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ABSTRACT The chronic impact of ambient air pollutants on lung function in adults is not fully

understood. The objective of this study was to investigate the association of long-term exposure to ambient

air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts

for Air Pollution Effects (ESCAPE).

Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and

traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory

volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes.

Cohort-specific results were combined using meta-analysis.

We did not observe an association of air pollution with longitudinal change in lung function, but we

observed that a 10 mg?m-3 increase in NO2 exposure was associated with lower levels of FEV1 (-14.0 mL,

95%CI -25.8– -2.1) and FVC (-14.9 mL, 95% CI -28.7– -1.1). An increase of 10 mg?m-3 in PM10, but not

other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of

FEV1 (-44.6 mL, 95% CI -85.4– -3.8) and FVC (-59.0 mL, 95% CI -112.3– -5.6). The associations were

particularly strong in obese persons.

This study adds to the evidence for an adverse association of ambient air pollution with lung function in

adults at very low levels in Europe.
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The ESCAPE study finds that, even at very low levels, air pollution has adverse effects on lung
function in adults http://ow.ly/A1ssB
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Introduction
Lung function, specifically forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), are

objectively measurable quantitative parameters of respiratory health. It is an early indicator of respiratory

and systemic inflammation, and associated with cardiorespiratory morbidity and mortality. Acute effects of

air pollution on lung function at levels currently observed in Western Europe at all ages are well established.

To what extent long-term exposure to air pollution results in lower lung function remains less clear [1].

Evidence for long-term pollution effects on slowing down lung function growth in children is strong, while

data for chronic lung function effects in adults is more limited and mostly restricted to susceptible

populations [1–3]. In the largest of the predominantly cross-sectional studies [4–7], FORBES et al. [4] found

increases in 10 mg?m-3 of particulate matter of size 10 mm or less (PM10) associated with a decrease of about

3% in FEV1. At first spirometry SAPALDIA found an increase of 10 mg?m-3 in annual mean concentration

of PM10 was associated with 3.4% lower FVC and 1.6% lower FEV1 [5]. The SALIA study of females showed

negative associations of PM10 concentrations with FEV1 and FVC (5.1% and 3.7% respectively, per

7 mg?m-3 5-year annual mean PM10) [7]. The strongest indirect evidence for adverse long-term pollution

effects on lung function decline in adults comes from a single follow-up study demonstrating that

improvements in PM10 exposure over a period of 11 years attenuated the age-related decrease in respiratory

function [8]. A more recent study found cumulative long-term exposure to ambient PM10 and ozone

associated with both FEV1 and FVC decline in an elderly population and suggested an increased

susceptibility among frail persons [9]. Statistically significant associations were also reported for NO2 and

traffic exposure [5, 7].

The ESCAPE project (European Study of Cohorts for Air Pollution Effects) combined data from over 30

cohort studies and modelled home outdoor levels of air pollution in a standardised manner [10]. This paper

makes use of five health cohorts with spirometry data, to investigate the association of air pollution with

lung function level and age-related decline.

Methods
Design and participants
This study is an analysis of cohort data obtained by ESCAPE to investigate the long term effects of exposure

to air pollution on respiratory health in Europe and a meta-analysis of the cohort specific results. The

present study included five European cohorts/studies from eight countries with information on lung

function and the most important potential confounders. The analyses were based on subpopulations from

the European Community Respiratory Health Survey (ECRHS), French Epidemiological study on Genetics

and Environment of Asthma (EGEA), the National Survey of Health and Development (NSHD), Study on

the influence of Air pollution on Lung function, Inflammation and Aging (SALIA) and Swiss Cohort Study

on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) (online supplementary material

(methods: cohorts section) and supplementary table S1). Criteria for inclusion of cohort participants in the

present analyses were: age of at least 20 years; pre-bronchodilation spirometry data from two different time

points approximately one decade apart (referred to as first and second spirometry, respectively); non-

missing information for the primary covariates used in the main models (questionnaire-based variables: age,

sex, smoking status, education; measured variables: height and BMI (derived from measured height and

weight)); living in cohort areas selected for ESCAPE monitoring campaigns; and successfully assigned home

outdoor exposure estimates for NO2/NOx/traffic indicators (referred to as NO-population) and PM metrics

(a subsample of the NO population, referred to as PM-population). Of 13 259 participants with first and

second spirometry living in ESCAPE monitoring areas, 7615 and 4233, respectively provided complete

datasets towards analysis of NO2/NOx/traffic indicators and PM metrics (supplementary figure S1). All

included cohort studies were approved by the institutional medical ethics committees and undertaken in
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accordance with the Declaration of Helsinki. Each cohort study followed the rules for ethics and data

protection set up in the country in which they were based.

Exposure data
ESCAPE exposure assessment has been described previously, and is based on fully standardised

measurement and modelling protocols (www.escapeproject.eu/manuals/) [10–13]. The general concept

consisted in the individual assignment of outdoor annual mean concentrations of a pre-defined set of air

pollution markers to each participant’s residential address.

ESCAPE monitoring campaigns in different study areas between 2008 and 2011 measured NO2 and NOx as

well as, in a smaller number of areas PM2.5, PM10, the coarse fraction of PM (PM10 minus PM2.5) and light

absorbance of PM2.5. Within each study area, concentration levels were monitored at 40 (NO2, NOx) or 20

(PM measures) predefined sites during three seasonally distinct 2-week periods [13, 14]. Land use

regression (LUR) models were developed to explain the spatial variation of measured annual average air

pollutant concentration within each study area. This technique combines measurement data with

Geographic Information System (GIS) derived land-use and traffic information to predict annual pollution

concentration at sites without measurements and was used to estimate annual pollutant concentrations at

each participant’s residential address [10, 11].

In addition to pollutant concentrations, we also used as indicators of local exposure to traffic related

pollutants, traffic intensity at the road nearest to a participant’s home and total traffic load on major roads

in a 100-m buffer of the home. Traffic measures were often used in other studies as proxies of exposure to

near-road pollutants, such as ultrafine particles or NO, which exponentially decay within 100–150 m from

the curb side.

To address the time discrepancy between air pollution monitoring (2008–2011) and health examination

(spirometry conducted between 1985–2010; supplementary table S2), sensitivity analyses replaced ESCAPE

exposure estimates with estimates back extrapolated to the time of first and second spirometry (except for

the time of first spirometry in ECRHS and EGEA, where no historical data was available, and of second

spirometry in NSHD and SALIA conducted between 2006 and 2010, sufficiently close to the ESCAPE

monitoring campaigns). During the past decades, air quality has in general improved. Given the lack of

historic LUR models, ESCAPE could not individually estimate within-city contrasts of air quality for these

past years. Instead, where available, annual means from fixed site monitoring stations were used to derive

past annual mean concentrations for pollutants with available historic data (NO2 and PM10 only). For each

study participant’s home address the back extrapolated concentration was obtained by multiplying the

modelled ESCAPE annual mean concentration with the ratio between average annual concentrations as

derived from the routine monitoring site(s) for the period in the past and for the ESCAPE measurement

period time (details can be found in www.escapeproject.eu/manuals/) [12]. The procedures applied

assumed that the within-city spatial contrasts remained proportional over time. GULLIVER et al. [15]

confirmed the validity of this assumption for the UK.

Lung function metrics and outcomes
FEV1 and FVC were used as outcome metrics. In cross-sectional analysis, we focused on lung function

measured at the second spirometry (time point closest to ESCAPE air pollution monitoring). Change in

lung function between first and second spirometry was assessed as both annual lung function change

(mL?year-1) and annual change in lung function as a percentage of the first spirometry value (%?year-1)

(supplementary material; methods: lung function metrics and outcomes section), with a negative value

representing a decline. Data presented are restricted to absolute change as results did not materially differ

for percent change as outcome.

Statistical analyses
First, study specific data were analysed separately following identical analytical procedures. Associations of

air pollutants with lung function metrics were estimated using multivariable mixed linear regression models

with a random intercept for ESCAPE areas with their own exposure monitoring and modelling. Three

confounder models were specified a priori, adjusting for an increasing number of covariates selected on the

basis of previous cohort studies of air pollution and lung function and the availability of data for most

cohorts, excluding missing values on any of the covariates. The covariate definitions were standardised

across studies (supplementary material; methods section). In the absence of materially different effect

estimates derived from models adjusting for additional covariates, we chose as main analytic model the one

adjusting for age (years), age squared, height (cm), sex, body mass index (BMI; kg?m-2), educational level

(low as reference, medium, high), and smoking status (never as reference, ever). Models analysing traffic

exposure indices were additionally adjusting for background NO2 concentrations. The traffic indicator
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coefficients are thus assumed to reflect the impact of pollutants highly concentrated along the roads. The

median of traffic indicator values across all studies was chosen as cut-off for dichotomising the continuous

traffic exposure (f5000 and .5000 cars per day for traffic intensity on the nearest major road; f500 and

.500 car-km driven per day for the traffic intensity on major roads in a 100 m buffer) (supplementary

material; methods: statistic models section). Traffic variables were also analysed on a continuous scale but

this did not produce meaningful results.

Secondly, cohort-specific overall and stratum-specific effect estimates obtained by mixed linear regression

models were meta-analysed (supplementary material; methods: meta-analysis section).

A pre-defined set of variables considering previous evidence and cohort differences was tested for effect

modification. We compared the summary estimates of the two opposite subgroups (females versus males;

not obese versus obese; never versus ever smokers; never asthma versus ever asthma) using a chi-square test

with one degree of freedom. In sensitivity analyses we restricted the analytical model to non-movers and

participants aged o30 years (age at first spirometry).

A standardised analytical approach was used to minimise the possibility of differential bias across

participating cohorts. We controlled for different known or potential individual confounding factors in our

analyses. Moreover, we included random effects for the different cohort areas to adjust for geographic

clustering of outcomes. Additionally, we performed several sensitivity analyses in selected subsamples to

address specific potential biases (e.g. in the subsample of non-movers to address potential bias due to

health-related changes in exposure).

Statistical analyses were performed using STATA, version 12 (Stata Statistical Software, Release 12;

StataCorp., College Station, TX, USA).

Results
Study characteristics
Table 1 provides a description of the cohort specific study populations. The average age of the cohorts at the

time of second spirometry ranged from 43 years (ECRHS) to 73 years (SALIA). The SALIA population,

consisting exclusively of females, exhibited the lowest mean levels of FEV1 (2.20 L) and FVC (2.91 L)

(table 1) (for the smaller PM subpopulation and for the cohort-specific lung function distributions

stratified by sex, smoking and asthma status, refer to supplementary table S3).

Air pollution exposure
Table 2 shows the distribution of the air pollution metrics for each study area. Variance explained by LUR

models varied between 55% and 92% for NO2 and between 68% and 90% for PM10 (supplementary

table S4). Mean exposure was lowest for all air pollution metrics in NSHD. Within-study contrasts were

smallest for SALIA and SAPALDIA, reflecting the restricted geographic region covered (supplementary

table S5). The study specific correlations between the exposure metrics were generally highest between NO2

and NOx (rho of 0.90–0.98), but moderate to low between pollutants and traffic indicators (supplementary

table S6). ESCAPE derived exposures were highly correlated with the exposures back-extrapolated to the

time of the second spirometry (rho(NO2) o0.94; rho(PM10) o0.91), but less strongly correlated with

exposures back-extrapolated to the first spirometry (0.56frho(NO2)f0.92; 0.47frho(PM10)f0.74).

Association between air pollution and lung function
The main meta-analysis results for associations of each air pollution metric with level and change of lung

function are presented in table 3. No associations between any exposure metric and lung function decline

were present, irrespective of covariate adjustment and subgroup (sex, obesity, asthma and smoking).

Looking at levels of lung function cross-sectionally, we found higher NO2 and NOx exposures to be

associated with lower levels of FVC and FEV1. An increase of 10 mg?m-3 in NO2 exposure was associated

with a -14.0 mL lower level of FEV1 (95% CI -25.8– -2.1) and -14.9 mL lower level of FVC (95% CI

-28.7– -1.1) (table 3, figs 1 and 2). An increase of 20 mg?m-3 in NOx exposure was associated with a lower

level of FEV1, by -12.9 mL (95% CI -23.87– -2.0) and of FVC, by -13.3 mL (95% CI -25.9– -0.7) and an

increase of 10 mg?m-3 in PM10 was associated with a lower level of FEV1 (-44.6 mL, 95% CI -85.4– -3.8) and

FVC (-59.0 mL, 95% CI -112.3– -5.7) (table 3). The other PM metrics were not associated with lung

function level. Higher traffic load on major roads in a 100 m buffer from residential address was associated

with lower levels of FEV1 (-32.34 mL, 95% CI -59.30– -5.38).

Associations observed for NO2 and PM10 with FEV1 and FVC at second spirometry remained largely

unaltered when ESCAPE exposure estimates of NO2 and PM10 in ECRHS, EGEA and SAPALDIA were

replaced with NO2 and PM10 estimates back-extrapolated to the time point of the second spirometry. The
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inverse association between PM10 and FVC became stronger and statistically significant (supplementary

table S7).

In subgroup analysis, the NO2 and NOx (data not shown) associations with FEV1 and FVC were particularly

observed in obese participants (FEV1: figures 3 and 4; FVC: supplementary figures S2 and S3) (p-values for

heterogeneity, obese versus non-obese: p50.098 for NO2/FEV1 (figures 3 and 4); p50.026 for NO2/FVC

(supplementary figures S2 and S3); p50.050 for NOx/FVC). All other tested factors (sex, smoking and

asthma status) showed no or only weak evidence for modification of the air pollution lung function

associations (NO2: supplementary table S8). The effect modification by obesity was also evident in sex-

stratified analyses, with substantially stronger inverse NO2 and NOx associations with FEV1 and FVC, in

both obese females and males (NO2: supplementary table S9).

In sensitivity analysis, looking at non-movers and participants aged 30 years or more, we did not find a

particular difference from the observed main associations (supplementary table S10).

Discussion
This study in adults contributes to the evidence of long-term exposure to ambient air pollution being

associated with the level of lung function. The meta-analysis was based on individual-level exposure

assessment standardised across different cities and regions in Europe. Impaired lung function characterised

by reduced FEV1, a powerful marker of future morbidity and mortality [16], exhibited the most consistent

association with different pollution metrics. It was inversely related to nitrogen oxides and PM10, as well

as to traffic load at the residential address. Our data suggest that obese persons are particularly sensitive to

air pollution.

Comparison with other studies
Results from previous cross-sectional studies predominantly relied on exposure measured at the level of a

few communities. They point to an inverse association of adult lung function with air pollution and traffic

load [1, 6], but as the measurement and meaning of specific pollution metrics differs between studies their

TABLE 1 Description of cohort-specific study populations

ECRHS EGEA NSHD SALIA SAPALDIA

Total n 3859 568 844 580 1764
First spirometry 1991–1993 1991–1995 1999 1985–1994 1991–1992
Second spirometry 2001–2002 2003–2007 2006–2010 2007–2009 2002
Female 1981 (51.3) 303 (53.3) 471 (55.8) 580 (100.0) 980 (55.6)
Age years 43.0¡7.2 53.1¡11.3 63.3¡1.1 73.3¡3.4 53.2¡11.0
BMI kg?m-2 25.7¡4.6 25.3¡4.3 27.7¡4.9 27.4¡4.5 25.4¡4.3
Height cm 168.6¡9.5 168.5¡8.4 167.4¡8.6 162.3¡5.5 168.8¡9.0
Ex-smoker 1064 (27.6) 206 (36.3) 497 (58.9) 99 (17.1) 568 (32.2)
Current smoker 1224 (31.7) 81 (14.3) 77 (9.1) 18 (3.1) 492 (27.9)
Pack years at first spirometry# 7.7¡12.0 5.9¡10.0 9.1¡12.6 2.8¡8.4 10.9¡17.9
Pack years from first to second

spirometry#
3.9¡10.9 1.7¡8.3 0.7¡2.5 0.6¡6.7 3.1¡6.5

Medium educational level# 1321 (34.2) 118 (20.8) 439 (52.0) 276 (47.6) 1121 (63.5)
High educational level# 1420 (36.8) 263 (46.3) 102 (12.1) 199 (34.3) 520 (29.5)
Environmental tobacco exposure

at home or at work#
676 (17.5) 233 (41.0) 168 (19.9) 347 (59.8) 119 (6.7)

Occupational exposure to dust/
fumes or gases#

1685 (43.7) 125 (22.0) 246 (29.1) 39 (6.7) 460 (26.1)

Ever asthma#," 616 (16.0) 183 (32.2) 83 (9.8) 50 (8.6) 155 (8.8)
FEV1 L 3.47¡0.81 3.03¡0.85 2.83¡0.66 2.20¡0.42 3.10¡0.82
FVC L 4.33¡1.00 4.00¡1.01 3.57¡0.81 2.91¡0.54 4.08¡1.02
FEV1 change+ L -0.026¡0.032 -0.028¡0.031 -0.022¡0.025 -0.020¡0.014 -0.033¡0.030
FVC change+ L -0.018¡0.040 -0.015¡0.037 -0.025¡0.034 -0.022¡0.019 -0.022¡0.041

Data are presented as mean¡SD for continuous variables, or n (%) for categorical variables, unless otherwise stated. Characteristics refer to time
point of second spirometry, and are presented for the larger subgroup of participants included in the analysis of NO2 and NOx and traffic indicators
(characteristics for the smaller subgroup of participants included in the particulate matter metrics analyses are presented in supplementary
table S1). BMI: body mass index; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity. #: information missing on a limited number of
subjects; ": asthma diagnosed by a physician at first and/or at second spirometry; +: change in lung function between first and second spirometry.
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TABLE 3 Results of meta-analyses for the association between level and change of lung function and exposure to air pollution
and traffic intensity indicators

Exposure (increment) Level of lung function (mL)#

FEV1 FVC

Beta" 95% CI I2 1

p-value (het)
Beta" 95% CI I2 1

p-value (het)

NO2 (10 mg?m-3) -13.98 -25.82 to -2.14 0.0%
p50.625

-14.93 -28.73 to -1.13 0.0%
p50.977

NOx (20 mg?m-3) -12.91 -23.79 to -2.04 0.0%
p50.861

-13.25 -25.85 to -0.65 0.0%
p50.962

PM10 (10 mg?m-3) -44.56 -85.36 to -3.76 0.0%
p50.628

-58.96 -112.27 to -5.65 0.0%
p50.785

PM2.5 (5 mg?m-3) -21.14 -56.37 to 14.08 0.0%
p50.535

-36.39 -83.29 to 10.50 0.0%
p50.877

PM2.5 absorbance (1610-5 m-1) -24.40 -55.58 to 6.79 0.0%
p50.709

-12.94 -50.23 to 24.30 0.0%
p50.619

Coarse PM (5 mg?m-3) -22.36 -94.00 to 49.27 12.6%
p50.333

2.88 -87.85 to 93.60 0.0%
p50.760

Traffic intensity on nearest road
(high/low)e,##

-27.61 -59.62 to 4.39 29.0%
p50.228

-10.37 -48.23 to 27.49 27.3%
p50.239

Traffic load on nearest major road
in a 100-m buffer (high/low)##,""

-32.34 -59.30 to -5.38 0.0%
p50.784

-18.64 -50.22 to 12.94 0.0%
p50.967

Exposure (increment) Change in lung function (mL per year)

FEV1 FVC

Beta11 95% CI I2 1

p-value (het)
Beta11 95% CI I2 1

p-value (het)

NO2 (10 mg?m-3) 0.30 -0.39 to 0.98 0.0%
p50.681

0.02 -0.84 to 0.88 0.0%
p50.532

NOx (20 mg?m-3) 0.18 -0.44 to 0.80 0.0%
p50.708

-0.09 -0.86 to 0.69 0.0%
p50.804

PM10 (10 mg?m-3) -0.39 -2.85 to 2.06 53.1%
p50.074%

-1.42 -4.53 to 1.70 28.4%
p50.232

PM2.5 (5 mg?m-3) -0.14 -2.26 to 1.98 23.8%
p50.263

-1.37 -4.04 to 1.29 0.0%
p50.964

PM2.5 absorbance (1610-5 m-1) 0.88 -0.76 to 2.52 54.5%
p50.066

1.14 -0.95 to 3.24 4.5%
p50.381

Coarse PM (5 mg?m-3) 0.26 -3.92 to 4.43 61.7%
p50.034

-1.31 -6.49 to 3.88 0.0%
p50.506

Traffic intensity on nearest road
(high/low)e,##

-0.74 -2.58 to 1.10 0.0%
p50.772

-0.15 -2.49 to 2.18 18.1%
p50.299

Traffic load on nearest major road
in a 100-m buffer (high/low)##,""

-0.32 -1.81 to 1.18 0.0%
p50.987

0.34 -1.56 to 2.25 0.0%
p50.672

FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; PM: particulate matter. #: level of lung function for cross-sectional analysis was
derived from second spirometry. ": the beta values for the association between level of lung function and exposure are adjusted for age, age
squared, height, sex, body mass index (BMI), highest educational level, and smoking status at second spirometry; a negative sign indicates lower
lung function with increasing exposure. 1: I2 and Cochran’s test for heterogeneity of effect estimates between cohorts. e: low traffic intensity on
nearest road: f5000 cars per day; high: .5000 cars per day. ##: associations with traffic intensity (high/low) and traffic load (high/low) were
additionally adjusted for background NO2 concentrations. "": low traffic load on the nearest major road in a 100-m buffer: f500 car-km driven per
day; high: .500 car-km driven per day. 11: the beta values of the association between change in lung function and exposure are adjusted for sex,
age and height at first spirometry, highest educational level, smoking at first spirometry, smoking cessation and change in BMI to the second
spirometry; a negative sign indicates steeper lung function decline with increasing exposure.
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I-V subtotal (I-squared=0.0%, p=0.625)

EGEA

SALIA

NSHD

D+L subtotal

ECRHS

SAPALDIA

NO2_1

-13.98 (-25.82– -2.14)

4.52 (-38.28–47.32)

-22.97 (-63.06–17.12)

-19.86 (-59.26–19.55)

-13.98 (-25.82– -2.14)

-18.22 (-33.33– -3.12)

5.09 (-27.56–37.75)

100.00

7.65

8.72

9.03

61.46

13.14

568

580

842

3859

1764

Study ES (95% CI) N(I-V)
Weight %

FEV1 (all) by NO2

Increased risk

Coefficient

Decreased risk
-63.1 0 63.1

FIGURE 1 Forest plot displaying the study-specific mixed linear regression model estimates of the association of NO2

with level of forced expiratory volume in 1 s (FEV1; in mL) (based on all study participants living in sites with ESCAPE
models available). NO2_1 indicates NO2 measured at time of ESCAPE. Associations with lung function measures are
presented as increments in NO2 per 10 mg?m-3. I-square: variation in estimated effects attributable to heterogeneity. D+L
(Der Simonian and Laird method): pooled estimate of all studies. The mixed linear regression models were adjusted for:
age, age squared, height, sex, body mass index, highest educational level, and smoking status at second spirometry;
negative estimates indicated lower lung function with increasing exposure. ES: effect size.

I-V subtotal (I-squared=0.0%, p=0.977)

EGEA

SALIA

NSHD

D+L subtotal

ECRHS

SAPALDIA

NO2_1

-14.93 (-28.73– -1.13)

-14.93 (-28.73– -1.13)

-1.78 (-46.41–42.84)

-20.79 (-70.20–28.63)

-10.69 (-56.63–35.25)

-16.40 (-34.00–1.21)

-17.25 (-56.79–22.30)

100.00

9.56

7.80

9.02

61.45

12.18

568

580

842

3859

1764

Study ES (95% CI) N(I-V)
Weight %

FVC (all) by NO2

Increased risk

Coefficient

Decreased risk
-70.2 0 70.2

FIGURE 2 Forest plot displaying the study-specific mixed linear regression model estimates of the association of NO2

with level of forced vital capacity FVC; in mL) (based on all study participants living in sites with ESCAPE models
available). NO2_1 indicates NO2 measured at time of ESCAPE. Associations with lung function measures are presented as
increments in NO2 per 10 mg?m-3. I-square: variation in estimated effects attributable to heterogeneity. D+L (Der
Simonian and Laird method): pooled estimate of all studies. The mixed linear regression models were adjusted for: age,
age squared, height, sex, body mass index, highest educational level, and smoking status at second spirometry; negative
estimates indicated lower lung function with increasing exposure. ES: effect size.
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I-V subtotal (I-squared=12.7%, p=0.333)

EGEA

SALIA

NSHD

D+L subtotal

ECRHS

SAPALDIA

NO2_1

-8.18 (-21.01–4.66)

16.20 (-28.88–61.27)

-26.19 (-76.64–24.26)

-4.10 (-51.77–43.57)

-6.29 (-21.55–8.97)

-15.47 (-31.48–0.54)

17.49 (-16.86–51.84)

100.00

8.10

6.47

7.25

64.23

13.95

495

409

587

3279

1512

Study ES (95% CI) N(I-V)
Weight %

FEV1 (not obese) by NO2

Increased risk

Coefficient

Decreased risk
-76.6 0 76.6

FIGURE 3 Forest plot displaying the study-specific mixed linear regression model estimates of the association of NO2

with level of forced expiratory volume in 1 s (FEV1; in mL) in participants stratified as not obese (body mass index (BMI)
,30 kg?m-2). NO2_1 indicates NO2 measured at time of ESCAPE. Associations with lung function measures are
presented as increments in NO2 per 10 mg?m-3. I-square: variation in estimated effects attributable to heterogeneity. D+L
(Der Simonian and Laird method): pooled estimate of all studies. The mixed linear regression models were adjusted for:
age, age squared, height, sex, BMI, highest educational level, and smoking status at second spirometry; negative estimates
indicated lower lung function with increasing exposure. p-value for heterogeneity, obese versus non-obese: 0.098 for
FEV1. ES: effect size.

I-V subtotal (I-squared=0.0%, p=0.907)

EGEA

SALIA

NSHD

D+L subtotal

ECRHS

SAPALDIA

NO2_1

-32.74 (-58.84– -6.65)

-32.74 (-58.84– -6.65)

-17.39 (-180.11–145.33)

-14.08 (-79.11–50.95)

-46.88 (-115.76–22.00)

-31.08 (-64.61–2.44)

-69.82 (-172.91–33.26)

100.00

2.57

16.10

14.35

60.57

6.41

73

171

255

580

262

Study ES (95% CI) N(I-V)
Weight %

FEV1 (obese) by NO2

Increased risk

Coefficient

Decreased risk
-180 0 180

FIGURE 4 Forest plot displaying the study-specific mixed linear regression model estimates of the association of NO2

with level of forced expiratory volume in 1 s (FEV1; in mL) in obese participants (body mass index (BMI) o30 kg?m-2).
NO2_1 indicates NO2 measured at time of ESCAPE. Associations with lung function measures are presented as
increments in NO2 per 10 mg?m-3. I-square: variation in estimated effects attributable to heterogeneity. D+L (Der
Simonian and Laird method): pooled estimate of all studies. The mixed linear regression models were adjusted for: age,
age squared, height, sex, BMI, highest educational level, and smoking status at second spirometry; negative estimates
indicated lower lung function with increasing exposure. p-value for heterogeneity, obese versus non-obese: 0.098 for
FEV1. ES: effect size.
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comparative relevance remains inconclusive. This also applies to the current study. According to the site-

specific differences in correlations between exposure metrics (supplementary table S6) they capture

different sources of air pollution and thereby different components. The absence of associations with most

of the PM metrics may additionally be rooted in the more limited sample size. PM measurements were only

performed in a limited number of centres. NO2, which characterises the spatial variation of traffic related air

pollution, has been linked with stronger lung function impairment depending on the parameter studied, but

evidence that PM effects are stronger has also been published [3, 7].

The interaction between air pollution exposure and obesity on lung function parallels a recent SAPALDIA

report and adds evidence to the interdependence of the two important global epidemics of environmental

pollution and obesity [17]. Many studies have demonstrated an association between obesity and lung

function. Lung function improves after weight loss in obese persons, and weight gain is associated with lung

function decline in asthmatics and in the general population [17–19]. The mechanical effect of excess body fat

on lung volumes and airway calibre is well accepted [18]. In addition, inflammatory pathways may play a role,

as overweight is associated with an underlying state of oxidative stress and inflammation [17, 20]. Air

pollution and obesity seemingly have more than additive effects on systemic inflammation [21, 22]. In animal

models, ozone-induced pulmonary injury and inflammation were greater in obese versus lean mice [23, 24]. In

humans, acute ozone effects on lung function were more prominent among obese subjects [25, 26].

The null finding investigating the association of air pollution with the change in lung function is consistent

with a previous report from the ECRHS cohort [27], but extends the finding to older cohorts. In light of the

positive findings for the cross-sectional associations, this null finding may be surprising. Cross-sectional

differences are expected to result at least in part from differences in age-related decline. Based on the current

results it seems premature to conclude that long-term exposure to air pollution does not affect FEV1 and

FVC decline.

Strengths and weaknesses
Our study benefits from a large number of observations, and the multicentre design across different

European regions, covering a broad range of different types of environment and climates and a wide age

range of participants. Furthermore, the individual-level exposure assessment was harmonised, a common

study protocol of exposure and outcome definition was developed and the analytic approach was

standardised. However, this study has also several limitations.

Several methodological issues related to outcome and exposure assessment may have biased the longitudinal

association. Data from only two spirometry time points and from spirometries conducted in different

seasons and times of the day may have decreased the precision in estimating lung function decline. As

common in long-term lung function studies, spirometry devices had to be updated with new software or

replaced during follow-up. Such changes can be an inherent source of differences in the measured lung

function and its temporal change [28]. The inherent limitations in exposure assessment are also amplified in

the longitudinal analyses. Most importantly, back-extrapolation of residential pollution levels is of prime

relevance to properly characterise exposure at first spirometry, and then derive the change in exposure over

time. Uncertainties with the back-extrapolated values may be substantial and if unrelated to the true

exposure, may bias findings towards the null. In addition LUR models have inherent limitations. Cross-

validation of the LURs varied across regions [10, 11] and performance of models based on 20 or 40

measurement sites may be overestimated [29, 30].

Additional limitations of the study beyond back-extrapolation include the non-availability of information

on short-term exposure at the time of spirometry for a sufficient number of sites and pollution metrics.

Adjustment for short-term exposure in SAPALDIA did not alter the associations. Heterogeneity of study

populations poses a challenge to meta-analysis and makes it difficult to exclude residual confounding and

unrecognised effect modification. The associations were not sensitive to the SALIA study consisting

exclusively of females and exhibiting the lowest mean levels of lung function (supplementary figures S4 and

S5 for associations of NO2 with FEV1 and FVC in females). Non-participation at follow-up of subjects with

low lung function may bias observed associations or limit their generalisability. In SAPALDIA, subjects with

better lung function were more likely to participate in the second spirometry, but sensitivity analyses using

inverse probability weighting to account for non-participation did not alter associations between air

pollution and lung function [8].

Conclusion
The current study, which includes a large number of observations from different regions, environments and

climates in Europe, and standardized exposure assessment, provides firm support to an adverse association

between ambient air pollution and lung function in adults. Inverse associations could be observed at very
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low air pollution levels in Europe. The policy relevance of these findings is further strengthened by the

observation that obese persons may be particularly susceptible.
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