














cough and sputum production), previous history of COPD exacerbations, low/high BMI, severity of airflow

limitation, presence/severity of emphysema and airway disease on computed tomography scan. Secondly,

they used an alternative but complementary approach, where they identified groups of patients with

maximally different gene expression patterns, and then compared their phenotypic clinical expression. To

identify these groups with extremely different transcriptomic signatures, the authors developed a novel

unbiased bioinformatics algorithm (the diVIsive Shuffling Approach (VIStA)), which, through an iterative

approach, ended up maximising gene expression differences between groups [59]. In brief, as shown in

figure 7a, the VIStA method is as follows. 1) The algorithm first randomly partitions the available patients

(n5140 in this case) into three groups of comparable size, compares gene expression of groups 1 and 2 and

keeps group 3 as a reservoir. 2) It randomly swaps (shuffles) one patient from group 1 (or 2) with another

one from the reservoir (group 3), and differential gene expression is compared again. If the new number of

differentially expressed genes increases, the swap is accepted, if not it is rejected. 3) Step 2 is iterated until

the number of differentially expressed genes reaches a plateau, generally after approximately 1000 attempted

swaps. At this point, the resulting groups 1 and 2 include patients with the maximal gene expression

differences [59].

The results of the first approach, i.e. the comparison of differentially expressed genes in the extreme

quartiles of the clinical phenotypes defined a priori by COPD experts, failed to identify any difference,

except for the severity of airflow limitation, where 6049 differentially expressed genes were identified [59],
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FIGURE 5 Poisson and scale-free networks. a) The highway network in the USA is an example of c) a Poisson network: most cities have a relatively small and
similar number of highways interconnecting them. By contrast, b) the airport network in the USA is a good example of d) a scale-free network: only a few airports
(hubs) host a large number of flight connections, whereas the majority of airports have only a few connections. Reproduced and modified from [29] with
permission from the publisher.
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indicating that mild/moderate and severe/very severe COPD are associated with significantly different

transcriptomic signatures in sputum. The results of the reverse approach using VIStA showed that, after

about 500 VIStA runs, the severity of airflow limitation, this time in combination with the amount and

severity of emphysema present, was again the most important hub of the network (fig. 7b) [59].

Interestingly, however, the investigators also observed that age, BMI, exercise capacity, chronic bronchitis,

some inflammatory biomarkers (IL-6, IL-8 and SP-D) and some sputum findings (high number of

neutrophils and low number of lymphocytes) provide further discriminant power [59]. In summary, the

results of the study by MENCHE et al. [59] illustrate the potential of systems biology and network medicine to

address the complexity of chronic respiratory diseases like COPD. Specifically, they demonstrate that mild/

moderate versus severe/very severe COPD are associated with different sputum transcriptomic signatures.

What is cause and effect cannot be dissected from this cross-sectional analysis, but these observations are

certainly compatible with the hypothesis that mild/moderate and severe/very severe COPD might be two

different diseases.

Putting ageing, multimorbidity and COPD together using systems/network approaches
Several articles have attempted to put together multimorbidity, age and COPD. DIVO et al. [19] evaluated

the prevalence of comorbidities in patients with COPD attending a pulmonary clinic and assessed their

relationship with mortality (fig. 8). They observed that 12 specific comorbidities were significantly

associated with an increased risk of death. They represented graphically the prevalence of these

comorbidities and their relationship with the risk of death as the comorbidome [19].

VANFLETEREN et al. [66] identified five clusters of patients based on 13 objectively identified comorbidities

and measured systemic inflammation in 213 COPD patients attending a rehabilitation programme. The five

clusters were: ‘‘less comorbidity’’, ‘‘cardiovascular’’, ‘‘cachectic’’, ‘‘metabolic’’ and ‘‘psychological’’. These

clusters differed in health status but were comparable in terms of airflow limitation severity and systemic

inflammatory markers [66]. Unfortunately, no longitudinal data or relationships with clinically relevant

outcomes were provided.

VAN REMOORTEL et al. [21] have recently investigated the effects of smoking and ageing on the prevalence of

premorbid risk factors and comorbid diseases, as well as their association with daily physical activity (by

multisensor activity monitor), in the preclinical stages of COPD. They studied a population-based sample of

subjects (n560) with a new diagnosis of mild-to-moderate COPD by spirometry screening. The results were

compared with those of 60 smoking controls with normal lung function and 60 never-smoker subjects, all of

them age matched [21]. The main results showed that premorbid risk factors and comorbid diseases were

significantly higher in preclinical COPD than in never-smokers but similar to smoking controls;
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FIGURE 7 a) Schematic representation of the diVIsive Shuffling Approach (VIStA). b) Network representation of the
clinical characteristics identified by VIStA. Node size is proportional to the number of times a given clinical characteristic
was found to be significant in VIStA, and the width of a link indicates how often two measures appeared significant in the
same VIStA division. The core group (hub) contains severity of airflow limitation (GOLDCD) and the qualitative
(EMPHETCD) and quantitative (FV950) measures of emphysema. SPD: surfactant protein D; TNFA: tumour necrosis
factor-a; FIBRINOG: fibrinogen; CCL18: chemokine C-C motif ligand 18; DWALK: 6-min walking distance; CRPHS:
high-sensitivity C-reactive protein; IL: interleukin; BMI: body mass index. Reproduced and modified from [59] with
permission from the publisher.
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cardiovascular diseases and musculoskeletal dysfunction were particularly prevalent in smokers with or

without COPD, and other diseases that were more frequently found in the smoking group included pre-

diabetes, systemic arterial hypertension, dyslipidaemia and obesity. Multivariate logistic regression analysis

showed that physical inactivity and smoking were independent risk factors for suffering two or more

comorbidities [21]. Overall, these observations challenge the concept that COPD is an independent risk

factor for comorbidities by showing that physical inactivity and smoking, but not COPD as such, are

associated with their development [21]. Overall, these results are in keeping with other observations in

COPD patients, showing that the prevalence of comorbidities is independent of the severity of airflow

limitation (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades) [66–68], and that age

rather than COPD severity accounted for most of the comorbidities of these patients [69].

Other interesting observations that used a systems biology approach in COPD include: the study by XIE

et al. [70], who identified the serum levels of the microRNAs miR-21 and miR-181a as potential biomarkers

of COPD susceptibility among heavy smokers; that of EZZIE et al. [71], who identified 70 microRNAs and

2667 mRNAs differentially expressed in lung tissue from smokers with and without COPD [71]; and that of

TURAN et al. [72], who investigated the relationship between skeletal muscle dysfunction, a frequent and

clinically relevant comorbidity in COPD [73, 74], pulmonary gas exchange, systemic inflammation and

response to training. The results of TURAN et al. [72] indicate that, in COPD, skeletal muscle fails to co-

ordinately activate the expression of several remodelling and bioenergetics pathways, and this may be linked

to an abnormal expression of histone modifiers, which, in turn, appears to correlate with tissue oxygen

utilisation. Overall, these observations suggest that cell hypoxia may be a key factor driving skeletal muscle
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FIGURE 8 The ‘‘comorbidome’’ is a graphic expression of comorbidities with more than 10% prevalence in the entire
cohort, and those comorbidities with the strongest association with mortality. The area of the circle relates to the
prevalence of the disease. The proximity to the centre (mortality) expresses the strength of the association between the
disease and risk of death. All circles associated with a statistically significant increase in mortality are fully inside the dotted
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GORD: gastro-oesophageal reflux disease. Reproduced and modified from [19] with permission from the publisher.
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dysfunction in COPD patients [72]. This contrasts with current hypotheses based on the role of systemic

inflammation and suggests an alternative oxygen-driven, epigenetic control mechanism [72].

Finally, AGUSTÍ et al. [75] have recently proposed a network approach to the pathobiology of COPD at the

organ and molecular levels. The basic tenant of this approach is that COPD is not a single-organ condition,

and that disturbances of a complex network of inter-organ connected responses occur and modulate the

natural history of the disease [75]. The acceptance of such inter-organ connectivity leads to the appreciation

that toxic inhaled agents that directly affect the lungs are also likely to exert effects (direct or indirect) on

more distant organs. These, in turn, might modulate the lung’s own response (be it acute or chronic) to the

initiating injury [75]. Specifically, the authors propose a vascularly connected network where the lungs are

the main external sensor of the system and a source of so-called ‘‘danger signals’’, the endothelium acts as

an internal sensor of the system (and also is a potential target tissue) and the bone marrow and adipose

tissue are two key responding elements that produce both inflammatory and repair signals. According to

this novel network model, the development of COPD and associated multimorbidities would depend on

how this vascular connected network responds, adapts or fails to adapt (dictated by the genetic and epigenetic

background of the individual) to the inhalation of particles and gases, mainly in cigarette smoke [75].

Conclusions
Many noncommunicable diseases, including chronic respiratory diseases like COPD, are associated with

ageing and are often accompanied by other noncommunicable diseases (multimorbidity). The pathogenesis

of each of them (including that of the ageing process), as well as their inter-relationships at the molecular,

clinical and environmental levels, are extremely complex and dynamic. This State of the Art review

highlights that systems biology and network medicine offer a new research strategy to decipher this

multilevel and dynamic complexity, by reviewing some recent investigations in the field. We firmly believe

that this is only the beginning of a new way of understanding and, eventually, diagnosing and treating what,

as stated before, has been identified by the United Nations General Assembly as the major health challenge at

the beginning of the 21st century: the growing epidemic of age-related noncommunicable diseases. Stay tuned!
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14 Fabbri LM, Luppi F, Beghé B, et al. Complex chronic comorbidities of COPD. Eur Respir J 2008; 31: 204–212.
15 Chatila WM, Thomashow BM, Minai OA, et al. Comorbidities in chronic obstructive pulmonary disease. Proc Am

Thorac Soc 2008; 5: 549–555.
16 Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J 2009; 33: 1165–1185.
17 Feary JR, Rodrigues LC, Smith CJ, et al. Prevalence of major comorbidities in subjects with COPD and incidence of

myocardial infarction and stroke: a comprehensive analysis using data from primary care. Thorax 2010; 65: 956–962.
18 Agustı́ A, Faner R. Systemic inflammation and comorbidities in chronic obstructive pulmonary disease. Proc Am

Thorac Soc 2012; 9: 43–46.
19 Divo M, Cote C, de Torres JP, et al. Comorbidities and risk of mortality in patients with chronic obstructive

pulmonary disease. Am J Respir Crit Care Med 2012; 186: 155–161.
20 Decramer M, Janssens W. Chronic obstructive pulmonary disease and comorbidities. Lancet Respir Med 2013; 1:

73–83.
21 Van Remoortel H, Hornikx M, Langer D, et al. Risk factors and comorbidities in the preclinical stages of chronic

obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189: 30–38.

MULTIMORBIDITY AND THE LUNG | R. FANER ET AL.

DOI: 10.1183/09031936.0007871412

www.efpia.eu/uploads/Modules/Documents/def_efpia_brochure_sra_a4_web.pdf


22 De Martinis M, Franceschi C, Monti D, et al. Inflamm-ageing and lifelong antigenic load as major determinants of
ageing rate and longevity. FEBS Lett 2005; 579: 2035–2039.

23 De Martinis M, Franceschi C, Monti D, et al. Inflammation markers predicting frailty and mortality in the elderly.
Exp Mol Pathol 2006; 80: 219–227.

24 Agustı́ A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical outcomes
in COPD: a novel phenotype. PLoS One 2012; 7: e37483.

25 Galas DJ, Hood L. Systems biology and emerging technologies will catalyze the transition from reactive medicine to
predictive, personalized, preventive and participatory (P4) medicine. IBC 2009; 1: 1–5.

26 Auffray C, Adcock IM, Chung KF, et al. An integrative systems biology approach to understanding pulmonary
diseases. Chest 2010; 137: 1410–1416.

27 Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291: 1304–1351.
28 Collins FS, Green ED, Guttmacher AE, et al. A vision for the future of genomics research. Nature 2003; 422: 835–847.
29 Agustı́ A, Sobradillo P, Celli B. Addressing the complexity of chronic obstructive pulmonary disease: from

phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine. Am J Respir Crit Care Med
2011; 183: 1129–1137.

30 Vanfleteren LE, Kocks JW, Stone IS, et al. Moving from the Oslerian paradigm to the post-genomic era: are asthma
and COPD outdated terms? Thorax 2014; 69: 72–79.

31 Kitano H. Systems biology: a brief overview. Science 2002; 295: 1662–1664.
32 Barabási AL. Network medicine – from obesity to the ‘‘diseasome’’. N Engl J Med 2007; 357: 404–407.
33 Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev

Genet 2011; 12: 56–68.
34 Kitano H. Computational systems biology. Nature 2002; 420: 206–210.
35 Khoury MJ, Gwinn ML, Glasgow RE, et al. A population approach to precision medicine. Am J Prev Med 2012; 42:

639–645.
36 Carter GW, Galas DJ, Galitski T. Maximal extraction of biological information from genetic interaction data. PLoS

Comput Biol 2009; 5: e1000347.
37 Bauer-Mehren A, Rautschka M, Sanz F, et al. DisGeNET: a Cytoscape plugin to visualize, integrate, search and

analyze gene-disease networks. Bioinformatics 2010; 26: 2924–2926.
38 Clermont G, Auffray C, Moreau Y, et al. Bridging the gap between systems biology and medicine. Genome Med

2009; 1: 88.
39 Kohl P, Crampin EJ, Quinn TA, et al. Systems biology: an approach. Clin Pharmacol Ther 2010; 88: 25–33.
40 Christakis NA, Fowler JH. The collective dynamics of smoking in a large social network. N Engl J Med 2008; 358:

2249–2258.
41 Agustı́ A, Vestbo J. Current controversies and future perspectives in chronic obstructive pulmonary disease. Am J

Respir Crit Care Med 2011; 184: 507–513.
42 Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med 2007; 357:

370–379.
43 Goh KI, Cusick ME, Valle D, et al. The human disease network. Proc Natl Acad Sci USA 2007; 104: 8685–8690.
44 Barabási AL, Bonabeau E. Scale-free networks. Sci Am 2003; 288: 60–69.
45 Barabási AL. Scale-free networks: a decade and beyond. Science 2009; 325: 412–413.
46 Vázquez A, Dobrin R, Sergi D, et al. The topological relationship between the large-scale attributes and local

interaction patterns of complex networks. Proc Natl Acad Sci USA 2004; 101: 17940–17945.
47 Rzhetsky A, Wajngurt D, Park N, et al. Probing genetic overlap among complex human phenotypes. Proc Natl Acad

Sci USA 2007; 104: 11694–11699.
48 Han JD. An aging program at the systems level? Birth Defects Res C Embryo Today 2012; 96: 206–211.
49 Sozou PD, Kirkwood TB. A stochastic model of cell replicative senescence based on telomere shortening, oxidative

stress, and somatic mutations in nuclear and mitochondrial DNA. J Theor Biol 2001; 213: 573–586.
50 Kenyon CJ. The genetics of ageing. Nature 2010; 464: 504–512.
51 Panowski SH, Wolff S, Aguilaniu H, et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans.

Nature 2007; 447: 550–555.
52 Houtkooper RH, Williams RW, Auwerx J. Metabolic networks of longevity. Cell 2010; 142: 9–14.
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