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ABSTRACT Asthma and chronic obstructive pulmonary disease (COPD) are thought to share a genetic

background (‘‘Dutch hypothesis’’).

We investigated whether asthma and COPD have common underlying genetic factors, performing

genome-wide association studies for both asthma and COPD and combining the results in meta-analyses.

Three loci showed potential involvement in both diseases: chr2p24.3, chr5q23.1 and chr13q14.2,

containing DDX1, COMMD10 (both participating in the nuclear factor (NF) kb pathway) and GNG5P5,

respectively. Single nucleotide polymorphisms (SNPs) rs9534578 in GNG5P5 reached genome-wide

significance after first replication phase (p59.96610-9). The second replication phase, in seven independent

cohorts, provided no significant replication. Expression quantitative trait loci (eQTL) analysis in blood cells and

lung tissue on the top 20 associated SNPs identified two SNPs in COMMD10 that influenced gene expression.

Inflammatory processes differ in asthma and COPD and are mediated by NF-kb, which could be driven

by the same underlying genes, COMMD10 and DDX1. None of the SNPs reached genome-wide significance.

Our eQTL studies support a functional role for two COMMD10 SNPs, since they influence gene expression

in both blood cells and lung tissue. Our findings suggest that there is either no common genetic component

in asthma and COPD or, alternatively, different environmental factors, e.g. lifestyle and occupation in

different countries and continents, which may have obscured the genetic common contribution.
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Introduction
Asthma and chronic obstructive pulmonary disease (COPD) are two common respiratory diseases. Their

estimated prevalence ranges from ,1% to 18% in different countries [1–3]. Both diseases may lead to

airway obstruction, which is reversible in asthma but not in COPD. However, the diagnosis cannot rely on

reversibility as it can disappear with asthma progression, making both asthma and COPD harder to

distinguish. The immune mechanisms underlying the two diseases are thought to be very different, but

similarities in inflammatory processes have recently been reported in both disease entities [4]. Classically

inflammation in asthma is represented by elevated numbers of CD4+ lymphocytes and eosinophils, while in

COPD there are CD8+ lymphocytes, macrophages and neutrophils [5]. However, severe asthma can be

accompanied by neutrophilia [6] and COPD exacerbation by eosinophilia [7].

Over 50 years ago, the so called ‘‘Dutch hypothesis’’ was formulated by ORIE et al. [8] stating that asthma

and COPD are two features of one disease entity, referred to as chronic nonspecific lung disease (CNSLD).

CNSLD was defined to result from the interplay of endogenous factors like genetic predisposition, and

exogenous factors like viral infections, air pollution, tobacco smoking and allergen exposures. The timing of

this interplay would then determine which clinical syndrome developed during a lifetime, i.e. asthma or

COPD or features of both asthma and COPD.

So far this hypothesis has neither been confirmed nor refuted completely [9], but several common

environmental exposures have been unequivocally identified as shared risk factors for both asthma and

COPD, e.g. maternal smoking during pregnancy, air pollution and active smoking [10]. Genetic factors have

been associated with either asthma or COPD using linkage [11–15], candidate gene [16–19] and genome-

wide association studies (GWAS) [20, 21]. These studies elucidated genetic factors unique either to asthma

or COPD, but in addition potentially shared genetic risk factors including TGFB1, TNFA, GSTP1, IL13 [22]

and SERPINE2 [23]. ADAM33 has been linked to the presence of asthma [24], COPD and accelerated lung-

function decline in the general population and in asthma [25, 26], suggesting common underlying genetic

factors for both onset and course of asthma and COPD. So far, hypothesis-free GWAS studies that aim to

identify novel genes underlying both asthma and COPD in the same source population are lacking. The aim

of our study was to identify shared genetic-risk factors for asthma and COPD using an unbiased GWAS

approach. We first performed a GWAS on asthma and COPD separately using individuals from Dutch

descent and subsequently combined these in a meta-analysis, followed by three replication studies.

Methods
Study populations
For the identification phase, subjects were recruited from the following asthma and COPD cohorts. 1) The

Dutch Asthma GWAS (DAG) Study, a cohort screened for genetic studies and characterised by the presence

of a doctor diagnosis for asthma and bronchial hyperresponsiveness [27]. 2) The Dutch–Belgian

Randomised Lung Cancer Screening (NELSON) trial [28]: a population-based cohort screening for lung

cancer that includes current or ex-smokers with at least 20 pack-years. To increase power of the COPD set,

blood bank controls from Amsterdam and Utrecht (both the Netherlands) without clinical data except for

age (range 18–65), were added.

The results of the GWAS were meta-analysed (meta-analysis 1). A meta-analysis is a method to combine

results from different studies, with the aim of estimating a true effect size as opposed to a less-precise effect

size derived in a single study. A weighted average of that common effect size is the output of a meta-analysis.

The weighting is related to sample sizes within the individual studies.

For the first replication phase (meta-analysis 2) participants of the LifeLines cohort study (LifeLines 1) were

studied. In the second replication phase (meta-analyses 3–9) the top 20 single nucleotide polymorphisms

(SNPs) with the smallest p-value (most significant) were evaluated in participants of an independent sample

of the LifeLines cohort study (LifeLines 2), the Swiss Cohort Study on Air pollution and Lung Diseases in

Adults (SAPALDIA), the Rotterdam Study (RS)-I, -II, and -III, the Multi-Ethnic Study of Atherosclerosis

(MESA), and Atherosclerosis Risk in Communities Study (ARIC) cohorts (for further information on these

studies see the online supplementary material).
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There were no overlapping subjects in any cohorts used. All participants signed informed consent and the

studies were approved by institutional ethics committees. Detailed information and characteristics of the

study populations are shown in the online supplementary material (table S1).

Asthma and COPD phenotype definition
In all of the cohorts asthma was defined as having a doctor diagnosis of asthma ever, or use of asthma

medication (beta-agonists, steroids, anticholinergics, cromoglycate, montelukast, theophyllines), while ever

having two or more of the following symptoms: wheeze without a cold, an attack of breathlessness while

resting, waking up with an attack of breathlessness. Controls were defined as not having asthma.

In all cohorts, COPD was defined as a pre-bronchodilator forced expiratory volume in 1 s (FEV1)/forced

vital capacity (FVC) ,0.7 (asthma cases were excluded), and controls (except for blood bank controls) were

defined as having an FEV1/FVC .0.7 and FEV1 .90% pred.

Genotyping, quality control and imputation
All cohorts were genotyped with Illumina arrays with different SNP content. Genotypes were called and

standard quality control was performed (online supplementary material).

Study design and statistical analyses
The analytic workflow is shown in figure 1. Genome-wide associations on asthma (2 004 043 SNPs) and

COPD (1 872 289 SNPs) were performed using Chi-squared test using a genetic additive model (0, 1, and 2).

The results were combined in a meta-analysis using 1 811 026 SNPs shared between the asthma and COPD

datasets (meta-analysis 1). 2048 SNPs showing p,0.001 were selected for in silico replication in a second set

of asthma and COPD case-control groups derived from the LifeLines cohort (LifeLines 1). These markers

were analysed with Chi-squared tests and then combined in a second directional meta-analysis (meta-

analysis 2). The top 20 SNPs with pf0.001 from meta-analysis 2 were investigated in the second replication

phase consisting of seven meta-analyses in LifeLines 2, SAPALDIA, RS-I, RS-II, RS-III, MESA, and ARIC

(for cohort description see online supplementary material).

In the meta-analyses (apart from LifeLines 2) genetic associations with asthma and COPD were tested using

logistic regression. Models were controlled for pack-years smoking, study area and principal components

capturing inter-European population structure. Results were then combined using the Fisher’s method.

SNPs with p,0.05 in meta-analysis 2 are shown in table S4.

Expression quantitative trait loci mapping in blood and lung tissue
Expression quantitative trait loci (eQTL) mapping in blood was performed as described previously by

FEHRMANN et al. [29]. In brief, each probe on the expression chip was mapped and correlated with SNPs in

the vicinity of 250 kb. Principal component analysis was applied to the data prior to the analysis to ensure

that signals detected as eQTLs were not due to batch effects. Analysis involved nonparametric Spearman’s

rank correlation test. Because two different expression chips were used, when probes were present on both,

the final result came from meta-analysis. False discovery rate was applied to account for multiple testing.

eQTL-mapping in lung tissue was performed as described previously in three independent data sets in a

collaboration between University of Groningen (Groningen, The Netherlands), Laval University (Quebec

City, Canada) and British Columbia (Vancouver, Canada) [30]. The lung specimens were obtained from

patients undergoing lung resection surgery at the three participating sites. Whole-genome gene expression

and genotyping data were obtained from these specimens. Gene expression profiling was performed using

the GEO platform GPL10379 custom array (Affymetrix, Santa Clara, CA, USA) testing 51 627 noncontrol

probe sets and normalised using robust multi-array average (RMA) [31]. Genotyping was performed using

the Human1M-Duo BeadChip array (Illumina, San Diego, CA, USA). Following standard microarray and

genotyping quality controls, 1111 patients were available for eQTL analyses. Cis- and trans-acting eQTLs

were calculated as previously performed [32].

Network analysis
Gene network was constructed using GeneMANIA (University of Toronto, Toronto, Canada) [33]. The

gene set resulting from this approach was investigated with GATHER [34] to identify enriched pathways.

Further details are provided in the online supplementary material.

Results
GWAS and meta-analyses
GWAS were performed on both asthma (921 cases and 3246 controls) and COPD (1030 cases and 1808

controls). The genomic inflation factors (l) were 1.01 for both asthma and COPD, indicating no population
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stratification (fig. S1). Individual p-values and odds ratios (ORs) were combined in a directional meta-

analysis using a fixed-effects model (meta-analysis 1, fig. 1). All 2048 SNPs with pf0.001 were selected for a

first-replication phase analysis in asthma (534 cases and 2568 controls) and COPD (711 cases and 1854

controls) cohorts separately. Subsequently results were combined in a meta-analysis (meta-analysis 2, fig. 1).

20 SNPs replicated at p,0.001 (table 2) in the combined meta-analysis 1 and meta-analysis 2, one SNP

reached genome-wide significance.

19 of the 20 SNPs map to three genomic locations: 2p24.3, 5q23.1, and 13q14.2 (table S2).

The chromosome 2p24.3 locus spans ,380 kb and contains genes encoding functional units, like processed

transcripts, pseudogenes and RNA genes (fig. 2). The nearest gene with a known function, DEAD-box

polypeptide 1 (DDX1), is ,139 kb away from the top associated 2p24.3 SNP rs1477253. The locus on

chromosome 5 is ,328 kb and contains a single gene: COMM domain containing 10 (COMMD10) (fig. 2).

The locus on chromosome 13 spans ,320 kb and only contains a pseudogene: guanine nucleotide binding

protein (G protein), gamma 5 pseudogene 5 (GNG5P5) (fig. 2). SNP rs9534578 in GNG5P5 reached genome-

wide significance (p59.96610-9).

Second replication phase of top 20 SNPs
The top 20 markers from the combined analysis were further evaluated in an independent sample of the

LifeLines cohort (LifeLines 2) and the SAPALDIA, RS-I, RS-II, RS-III, MESA and ARIC cohorts. Full details
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FIGURE 1 Analytic workflow for the current study. COPD: chronic obstructive pulmonary disease; SNPs: single nucleotide polymorphism; meta-analysis 1: first
meta-analysis; meta-analysis 2: first replication phase; meta-analysis 3–9: second replication phase; NELSON: The Dutch–Belgian Randomised Lung Cancer
Screening Trial; DAG: The Dutch Asthma Genome-wide association studies; SAPALDIA: Swiss Cohort Study on Air pollution and Lung Diseases in Adults;
RS: Rotterdam Study; ARIC: Atherosclerosis Risk in Communities Study; MESA: Multi-Ethnic Study of Atherosclerosis.
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of subject numbers are given in table 1. None of the SNPs replicated at a nominal p-value ,0.05. The meta-

analysis of all cohorts together did not result in GWSA (table 2 and fig. 3).

SNPs in the DDX1 and COMMD10 loci were associated with both asthma and COPD (table S3). The meta-

analysis results of the GNG5P5 locus were driven by the association with the COPD phenotype, since none

of the GNG5P5 SNPs were significantly associated with the asthma phenotype.

eQTL analysis of top 20 SNPs
Three of the top 20 SNPs from the combined analysis showed a cis-eQTL effect, when correlating the

genotypes with gene expression levels in 1469 peripheral blood mononuclear cell samples with both GWAS

and genome-wide gene expression data available [29]. The three SNPs were located in COMMD10. Figure 4

shows that the risk guanine (G) allele and SNP rs10043228 thymine (T) is in perfect linkage disequilibrium

(r251) with rs10036292, increased COMMD10 expression levels in blood mononuclear cells, with similar

findings to those found in lung tissue.

Network analysis
The genes found were investigated with GeneMANIA, which does not support pseudogenes. Hence we

queried only COMMD10 and DDX1. This gene enrichment approach resulted in a set of genes, two genes

(RAD50 and MRE11A) being involved in regulation of mitotic recombination (Bayes factor 11, p,0.0001)

and telomere maintenance (Bayes factor 6, p,0.0001), possibly implicating COPD as a disease of rapidly

aging lungs [35]. Another gene involved in telomere maintenance (BICD1) was previously reported in

emphysema [36].

TABLE 1 Characteristics of the identification and replication cohorts

Study Phenotype Subjects Age years Sex male Current smoker Never smoker Ex-smoker Pack-years
median (IQR)#

DAG Asthma 920 34¡16 430 (47) 147 (16.0) 544 (59.1) 226 (24.6) 7.9 (2.1–17.3)
Controls 2777 55.4¡9.9 991 (36) 396 (14) 1305 (47) 1076 (39) 1.95 (0–11.6)

NELSON COPD 1030 63.3¡5.6 1030 (100) 410 (39.8) 0 (0) 620 (60.2) 38.7 (29.7–49.5)
Controls 844"+964+ 59.1¡5 964 (100) 621 (64. 4) 0 (0) 343 (35.6) 34.2 (27.9–46.2)

LifeLines 1 Asthma 534 44.8¡9.7 214 (40) 106 (19.9) 293 (54.9) 135 (25.3) 10.8 (4.9–20.5)
Controls 2568 43¡9.4 1102 (42.9) 266 (10.4) 2010 (78.8) 276 (10.8) 12.75 (5.5–20.4)

COPD 711 54¡10.6 369 (52) 363 (51.1) 0 (0) 348 (48.9) 16.8 (8.5–26.7)
Controls 1854 43.2¡8.6 807 (43.5) 805 (43.4) 0 (0) 1049 (56.6) 9 (4–15)

LifeLines 2 Asthma 317 46.7¡11.2 120 (37.9) 41 (12.9) 171 (53.9) 105 (33.1) 7.4 (3–15.5)
Controls 2363 48.5¡11.6 885 (37.5) 165 (7.2) 1922 (83.3) 220 (9.5) 12 (5–20.5)

COPD 601 56.7¡10.8 282 (46.9) 231 (38.4) 0 (0) 370 (61.6) 15.2 (7–25.2)
Controls 1868 49.6¡10.9 784 (42.0) 601 (32.2) 0 (0) 1267 (67.8) 8.6 (4–16)

SAPALDIA 2 Asthma 461 49.0¡11.8 212 (46.0) 95 (20.6) 215 (46.6) 151 (32.8) 16.3 (4.9–32.9)
Controls 522 51.4¡11.1 244 (46.7) 95 (18.2) 252 (48.3) 175 (33.5) 13.1 (5.1–25.5)

COPD 118 58.3¡10.0 67 (56.8) 44 (37.3) 49 (41.5) 25 (21.2) 37.0 (15.4–52.7)
Controls 134 51.4¡10.4 60 (44.8) 30 (22.4) 68 (50.8) 36 (26.9) 14.8 (3.9–27.0)

RS-I Asthma 126 65.8¡7.8 33 (26.2) 24 (19) 50 (40) 51 (41) 15.4 (4.5–37.4)
Controls 4241 69.8¡9.2 1499 (35.3) 782 (18) 1854 (44) 1605 (38) 20 (7.5–37.5)

COPD 229 79.8¡4.9 126 (55) 51 (22) 36 (16) 142 (62) 26 (9.8–45)
Controls 781 79.1¡4.5 306 (39) 49 (6) 299 (38) 433 (55) 16.8 (5.7–36.0)

RS-II Asthma 58 62.9¡6.8 15 (26) 7 (12) 23 (40) 28 (48) 21.6 (6–43.8)
Controls 1584 64.7¡8.0 712 (45) 249 (16) 526 (33) 809 (51) 14 (3.6–31)

COPD 186 72.8¡5.1 108 (58) 48 (26) 28 (15) 110 (59) 31.7 (16.4–46.0)
Controls 783 72.1¡4.9 327 (42) 52 (7) 317 (41) 415 (53) 13.9 (3.7–28.0)

RS-III Asthma 71 54.7¡4.5 20 (28) 6 (9) 27 (38) 38 (54) 15.5 (1.2–25.7)
Controls 1714 55.8¡5.6 764 (45) 356 (21) 574 (34) 784 (46) 13.8 (4.0–29.0)

COPD 79 56.9¡5.0 40 (51) 32 (41) 19 (24) 28 (35) 28.9 (16.2–44.7)
Controls 824 56.5¡5.5 353 (43) 137 (17) 288 (35) 399 (48) 12.5 (3.8–26.6)

ARIC Asthma 453 54.3¡5.8 226 (50) 107 (23.62) 181 (39.96) 165 (36.42) 29.6 (14.1–45.0)
Controls 9203 54.8¡5.7 4318 (47) 2268 (24.64) 3691 (40.11) 3239 (35.20) 26.0 (12–40)

COPD 915 55.6¡5.57 506 (55) 522 (57.1) 93 (10.2) 300 (32.8) 39 (29–54)
Controls 6610 54.1¡5.67 3042 (46) 1120 (16.9) 3096 (46.8) 2394 (36.2) 20.3 (9–34)

MESA Asthma 267 61.1¡9.6 119 (45) 29 (11) 112 (58) 124 (47) 20 (6–41.3)
Controls 2381 63.0¡10.2 1149 (48) 263 (11) 1061 (55) 1053 (44) 19 (6.6–37.8)

COPD 104 67.1¡8.9 51 (49) 19 (18) 15 (14) 70 (67) 37 (22–64)
Controls 979 66.0¡10.0 467 (48) 55 (6) 446 (46) 478 (49) 17.3 (7–36)

Data are presented as mean¡SD or n (%) unless otherwise stated. IQR: interquartile range; DAG: the Dutch Asthma Genome-wide association studies: NELSON: The Dutch–Belgian Randomised
Lung Cancer Screening Trial; SAPALDIA: Swiss Cohort Study on Air pollution and Lung Diseases in Adults; ARIC: Atherosclerosis Risk in Communities Study; MESA: Multi-Ethnic Study of
Atherosclerosis. #: calculated in ever smokers; ": blood bank controls, no demographic data; +: characteristics in this line for n5964.
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Moreover, products of DDX1 and COMMD10 interact with nuclear factor (NF) kb2. COMMD10 has a

direct interaction, while DDX1 interacts with RELA and RELB, known to interact directly with NF-kb2 and

to function in the same pathway (fig. 5).
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This is the first investigation of shared genetics for asthma and COPD in a hypothesis-free manner using a

genome-wide screening in asthma and COPD in large population-based cohorts. We report three novel loci
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FIGURE 3 Forest plots of the three top single nucleotide polymorphisms (SNP) in the meta-analysis of the asthma and chronic obstructive pulmonary disease
cohorts. a) SNP rs9534578 in GNG5P5. b) SNP rs1477253 in DDX1. c) SNP rs254149 in COMMD10. SAPALDIA: Swiss Cohort Study on Air pollution and Lung
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analysis with fixed effect. #: includes the Dutch–Belgian Randomised Lung Cancer Screening (NELSON) trial and the Dutch Asthma Genome-wide association
studies (DAG).
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as potentially shared genetic factors between asthma and COPD, none reaching genome-wide significance in

the discovery sample or seven replication cohorts. None of these three loci were previously reported to be

associated with either asthma or COPD. However, DDX1 locus was reported in a recently published meta-

analysis of lung function [37], a p-value of 9610-6. The T allele of rs2544527 in DDX was associated with a

reduced lung function and in our study with a risk for both asthma and COPD.

The shared 5q23.1 risk locus contains the COMMD10 gene. COMMD10 is a member of COMM domain

containing proteins [38] with a largely unknown function. COMMD10 has been shown to form a complex

with COMMD1, another member of this family of proteins, which regulates copper metabolism and

sodium uptake and inhibits NF-kb activation [39]. Copper and sodium levels are inversely regulated, i.e.

when copper levels increase, sodium import in cells is inhibited and vice versa. Both ion levels can be

regulated by COMMD1, with sodium control mediated through epithelial sodium channels (ENaCs) that

are abundantly present in lung epithelial cells [40]. Sodium is crucial for maintaining a fluidic layer in the

alveolar part of the lungs and ENaCs play a crucial role in this process [41]. It is tempting to speculate that

COMMD10 is involved in this maintenance either through interaction with COMMD1, or independently

by displaying similar functions as COMMD1. Also, its function in inhibition of NF-kb activation could play

a role in regulating inflammatory processes in airways diseases. Our eQTL studies support a functional role

of COMMD10, since we established that two SNPs in the COMMD10 region influence expression of this

gene in both blood cells and lung tissue.

The 13q14.2 locus contains the guanine nucleotide binding protein (G protein) (GNG5P5). POLISENO et al. [42]

recently showed that pseudogenes can have a pronounced role in regulation of their putative transcripts by

competing in noncoding RNA binding. It needs to be tested whether GNG5P5 can affect GNG5 levels, but it is

interesting to note that the pseudogene is processed and has a transcript (ENST00000420444). The biological

consequence of a change in GNG5 levels in relation to asthma and COPD pathology is unclear but it is well

established that G proteins play a crucial role in signal transduction from cell surface to its interior. It is also

known that G-protein coupled receptors (GPCRs) are involved in asthma and more generally are a target of

many of the currently used asthma drugs [43].

A third locus on 2p24.3 is bordered by the DDX1 gene, encoding DEAD-box protein 1, RNA helicase I, and

the MYCN genes whereas the locus itself contains nonprotein-coding genes including lincRNAs, ncRNAs,

pseudogenes, processed transcripts and one newly discovered, protein-coding gene. Theoretically, any of

these could be involved in asthma and COPD, hindering interpretation of our findings. However, the

regional association plot (fig. 2) shows that the signal is mostly confined to AC008278.3 and AC008271.1.
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Further refinement of the region and functional assessment of the associated variants could help to

potentially pin-point the actual causal gene. DDX1 is a plausible candidate for both asthma and COPD since

it interacts with RELA, one of NF-kb subunits, upon which it acts as a co-activator of NF-kb mediated

transcription [44]. Since this is a central and common pathway of inflammation present in the airways of

both asthma and COPD, this may signify a unifying underlying mechanism of both disease entities. Further

studies are needed to confirm this hypothesis.

The strengths of our study are the data quality of the cohorts involved, the design of the study and the

analysis strategy of the discovery and replication phases. There are some limitations to our study as well. We

found no overall replication in six out of eight replication cohorts. One explanation for the lack of

replication might be the differences in asthma and COPD patients in the replication cohorts compared with

the identification cohort. For instance there was a somewhat lower prevalence of asthma in LifeLines 2

(7.5% versus 8.5% in LifeLines 1) due to the average increased age of the subjects included in LifeLines 2.

This could reflect a cohort effect or some asthma remission for the elder ages [45]. Furthermore, most

studies used an asthma definition of self-reported asthma diagnosis. Self-reported asthma has led to firm

GWAS findings in the GABRIEL study (a multidisciplinary study to identify the genetic and environmental

causes of asthma in the European community) [46]. However, it cannot be excluded that our asthmatic
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Co-expression

FIGURE 5 Gene enrichment plot using DDX1 and COMMD10 genes as a query. CSTF2: cleavage stimulation factor, 3’
pre-RNA, subunit 2, 64kDa; HNRNPK: heterogeneous nuclear ribonucleoprotein K; MRE11A: MRE11 meiotic
recombination 11 homolog A (Saccharomyces cerevisiae); RAD50: RAD50 homolog (S. cerevisiae); NBN: nibrin;
MTHFSD: methenyltetrahydrofolate synthetase domain containing; NFKB2: nuclear factor of kappa light polypeptide
gene enhancer in B-cells 2 (p49/p100); CDK5: cyclin-dependent kinase 5; SETD3: SET domain containing 3; DAB2IP:
DAB2 interacting protein; NAGLU: N-acetylglucosaminidase, alpha; CEP250: centrosomal protein 250kDa; SAP30L:
SAP30-like; ROGDI: rogdi homolog (Drosophila); SAP30: Sin3A-associated protein, 30kDa; SBDS: Shwachman-Bodian-
Diamond syndrome; COMMD1: copper metabolism (Murr1) domain containing 1; RELB: v-rel reticuloendotheliosis
viral oncogene homolog B; RELA:v-rel reticuloendotheliosis viral oncogene homolog A (avian); ATP2A2: ATPase, Ca++
transporting, cardiac muscle, slow twitch 2; COMMD10: COMM domain containing 10; DDX1: DEAD (Asp-Glu-Ala-
Asp) box polypeptide 1.
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groups consisted in part of individuals diagnosed with asthma in childhood, who now are in complete

remission. The GABRIEL cohort studies suggested that the genetic background of early-onset and adult-

onset asthma is different. It would be of interest to assess whether COPD would have more overlap in genetic

background with either childhood-onset than adult-onset asthma. A previous study from our group [47]

showed overlap between candidate genes for COPD and early childhood wheeze and lower lung

function, suggesting there is some overlap in genetic background in early childhood characteristics. This

clearly needs further study, since we could not analyse this adequately in our cohort, where the

prevalence of childhood asthma was 82% in our identification cohort and 41 in the verification cohort.

Similarly, the diagnosis of COPD was based on lung function only, and this could have led to inclusion

of different types of COPD in the various replication cohorts. For instance the prevalence of never-

smokers was 41% in SAPALDIA, whereas this was 0% in the identification and LifeLines 1 and 2

cohorts and ranged from 10% to 24% in the other cohorts. Furthermore some cohorts were consisted

of subjects that were of an increased age (e.g. mean age ,65 years in RS-I and RS-II and this may have

led to inclusion of elderly asthmatics in the COPD group, since significant persistent airway-obstruction

may occur in asthma with increase in age [48]. This may reflect an important limitation common to

most GWAS, i.e. the heterogeneity of the phenotypes assessed and heterogeneity between discovery and

replication samples. Table S3 shows the heterogeneity per meta-analysis performed, i.e. for each asthma–

COPD meta-analysis. It differs substantially and due to specificity of the study we could not account for

the heterogeneity between meta-analyses. We did not find as prime hits a gene that was associated with

asthma and with COPD previously. For instance ADAM33 was not significantly associated with either

asthma or COPD or represented in their overlap. This may either be due to the fact that not all SNPs

were captured in the GWAS analyses, or that ADAM33 was only found by positional cloning when

hyperresponsiveness was present in asthmatics [49]. The latter was not a prerequisite in our asthma

definition, just as in other GWAS studies, where ADAM33 was also not found as a significant gene

associated with asthma.

Do our findings then refute the Dutch hypothesis? This hypothesis states that both genetic and

environmental factors contribute to the phenotypic outcome and that there is a common genetic

background. Indeed the current study did not find significant genetic similarities between asthma and

COPD, apart from the identification cohort and LifeLines 1. As highlighted by the Dutch hypothesis the

importance of both type and temporal sequences of environmental exposures contribute to the occurrence

of either phenotype. This may have affected the phenotypic outcome considerably and, hence, a crude

covariate adjustment may represent an underestimated challenge to identify common genetic determinants

of asthma and COPD. Finally, our study has power to identify strongly prevalent SNPs, yet not rare variants

that may have an impact on asthma and COPD. Our findings either suggest that there is no common

genetic component in asthma and COPD or, alternatively, different environmental factors, like lifestyle and

occupation in different countries and continents may have obscured the genetic common contribution.

Recent efforts to characterise the substantial number of patients diagnosed with both asthma and COPD

[50] show the increasing scientific interest in the phenotypic overlap between asthma and COPD. Future

studies on the underlying genetics in this group of overlap patients would be of interest, specifically

comparing outcomes with our results.

Overall, our results may suggest a role of the NF-kb pathway, a key transcription factor in the inflammatory

response, in both asthma and COPD, suggesting that the Dutch hypothesis may have some validity.

However, we could not replicate associations in both asthma and COPD in most replication cohorts, thus

this could refute the genetic background that the Dutch hypothesis implied to be common in asthma and

COPD. Further studies including lifelong lifestyle factors across all cohorts need to be performed to assess

whether this approach elucidates a common genetic background of asthma and COPD. Since none of the

SNPs reached genome-wide significance further investigation of the loci should be performed to assess their

role in both asthma and COPD. Although inflammatory processes differ in asthma and COPD, they are

unequivocally mediated by NF-kb, and as suggested by our current results, they could be driven by the same

underlying genes, COMMD10 and DDX1. Our eQTL studies support a functional role of COMMD10, since

we established that two SNPs, therefore, the natural next step is to perform genome-wide epistatic analysis

in large cohorts of asthma and COPD patients to reveal the complex nature of interactions between SNPs

and loci and their impact on the ultimate phenotype.
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