 

     3 205 (27) 

     2 74 (10) 

     1 31 (4) 

     0 1 (<1) 

ALSFRS-R orthopnea, n (%) 
 

     4 657 (86) 

     3 43 (5) 

     2 42 (5) 

     1 2 (<1) 

     0 21 (3) 

Smoking history, n (%) 
     Current 
     Previous 
     Never 

 
74 (10) 

285 (37) 

406 (53) 

Coronary artery disease, n (%) 70 (9) 

Diabetes mellitus, n (%) 81 (11) 

Hypertension, n (%) 297 (39) 
Definition of abbreviations: BMI = body mass index; ALS = amyotrophic lateral 

sclerosis, FVC = forced vital capacity; ALSFRS-R = ALS functional rating scale – 

revised 
Data are mean ± SD or median (25

th
 percentile, 75

th
 percentile). 



 

 

 

 

 

 

  

Table 2. Baseline Penn cohort characteristics by composite outcome 
including death. 

Variable 
No composite 

outcome 
(n=465) 

Composite 
outcome 
achieved  
(n=300) 

P Value 

Age at diagnosis, years 61 ± 12 65 ± 11 <0.001 

Male sex, n (%) 272 (59) 168 (56) 0.50 

Race, n (%) 
  

0.25 
     Caucasian 410 (88) 252 (84) 

     African-American 28 (6) 25 (8) 

     Other 27 (6) 23 (8) 

BMI class, n (%) 
  

<0.001 

     <18.5 kg/m
2
 9 (2) 21 (7) 

18.5 - 24.9 kg/m
2
 186 (40) 132 (44) 

     25 - 29.9 kg/m
2
 177 (38) 93 (31) 

     >30 kg/m
2
 93 (20) 54 (18) 

Diagnosis delay, years 1.0 (0.6, 2.0) 0.8 (0.5, 1.3) <0.001 

El Escorial criteria, n (%) 
  

<0.001 

     Definite ALS 62 (13) 90 (30) 

     Possible ALS 125 (27) 72 (24) 

     Probable ALS 154 (33) 85 (28) 

     Suspected ALS 124 (27) 53 (18) 

Symptom onset site, n (%) 
  

0.002      Limb 380 (82) 216 (72) 

     Bulbar 85 (18) 84 (28) 

FVC % predicted 89 ± 15 69 ± 14 <0.001 

ALSFRS-R total score 38 ± 5 34 ± 6 <0.001 

ALSFRS-R dyspnea, n (%) 
  

<0.001 

     4 316 (68) 138 (46) 

     3 118 (25) 87 (29) 

     2 26 (6) 48 (16) 

     1 4 (1) 27 (9) 

     0 1 (<1) 0 (0) 

ALSFRS-R orthopnea, n (%) 
  

<0.001 

     4 432 (93) 225 (75) 

     3 20 (4) 23 (7) 

     2 10 (2) 32 (11) 

     1 0 (0) 2 (1) 

     0 3 (1) 18 (6) 

Smoking history, n (%)  
     Never 
     Previous 
     Current 

 
256 (55) 
160 (34) 
49 (11) 

 
150 (50) 
125 (42) 
25 (8) 

0.11 

Coronary artery disease, n (%) 34 (7) 36 (12) 0.028 

Diabetes mellitus, n (%) 31 (7) 50 (17) <0.001 

Hypertension, n (%) 161 (35) 136 (45) 0.003 
Definition of abbreviations: BMI = body mass index; ALS = amyotrophic lateral sclerosis; FVC = forced 

vital capacity; ALSFRS-R = ALS functional rating scale – revised. 
Data are mean ± SD. 

Data compared using t-test, chi-squared test, or Wilcoxon-Mann-Whitney test. 



 

Table 3. Results of logistic regression analysis for respiratory insufficiency (n=765)  

 
Univariate Analysis 

 
Multivariate Analysis  

Variable OR 95% CI P Value 
 

OR 95% CI P Value  

Age at diagnosis, per decade 1.49 1.31 – 1.70 <0.001 
 

1.13 0.96 – 1.32 0.14  

Male sex 0.90 0.67 – 1.21 0.50      

Race 
     Caucasian 
     African-American 
     Other 

 
-- 

1.45 
1.39 

 
-- 

0.83 – 2.55 
0.78 – 2.47 

 
-- 

0.19 
0.27 

    

 

BMI class (kg/m
2
) 

     <18.5  
     18.5 - 24.9 
     25 - 29.9 
     >30 

 
3.29 

-- 
0.74 
0.82 

 
1.46 – 7.41 

-- 
0.53 – 1.04 
0.55 – 1.22 

 
0.004 

-- 
0.08 
0.33 

    

 

Diagnosis delay, per year 0.93 0.84 – 1.01 0.09 
 

0.77 0.67 – 0.88 <0.001  

El Escorial criteria 
     Definite ALS 
     Possible ALS 
     Probable ALS 
     Suspected ALS 

 
-- 

0.40 
0.38 
0.29 

 
-- 

0.26 – 0.61 
0.25 – 0.58 
0.19 – 0.46 

 
-- 

<0.001 
<0.001 
<0.001 

    

 

Symptom onset site 
     Limb 
     Bulbar 

 
-- 

1.62 

 
-- 

1.15 – 2.30 

 
-- 

0.006 
 

 
-- 

1.70 

 
-- 

1.08 – 2.67 

 
-- 

0.02 

 

FVC, per 10% decrease 2.65 2.30 – 3.06 <0.001 
 

2.36 2.04 – 2.74 <0.001  

ALSFRS-R total, per 6 decrease 2.12 1.80 – 2.50 <0.001  1.59 1.29 – 1.95 <0.001  

ALSFRS-R dyspnea 
     >2 
     ≤2 

 
-- 

4.67 

 
-- 

2.98 – 7.31 

 
-- 

<0.001 
 

 
-- 

1.82 

 
-- 

1.02 – 3.26 

 
-- 

0.04 

 

ALSFRS-R orthopnea 
     >2 
     ≤2 

 
-- 

7.29 

 
-- 

3.89 – 13.65 

 
-- 

<0.001 
    

 

Smoking history 
     Never 
     Previous 
     Current 

 
-- 

1.33 
0.87 

 
-- 

0.98 – 1.82 
0.52 – 1.47 

 
-- 

0.07 
0.603 

    

 

Coronary artery disease 1.73 1.06 – 2.83 0.03      

Diabetes mellitus 2.8 1.74 – 4.50 <0.001      

Hypertension 1.57 1.16 – 2.11 0.003      

Definition of abbreviations: OR = odds ratio; CI = confidence interval; ALS = amyotrophic lateral sclerosis; FVC = forced vital capacity.  



 

 

 

 

 

 

 

 

 

 

 

  

Table 4. Derivation and external validation of the prognostic rule for respiratory insufficiency and death. 

  c-statistic 95% CI 
Sensitivity* 

(95% CI) 
Specificity* 

(95% CI) 
PPV* 

(95% CI) 
NPV* 

(95% CI) 

Respiratory 
insufficiency 

Derivation 0.86 0.84 – 0.89 
 

83% 
(71% – 91%) 

 
81% 

(72% – 89%) 

 
77% 

(65% – 86%) 

 
86% 

(77% – 93%) 

External 
validation 

0.74 0.72 – 0.75 
 

53% 
(51% – 55%) 

 
82% 

(81% – 83%) 

 
62% 

(60% – 64%) 

 
76% 

(75% – 77%) 

Death 

Derivation 0.84 0.80 – 0.89 
 

83% 
(63% – 95%) 

 
81% 

(73% – 87%) 

 
46% 

(30% – 61%) 

 
96% 

(91% – 99%) 

External 
validation 

0.72 0.71 – 0.74 
 

47% 
(44% – 50%) 

 
82% 

(81% – 83%) 

 
36% 

(34% – 38%) 

 
88% 

(87% – 89%) 

Definition of abbreviations: CI = confidence interval; PPV = positive predictive value; NPV = negative predictive value. 
*Sensitivity, specificity, PPV, and NPV based on the following cut-points: respiratory insufficiency, ≥0.45; death, ≥0.11. 



  
Table 5. Baseline characteristics of PRO-ACT 
cohort (n=7,083) 

Variable 

Age at diagnosis, years 56 ± 12 

Male sex, n (%) 4371 (62) 

Race, n (%) 
 

     Caucasian 6763 (96) 

     African-American 106 (1) 

     Other 214 (3) 

BMI class, n (%) 
 

     <18.5 kg/m2 464 (7) 

      18.5 - 24.9 kg/m2 3060 (43) 

     25 - 29.9 kg/m2 2376 (33) 

     >30 kg/m2 1183 (17) 

Diagnosis delay, years 0.8 (0.4, 1.3) 

Symptom Onset Site, n (%) 
 

     Limb 5517 (78) 

     Bulbar 1566 (22) 

FVC % predicted 88 ± 20 

ALSFRS-R total score  37 ± 6 

ALSFRS-R dyspnea 
     4 
     3 
     2 
     1 
     0 

 
4887 (69) 
1133 (16) 
779 (11) 
213 (3) 
71 (1) 

ALSFRS-R orthopnea 
     4 
     3 
     2 
     1 
     0 

 
5902 (84) 
708 (10) 
334 (5) 
71 (1) 

48 (<1) 
Definition of abbreviations: BMI = body mass index; FVC = forced 

vital capacity; ALSFRS-R = amyotrophic lateral sclerosis functional 

rating scale – revised. 
Data are mean ± SD or median (interquartile range 25

th
 percentile, 

75
th
 percentile). 
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Methods 
 
Study Samples and Data Collection 

The Penn cohort data were prospectively entered into a secure online data portal 

known as the Penn Integrated Neurodegenerative Disease Database (INDD). Starting in 

2006, patients diagnosed with ALS by an attending neurologist using the World 

Federation of Neurology El Escorial Criteria were approached for consent.[9] The El 

Escorial criteria categorize the presence of upper and lower motor neuron signs and 

classify patients as clinically “Definite”, “Probable”, “Possible”, and “Suspected” ALS, 

and these are standard inclusion criteria for patients in ALS clinical trials. After each 

clinic visit, an attending neurologist completed clinical data entry. Death was noted from 

hospital record, caregiver notification, or public record. Subjects were followed via 

outpatient neurology clinic visits at approximately three-month intervals. Follow-up was 

conducted until September 1, 2016. 

 

 
PRO-ACT Cohort Additional Information 
 

PRO-ACT is a longitudinal dataset follows patients from placebo and interventional 

arms from 23 phase II/III clinical trials. Data were provided by organizations such as the 

Northeast ALS Consortium, Novartis, Regeneron Pharmaceuticals Inc., Sanofi, and 



Teva Pharmaceuticals Industries, Ltd. Prize4Life is a not-for-profit organization which 

created the PRO-ACT database in partnership with the Northeast ALS Consortium and 

the Neurological Clinical Research Institute at Massachusetts General Hospital with 

funding from the ALS Therapy Alliance. 

The PRO-ACT database included de-identified data from standard protocol 

approvals. Registration and patient consents were obtained by the participating medical 

centers. In the rare cases where data were not already anonymized, they were further 

anonymized following the Health Insurance Portability and Accountability Act de-

identification conventions for personal health information. All observation time in PRO-

ACT was measured in days since trial enrollment as a point of reference, and thus trial 

enrollment day was used as the baseline start time in PRO-ACT. 

PRO-ACT inclusion criteria commonly included being 18 years of age or older; ability 

to provide informed consent; clinical diagnosis of ALS; FVC ≥ 50% predicted; serum 

creatinine < 1.5 mg/dl (133 mol/L) and disease duration of ≤ 5 years from symptom 

onset. Exclusion criteria for trials from PRO-ACT included known sensitivity or 

intolerability to the study drug under investigation in each trial; recent exposure to the 

study drug; exposure to other investigational agents within the last 30 days; 

malnourishment; substance abuse within the last year; active significant medical 

(cardiac, pulmonary, renal, hepatic, endocrine, hematologic, active malignancy or 

infectious disease) or psychiatric disease (psychosis or untreated major depression 

within 90 days of screening visit); human immunodeficiency virus; acquired immune 

deficiency syndrome (AIDS) or AIDS-related complex; pregnancy or breastfeeding; or 

significant cardiac conduction abnormality identified on screening electrocardiogram. 



 

ALSFRS-R Score 

The ALS Functional Rating Scale-Revised (ALSFRS-R) score is a standardized, 

widely-used method for staging functional status of ALS patients in clinical care as well 

as clinical trials.[21-24] The ALSFRS-R has been shown to correlate with progression of 

disease and survival, as well as have validity and reliability.[23, 25] There are 12 

questions covering four domains, including gross motor tasks, fine motor tasks, bulbar 

function, and respiratory function. Each question rates an individual’s function for that 

domain on a scale of 0 (minimal function) to 4 (maximal function). The range of the total 

ALSFRS-R score is from 0 (most severe symptoms) to 48 (minimal to no symptoms). 

The ALSFRS-R serves as a granular version of the ALSFRS for assessing respiratory 

function by splitting the ALSFRS respiratory score into three separate questions: 

dyspnea, orthopnea, and respiratory insufficiency.[26]  

 

Statistical Analysis 

Data were summarized using mean ± standard deviation or median (interquartile 

range) for continuous variables, and number of subjects (%) for categorical variables. 

Baseline characteristics of those with and without respiratory insufficiency were 

compared using Student t tests, Wilcoxon rank-sum tests, Kruskal-Wallis test, 2 tests 

or Fisher exact tests, as appropriate. 

 



Logistic Regression Univariable Analysis 

Using the Penn cohort, a logistic regression model incorporated predictors of 

respiratory insufficiency at six months from presentation. A univariable logistic 

regression analysis was performed with baseline characteristics such as age, self -

reported race, gender, diagnosis age, symptom-onset date, diagnosis delay (time 

between symptom onset and diagnosis date), symptom-onset site, El Escorial criteria at 

first evaluation, ALSFRS-R scores (total, dyspnea, orthopnea, and respiratory 

insufficiency categories), body mass index (BMI), comorbidities, FVC, any history of 

smoking, and smoking pack-years. 

Results were expressed as odds ratios (ORs) and their corresponding 95% 

confidence intervals (95% CI). We used a p-value <0.2 for selecting variables from the 

univariate analysis for inclusion into the multivariate model. We used purposeful 

backward selection[27] to retain all covariates with a p-value of <0.2 in the final 

multivariable model.  

 

Derivation and Validation of Prognostic Model 

Derivation of the multivariable logistic regression model was performed using the 

entire Penn cohort. To assess model discrimination capabilities, we used receiver 

operating characteristic (ROC) curves and c-statistics, also known as the area under the 

curve (AUC). Internal validation of the multivariable logistic regression model was 

performed using k-fold cross validation within the Penn cohort.[28] Using random 

assignment, out-of-sample data were created in approximately 4-to-1 ratio of estimation 

to prediction sample. This procedure was repeated 500 times. Using in-sample data 



from the Penn cohort, we determined the probability of respiratory insufficiency. Using 

the Penn cohort out-of-sample data, a probability cut-off for a “positive test” was 

determined that prioritized sensitivity over specificity in order to capture individuals at 

high risk for the outcome. After constructing the prognostic rule and cutoff from the 

Penn cohort, we pursued external validation by applying the model to the PRO-ACT 

dataset. We applied the above approach to develop separate probability cut-offs for the 

composite outcome of respiratory insufficiency (including death) and death alone.  

 

Assessment of Model Fit 

We depicted time to respiratory insufficiency stratified by the prognosis probability 

cut-off using Kaplan-Meier curves and compared them using the log-rank test.[29] We 

assessed the calibration of the prognostic rule using both the Hosmer-Lemeshow 

goodness-of-fit test and the standardized Pearson 2 test.[30, 31] We graphically 

represented calibration for external validation in the PRO-ACT cohort. A lowess 

smoother line depicted expected to observed events among individuals with similar 

event probabilities across 12 equal portions of the cohort. 

 

Multiple Imputation 

 Missing data from both the Penn and PRO-ACT cohorts were addressed using 

multiple imputation by chained equations with creation of 20 imputed datasets.[32, 33] 

We registered variables with complete data as predictors for imputation, including 

diagnosis age, age at symptom onset, gender, race, smoking history, and visit date. 



Statistical significance was determined by p-values < 0.05. All analyses were 

performed using Stata version 15.0 (StataCorp LP, College Station, TX). 

 

Multiple Imputation for ALSFRS-R Scores  

Within the PRO-ACT cohort, 32% (n=3,412) of subjects had their ALS staged by the 

ALSFRS and 69% (7,311) by the ALSFRS-R. The difference between the ALSFRS and 

the ALSFRS-R lies in the assessment of the respiratory domain. The ALSFRS has 10 

questions, with one of them focusing on the respiratory domain. The first nine questions 

of the ALSFRS-R are identical to the ALSFRS; however, questions 10-12 of the 

ALSFRS-R assess the respiratory domain in a more granular fashion by separately 

scoring the degree of dyspnea, orthopnea, and respiratory insufficiency. To maximize 

power in PRO-ACT, we converted all subjects with an ALSFRS score to an ALSFRS-R 

score by imputing the missing respiratory scores (dyspnea, orthopnea, and respiratory 

insufficiency). We used existing data of individuals with ALSFRS-R scores to perform 

multiple imputation by chained equations to complete the three missing respiratory 

questions for all individuals with an ALSFRS score. Finally, we summed the answers of 

the 9 original ALSFRS questions to the three new, imputed respiratory questions to 

obtain an ALSFRS-R total score for all individuals.  

 

Sensitivity Analyses 

 Given that in the United States guidelines for ALS respiratory care and the Centers 

for Medicare & Medicaid Services both recognize FVC < 50% as a threshold for starting 

NIV, we hypothesized that FVC may be tightly linked to NIV initiation timing. Therefore, 



we performed separate sensitivity analyses after removing NIV initiation and FVC from 

the outcome. In the first sensitivity analysis, we assessed our model performance with a 

composite outcome including FVC < 50% of predicted, tracheostomy placement, or 

death. In the second sensitivity analysis, we assessed model performance with a 

composite outcome including initiation of NIV, tracheostomy placement, or death. 

Lastly, we used the original composite outcome to compare performance of our full 

multivariate model against using FVC alone as a predictor. 

 

Results 

Sensitivity Analyses 

 When removing NIV from the composite outcome, the Penn cohort derivation c-

statistic was 0.86 (95% CI, 0.83 – 0.89) and the internal cross-validation c-statistic was 

0.85 (95% CI, 0.84 – 0.86). The PRO-ACT external validation c-statistic was 0.73 (95% 

CI, 0.72 – 0.75) (Figure E7). The cut-point of 0.45 corresponded to a sensitivity of 51% 

(95% CI, 49 – 53%), specificity of 84% (95% CI, 83 – 85%), PPV of 62% (60 – 64%), 

and NPV of 77% (95% CI, 77 – 79%).  

 When removing FVC from the composite outcome, the Penn cohort derivation c-

statistic was 0.84 (95% CI, 0.81 – 0.87) and the internal cross-validation c-statistic was 

0.84 (95% CI, 0.83 – 0.84). Using the cut-point of 0.45, the PRO-ACT external 

validation c-statistic was 0.76 (95% CI, 0.74 – 0.77) (Figure E8). The cut-point of 0.45 

corresponded to a sensitivity of 43% (95% CI, 41 – 46%), specificity of 88% (95% CI, 88 

– 89%), PPV of 49% (95% CI, 46 – 52%), and NPV of 86% (95% CI, 85 – 87%). 



 When using FVC only as a predictor of the composite outcome, the c-statistic was 

0.83 (95% CI, 0.80-0.86) in the Penn cohort, while the full model c-statistic was 

significantly higher at 0.86 (95% CI, 0.84-0.89) (p<0.001 for the comparison). The c-

statistic for FVC only in the PRO-ACT external validation was 0.70 (95% CI, 0.69-0.72) 

while the full model c-statistic was also significantly higher at 0.74 (95% CI, 0.72-0.75) 

(p<0.001 for the comparison). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

Figure E1. Receiver operating characteristic curve for internal cross-

validation of Penn cohort prognosis of respiratory insufficiency 
(including death) within six months.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E2. Kaplan-Meier curves with 95% confidence intervals 
stratified by prognostic probability of respiratory insufficiency in the 
Penn cohort, truncated at 365 days. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E3. Receiver operating characteristic curve for overall Penn 
cohort prognosis of death within six months.  
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Figure E4. Receiver operating characteristic curve for internal cross-
validation of death within six months.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E5. Calibration curve for external validation of prognostic model.  

Definition of abbreviations: E:O = ratio of expected to observed events; CITL = calibration in the large; AUC  

= area under the curve.  
Groups represent 12 equal portions of the cohort for comparing expected:observed events across different 

ranges of probability estimates. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E6. Receiver operating characteristic curve for derivation and 

external validation of death within six months. Test of equality, p<0.001. 
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Figure E7. Receiver operating characteristic curves for derivation and 

external validation of the composite outcome of FVC < 50% predicted, 
tracheostomy placement, or death within six months. Test of equality, 
p<0.001. 



 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E8. Receiver operating characteristic curves for derivation and 
external validation of the composite outcome of NIV initiation, 

tracheostomy placement, or death within six months. Test of equality, 

p<0.001. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table E1. Hosmer-Lemeshow goodness-of-fit test for respiratory 
insufficiency model in Penn derivation cohort (p=0.45). 

Group Probability 
Observed 
outcomes 

Expected 
outcomes 

Total 
individuals 

1 0.03 3 1 64 
2 0.08 4 3 64 
3 0.11 7 6 64 
4 0.16 10 9 63 
5 0.23 5 12 64 
6 0.33 16 18 64 
7 0.43 24 24 64 
8 0.56 31 31 63 
9 0.66 39 39 64 
10 
11 
12 

0.77 
0.89 
0.98 

49 
54 
58 

46 
53 
59 

64 
64 
63 



 

 

 

 

 

 

 

 

 

Table E2. Baseline PRO-ACT cohort characteristics by composite outcome 
including death. 

  Variable 
No composite 

outcome 
(n=4630) 

Composite 
outcome 
achieved 
(n=2453) 

P value 

Age at diagnosis, years 55 ± 12 58 ± 12 <0.001 

Male sex, n (%) 2928 (63) 1443 (59) <0.001 

Race, n (%) 
  

0.57 
     Caucasian 4429 (96) 2334 (95) 

     African-American 65 (1) 41 (2) 

     Other 136 (3) 78 (3) 

BMI class, n (%) 
  

<0.001 
     <18.5 kg/m2 
     18.5 - 24.9 kg/m2 

217 (5) 247 (10) 

1864 (40) 1196 (49) 

     25 - 29.9 kg/m2 1668 (36) 708 (29) 

     >30 kg/m2 881 (19) 302 (12) 

Diagnosis delay, years 0.8 (0.5, 1.3) 0.8 (0.4, 1.2) 0.002 

Symptom onset site, n (%) 
  

<0.001      Limb 3849 (83) 1668 (68) 

     Bulbar 781 (17) 785 (32) 

FVC % predicted 94 ± 19 78 ± 19 <0.001 

ALSFRS-R total score 38 ± 6 35 ± 7 <0.001 

ALSFRS-R dyspnea, n (%) 
     4 
     3 
     2 
     1 
     0 

 
3566 (78) 
577 (13) 
316 (7) 
84 (2) 

11 (<1) 

 
1641 (65) 
467 (19) 
322 (13) 
89 (3) 

10 (<1) 

<0.001 

ALSFRS-R orthopnea, n (%) 
     4 
     3 
     2 
     1 
     0 

 
4128 (91) 
288 (6) 
112 (3) 
22 (<1) 
4 (<1) 

 
2074 (82) 
282 (11) 
140 (6) 
23 (1) 

10 (<1) 

 
<0.001 

Definition of abbreviations: BMI = body mass index; ALS = amyotrophic lateral sclerosis; FVC = forced vital 

capacity; ALSFRS-R = ALS functional rating scale – revised. 
Data are mean ± SD or median (25

th
 percentile, 75

th
 percentile). 

Data compared using t-test, chi-squared test, or Wilcoxon-Mann-Whitney test. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table E3. Hosmer-Lemeshow goodness-of-fit test for respiratory 
insufficiency model in PRO-ACT cohort (p<0.001). 

Group Probability 
Observed 
outcomes 

Expected 
outcomes 

Total 
individuals 

1 0.01 87 4 591 
2 0.04 87 14 590 
3 0.06 105 28 590 
4 0.10 127 48 590 
5 0.15 146 74 591 
6 0.22 156 107 590 
7 0.30 187 152 590 
8 0.41 217 209 590 
9 0.53 250 277 591 
10 
11 
12 

0.67 
0.81 
0.99 

333 
385 
449 

352 
438 
521 

590 
590 
590 


