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ABSTRACT The role of air pollution in chronic obstructive pulmonary disease (COPD) remains

uncertain.

The aim was to assess the impact of chronic exposure to air pollution on COPD in four cohorts using the

standardised ESCAPE exposure estimates. Annual average particulate matter (PM), nitrogen oxides (NOx)

and road traffic exposure were assigned to home addresses using land-use regression models. COPD was

defined by NHANES reference equation (forced expiratory volume in 1 s (FEV1)/forced vital capacity

(FVC) less than the lower limit of normal) and the Global Initiative for Chronic Obstructive Lung Disease

criterion (FEV1/FVC ,0.70) and categorised by severity in non-asthmatics.

We included 6550 subjects with assigned NOx and 3692 with PM measures. COPD was not associated

with NO2 or PM10 in any individual cohort. In meta-analyses only NO2, NOx, PM10 and the traffic

indicators were positively, although not significantly, associated with COPD. The only statistically

significant associations were seen in females (COPD prevalence using GOLD: OR 1.57, 95% CI 1.11–2.23;

and incidence: OR 1.79, 95% CI 1.21–2.68).

None of the principal results were statistically significant, the weak positive associations of exposure with

COPD and the significant subgroup findings need to be evaluated in further well standardised cohorts

followed up for longer time, and with time-matched exposure assignments.
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Introduction
Ambient air pollution results in adverse acute respiratory effects in populations of all ages [1]. These effects

include short-term decreases in lung function, respiratory symptoms, asthma attacks and worsening of

chronic obstructive pulmonary diseases (COPD), and related increases in hospitalisations and death due to

respiratory causes [2–4]. It is less clear to what extent long-term exposure to air pollution contributes to the

pathologic processes and mechanisms that result in COPD [5].

COPD is a common chronic disease of the respiratory tract in the elderly and hence the most common

cause of respiratory insufficiency [6]. Due to the slow progression and chronic nature of the disease, COPD

represents a massive and growing disease burden and is an important cause of morbidity and mortality

worldwide [7]. Tobacco smoke is recognised as the most important risk factor for the development and the

progression of COPD. Although tobacco smoke and combustion-related air pollution emit a range of

pollutants in common, the role of ambient air pollution on the underlying chronic disease processes that

ultimately lead to COPD are not well investigated. An effect of ambient air pollution on lung growth during

childhood has been reported [8], but the link between impaired lung development and COPD in future life

is not established. Similarly, if repeated exacerbations of COPD are considered a cause of disease

progression, one may claim indirect evidence for a causal role of air pollution on COPD, given the ability of

air pollution to trigger exacerbations [9].

However, few studies have addressed the COPD hypothesis in adults directly, and only five studies have

used spirometry to define COPD objectively [5].

Accordingly, the overall evidence that long-term exposure to ambient air pollution causes COPD among

adults was considered suggestive but not conclusive in both an American Thoracic Society statement and a

recent update of the literature [10]. A causal role of ambient air pollution in the development of COPD is,

though, biologically plausible. Oxidative stress and inflammation have been described as consequences of

exposure to several air pollutants [11, 12]. Both pulmonary and systemic effects have been observed and

these pathways are likely contributors to respiratory pathologies related to COPD.

The ESCAPE project (European Studies on Chronic Air Pollution Effects) was initiated to provide

standardised procedures to measure and model home outdoor concentrations of air pollution to investigate

its long-term health effects. This paper makes use of four cohort studies participating in ESCAPE, namely

the European Community Respiratory Health Survey (ECRHS), the Medical Research Council National

Survey of Health and Development (NSHD), the Study on the influence of Air pollution on Lung function,

Inflammation and Aging (SALIA) and the Swiss cohort Study on Air Pollution and Lung and Heart Diseases

in Adults (SAPALDIA), to investigate the association of ambient air pollution with the prevalence and

incidence of COPD [13–19].

Methods
Study populations
The analyses are based on random samples of the general population from four cohort studies. All studies

performed lung function measurements on two occasions (called baseline and follow-up). To be included in

the ESCAPE analyses, participants of the original cohort studies had to be at least 20 years old at baseline;

have valid lung function data on two occasions; have available information for the primary covariates; be

living in geographic areas where the ESCAPE project derived exposure models; and have at least one

successfully assigned home outdoor estimate of exposure (NO2/NOx or particulate matter (PM)) (online

supplement, figs S1–S4).

Definition of COPD
In all cohort studies, only pre-bronchodilator spirometric measurements were available. Therefore, to

reduce the risk of asthma/COPD misclassification, subjects who reported ‘‘ever asthma’’ or a diagnosis of

asthma either at baseline or follow-up were excluded from the analyses [20].

COPD was defined according to both the Global Initiative for Chronic Obstructive Lung Disease (GOLD)

[17] and the lower limit of normal (LLN) (definitions in online supplementary material: methods). As

results did not materially differ we only present the LLN results (GOLD results can be found in the online

supplementary material). NHANES (National Health and Nutrition Examination Survey) III equations

were used as reference [21].

Exposure assessment
The common ESCAPE exposure assessment approaches have been published elsewhere [22, 23]. In

summary, standardised measurement protocols were used in all geographic sites of ESCAPE (www.

escapeproject.eu/manuals/). In all 24 sites included from the four studies, NO2/NOx measurements were
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conducted in three seasons in 2008–2011 using passive samplers. In 12 ESCAPE locations, PM monitoring

campaigns were conducted. Land use regression models (LUR) described the spatial distributions of the

annual mean concentrations taken as a proxy for the long-term averages for all ESCAPE exposure markers.

These models were used to assign exposure estimates to each residential address of all study participants.

Two markers of local exposure to traffic related pollutants were also derived for each address, namely

annual mean traffic intensity on the nearest road, and total traffic load on major roads in a 100-m buffer.

Back extrapolation
Baseline clinical measurements and interviews occurred up to 25 years prior to the ESCAPE measurement

campaigns in 2008–2011. In light of the substantial changes, usually decreases, in air pollution during these

decades, ESCAPE exposure values were back-extrapolated to correct for the differential time trends of

pollution. Back extrapolation was conducted by assuming within-city spatial patterns to remain constant,

hence individually assigned estimates of ambient concentrations could be adjusted (calibrated) for the long-

term trends using a pre-defined back extrapolation algorithm (http://www.escapeproject.eu/manuals/

Procedure_for_extrapolation_back_in_time.pdf).

Thus, wherever available, individual estimates of the home outdoor air pollutant concentrations at the time

of the baseline and/or follow-up surveys could be derived.

Statistical analyses
Data from the studies were analysed separately in each cohort following an identical pre-defined analytic

code, applied to the study data, and the results then combined by meta-analyses. All studies used identical

codebooks to define and name variables.

In the first step, cohort-specific models were defined a priori, based on current knowledge. All models were

run for the default exposure metrics and for the primary COPD outcomes, namely 1) prevalence of COPD

at follow-up and 2) incidence of COPD at follow-up, using GOLD in severity stages 1+ and 2+.

Logistic regression models were used in each study separately to obtain study-specific estimates with a

random intercept for area. Several alternative sets of potential confounders were considered in the analyses

(online supplementary material: methods). However, only the estimates obtained by our ‘‘main model’’,

adjusting for age, age squared, height, sex, body mass index, education and smoking status, are reported in

the paper, since the diverse models yielded very similar results.

Sensitivity analyses explored whether the use of a different definition for COPD, whether moving residence

between baseline and follow-up or whether adding an aggregate socio-economic level of the residential

neighbourhood might change observed associations.

In a second step a random-effect meta-analysis of all the cohort-specific estimates obtained by the main

model (model 3) was performed to provide overall estimates (the same procedure was used also in specific

subgroups and/or for sensitivity analyses).

All models were fitted to the data using Stata, version 12 (StataCorp, College Station, TX, USA).

Results
Study characteristics
In total, 6550 subjects with NO2 and 3692 subjects with PM10 measurements were available, respectively.

The number of participants per cohort varied from 580 (SALIA cohort) to 3194 (ECRHS cohort). Table 1

provides distributions of main covariates of the study populations used in the analyses with NO2/NOx

(population F1) and those with assigned with all PM measurements (F2) included in these analyses (online

supplement, figs S1–S4).

The distributions of COPD prevalence and incidence and the staging of severity are presented in table 2,

stratified also by sex and smoking status. Baseline assessment years were 1985–1999 and follow-up years

were 2001–2010. The cohorts included in this study were heterogeneous in composition, with an average

age at follow-up ranging from 43 years (ECRHS) to 73 years (SALIA). The SALIA cohort only included

females, whereas the other cohorts had an even distribution of males and females (table 1).

The highest prevalence of COPD (all stages) was observed in the SAPALDIA cohort (15.7%; n5276) and the

lowest in the NSHD cohort (2.80%; n523); the same pattern was observed for incidence of COPD (table 2).

Air pollution estimates
Table 3 shows the distribution of the air pollution metrics for each study area. Prediction of LUR models

was generally good: the R2 for PM2.5 models varied between 67% and 88% [23], for NO2 the R2 varied
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between 55% and 90% [22] (online supplementary table S3). The range of study mean values of PM2.5

varied from 9.5 mg?m-3 in the NSHD study to 17.8 mg?m-3 in the SALIA cohort. Within-study contrasts were

smaller for the SALIA and SAPALDIA studies given the smaller geographic study region. The highest average

traffic loads were observed in ECRHS and SAPALDIA study sites, the lowest in the NSHD study. Correlations

between the individually assigned air pollution estimates are presented in table S2a–d in the online supplement.

The highest correlation was observed for NO2 and NOx in all cohorts (o0.91), whereas correlations between

other pollutants and traffic indicators were heterogeneous across sites, ranging from moderate to low.

Back extrapolation to baseline for NO2 and PM10 was possible in all studies, except in ECRHS, where it was

only available for follow-up (2001). The back extrapolated PM10 concentrations between studies varied

between 22.0 mg?m-3 and 47.7 mg?m-3 at baseline, respectively (table 3).

Association between air pollution and COPD prevalence and incidence defined according to the LLN
In the main analyses for prevalence of COPD defined according to the LLN stage 1+, a positive but not

statistically significant association was observed for PM10 (OR 1.04, 95% CI 0.71–1.53, per 10 mg?m-3) NO2

(OR 1.07, 95% CI 0.91–1.26, per 10 mg?m-3) and NOx (OR 1.07, 95% CI 0.96–1.21, per 20 mg?m-3)

(table 4). COPD prevalence was also positively but not significantly associated with traffic intensity on the

nearest major road and the traffic load within 100 m of the residency (table 4).

With the exception of PMcoarse all exposure variables were positively associated, albeit not significantly, with

incidence of COPD using LLN stage 1+ (table 4). Additional adjustment for covariates did not change the

main results (data not shown). Associations for both prevalence and incidence of COPD stage 2+ showed

similar patterns as for COPD stage 1+ but with wider confidence intervals, related to smaller numbers

involved (data not shown).

Association between air pollution and COPD prevalence and incidence defined according to the GOLD
Associations using GOLD definitions showed similar patterns to those using LLN (online supplementary

material table S5), except that associations with traffic intensity were statistically significant and that

incidence clearly showed positive albeit nonsignificant associations with NO2/NOx and PM measures.

Associations with COPD incidence were stronger in females than males (figs 1–4, online supplementary

material table S5). Similarly, a higher point estimate could be observed in never-smokers and non-movers

(data not shown).

TABLE 1 Description of study populations of all four cohort studies as used in the chronic obstructive pulmonary disease
prevalence analyses

ECRHS NSHD SALIA SAPALDIA

NO2

population
PM

population
NO2

population
PM

population
NO2

population
PM

population
NO2

population
PM

population

Subjects n 3194 1583 844 751 580 580 1764 729
Female 1613 (50.5) 830 (52.4) 471 (55.81) 418 (55.6) 580 (100) 580 (100) 980 (55.5) 422 (57. 9)
Age at baseline# 34.3¡7.2 35.1¡7.1 53.4¡0.2 53.4¡0.2 54.3¡0.8 54.3¡0.8 42.4¡11.0 43.0¡10.8
Age at follow-up 43.0¡7.2 43.9¡7.1 63.3¡1.1 63.3¡1.1 73.3¡3.4 73.3¡3.4 53.2¡11.0 53.9¡10.7
BMI at follow-up kg?m-3 25.4¡4.3 24.8¡4.3 27.7¡4.9 27.7¡5.0 27.4¡4.5 27.4¡4.5 25.4¡4.3 25.1¡4.3
Smoking status at baseline

Never-smoker 1390 (43.5) 707 (44.7) 270 (32.0) 230 (30.6) 459 (79.1) 459 (79.1) 704 (39.9) 291 (39)
Ex-smoker 691 (21.6) 494 (31.2) 437 (51.8) 396 (52.7) 61 (10.5) 61 (10.5) 568 (32.2) 219 (30.0)
Current smoker 1113 (34.8) 382 (24.1) 137 (16.2) 125 (16.6) 60 (10.3) 60 (10.3) 492 (27.9) 219 (30.0)

Pack years smoked by
ever smokers at
baseline

7.5¡11.6 7.4¡12.2 9.1¡12.6 9.3¡12.6 2.8¡8.4 2.8¡8.4 10.9¡17.9 11.8¡19.3

Pack years smoked
during the follow-up
by ever smokers

3.7¡10.5 2.7¡10.7 0.7¡2.5 0.7¡2.5 0.6¡6.7 0.6¡6.7 3.1¡6.5 3.5¡6.8

Educational level"

Low 758 (23.7) 363 (22.9) 303 (35.9) 275 (36.6) 105 (18.1) 105 (18.1) 130 (5.8) 46 (6.3)
Medium 1064 (33.3) 513 (32.4) 439 (52.0) 394 (52.5) 276 (47.6) 276 (47.6) 1121 (63.55) 510 (70.0)
High 1372 (50.0) 707 (44.7) 102 (12.1) 82 (10.9) 199 (34.3) 199 (34.3) 520 (29.5) 172 (23.6)

ETS+ 555 (17.4) 259 (16.4) 168 (19.9) 144 (19.2) 347 (59.8) 347 (59.8) 119 (6.8) 40 (5.5)
Occupational exposure1 1360 (43.4) 549 (35.7) 246 (29.1) 220 (29.3) 39 (6.7) 39 (6.7) 460 (26.1) 143 (19.6)
Asthma at baseline 229 (7.2) 143 (9.1) 44 (5.2) 37 (4.9) 9 (1.6) 9 (1.6) 130 (7.4) 43 (5.9)
Asthma at follow-up 334 (10.5) 191 (12.1) 83 (9.8) 68 (9.1) 47 (8.1) 47 (8.1) 153 (8.7) 48 (6.6)

Subpopulations of the original studies with individually assigned NO2 and particulate matter (PM) measures, respectively. Data are presented as n (% of total N) for categorical
variables, and mean¡SD in case of continuous variables. BMI: body mass index; ETS: environmental tobacco smoke. #: age at lung function testing; ": maximal reached educational
level at baseline and follow-up; +: exposure at home or at work at follow-up; 1: exposure to dust/fumes or gases at follow-up (yes/no).
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For both the LLN and GOLD definitions of COPD prevalence and incidence, using back-extrapolated

exposure metrics instead of exposure metrics derived for the period of air pollution monitoring campaigns

did not change the results (data not shown).

TABLE 2 Prevalence and incidence of chronic obstructive pulmonary disease in all stages (1+)
and in stage 2+ using the lower limit of normal at follow-up

All Females Males Ever-smoker Never-smoker

ECRHS

NO2 population 3194 1613 1581 1804 1390

Prevalence

All stages 109 (3.41) 54 (3.35) 55 (3.48) 69 (3.82) 40 (2.88)

Stage 2+ 39 (1.22) 17 (1.05) 22 (1.39) 29 (1.61) 10 (0.72)

Incidence

All stages 41 (1.28) 22 (1.36) 19 (1.20) 24 (1.33) 17 (1.22)

Stage 2+ 99 (0.28) 5 (0.31) 4 (0.25) 4 (0.22) 5 (0.36)

PM population 1583 830 753 836 747

Prevalence

All stages 56 (0.95) 29 (3.49) 27 (3.59) 33 (3.95) 23 (3.08)

Stage 2+ 15 (0.95) 6 (0.72) 9 (1.20) 11 (1.32) 4 (0.54 )

Incidence

All stages 22 (1.39) 13 (1.57) 9 (1.20) 12 (1.44) 10 (1.34)

Stage 2+ 5 (0.32) 3 (0.36) 2 (0.27) 2 (0.24) 3 (0.40)

NSHD

NO2 population 844 471 373 574 270

Prevalence

All stages 29 (3.44) 18 (3.82) 11 (2.95) 26 (4.53) 3 (1.11)

Stage 2+ 20 (2.37) 15 (3.18) 5 (1.34) 18 (3.14) 2 (0.74)

Incidence

All stages 20 (2.37) 12 (2.55) 8 (2.14) 17 (2.96) 3 (1.11)

Stage 2+ 14 (2.37) 10 (2.12) 4 (1.07) 12 (2.09) 2 (0.74)

PM population 751 418 333 521 230

Prevalence

All stages 26 (3.46) 15 (3.59) 11 (3.30) 23 (4.41) 3 (1.30)

Stage 2+ 18 (2.40) 13 (3.11) 5 (1.50) 16 (3.07) 2 (0.87)

Incidence

All stages 19 (2.53) 11 (2.63) 8 (2.40) 16 (3.07) 3 (1.30)

Stage 2+ 13 (1.73) 9 (2.15) 4 (1.20) 11 (2.11) 2 (0.87)

SALIA

NO2 population 580 580 121 459

Prevalence

All stages 25 (4.31) 25 (4.31) 9 (7.44) 16 (3.49)

Stage 2+ 17 (2.93) 17 (2.93) 7 (5.79) 10 (2.18)

Incidence

All stages 18 (3.10) 18 (3.10) 7 (5.79) 11 (2.40)

Stage 2+ 12 (2.07) 12 (2.07) 5 (4.13) 7 (1.53)

PM population 580 580 121 459

Prevalence

All stages 25 (4.31) 25 (4.31) 9 (7.44) 16 (3.49)

Stage 2+ 17 (2.93) 17 (2.93) 7 (5.79) 10 (2.18)

Incidence

All stages 18 (3.10) 18 (3.10) 7 (5.79) 11 (2.40)

Stage 2+ 12 (2.07) 12 (2.07) 5 (4.13) 7 (1.53)

SAPALDIA

NO2 population 1764 980 784 998 766

Prevalence

All stages 189 (10.71) 64 (6.53) 125 (15.94) 190 (19.04) 86 (11.23)

Stage 2+ 61 (3.46) 44 (4.49) 17 (2.17) 61 (6.11)) 21 (2.74)

Incidence

All stages 105 (2.04) 47 (4.80) 58 (7.40) 118 (11.82) 70 (9.14)

Stage 2+ 36 (2.04) 30 (3.06) 6 (0.77) 34 (3.41) 14 (1.83)

PM population 729 422 307 406 323

Prevalence

All stages 58 (7.96) 22 (5.21) 43 (14.01) 62 (15.27) 30 (9.29)

Stage 2+ 26 (3.57) 15 (3.55) 12 (3.91) 25 (6.16) 9(2.79)

Incidence

All stages 41(5.62) 18 (4.27) 34 (11.07) 18 (4.43) 27 (8.36)

Stage 2+ 16 (2.19) 11 (2.61) 7 (2.28) 51 (12.56) 6 (1.86)

All four study populations are stratified by sex, and smoking status for population with NO2 and particulate
matter (PM) measures, respectively. Data are presented as N or n (% of total N).
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Discussion
The findings of this multicentre European study on air pollution and COPD were inconclusive. Estimated

long-term residential exposure to NO2, PM10 and traffic intensity on the nearest major road was positively

but not statistically significantly associated with a higher COPD prevalence in four adult European cohort

studies. COPD prevalence was not associated with PM2.5, PM2.5(abs), and PMcoarse with substantial

heterogeneities between study and subgroups. The positive association between traffic intensity on the

nearest major road and GOLD-defined COPD reached statistical significance only in females (prevalence

and incidence) and never smokers (incidence).

Direct comparison with previous studies is in general limited due to differences in study design, exposure

assessment, definition of COPD and statistical methods. ESCAPE is the first large-scale multi-cohort study

using fully standardised exposure measurement, modelling, and assignment methods, which offers a unique

opportunity to evaluate the potential influence of different exposure metrics and model validity on the

heterogeneity of results. Most interestingly, as seen in the correlation matrix (online supplementary material,

table S2), the different metrics of pollution co-vary differently among the geographic regions of these cohorts.

For example, whereas NO2 is rather highly correlated with PM10 in three studies, this is far less the case in the

NSHD geography (R50.43). Similarly, PM2.5(abs) and PMcoarse are poorly correlated in NSHD but rather well

TABLE 3 Distribution of all available exposure metrics (air pollutants and traffic variables) by study

N Mean SD Min. 25th
percentile

50th
percentile

75th
percentile

Max. Interquartile
range

ECRHS

PM2.5 mg?m-3 1582 16.13 6.02 8.17 10.26 16.89 17.96 34.37 7.70
PM2.5(abs) 10-5 m-1 1320 2.01 0.91 0.83 1.15 1.82 2.70 5.25 1.55
PM10 mg?m-3 1583 25.88 9.81 11.91 16.79 24.44 29.38 55.17 12.60
PMcoarse mg?m-3 1582 10.20 4.69 3.89 6.40 8.80 11.31 25.37 4.91
NO2 mg?m-3 1582 28.95 15.43 0.00 18.76 26.54 37.47 115.52 18.71
NOx mg?m-3 1582 50.51 30.43 0.00 31.48 43.03 65.93 223.07 34.45
Traffic on nearest road# 1516 5538 11681 0.00 500 800 7080 143156 6580
Traffic load" 1516 1.44 3.27 0.00 0.00 0.00 1.66 56.50 1.66
Back-extrapolated PM10 to follow-up+ mg?m-3 1582 27.04 5.52 16.30 22.31 27.20 30.52 47.11 8.22
Back-extrapolated NO2 to follow-up+ mg?m-3 1215 41.56 15.33 13.51 29.30 39.28 50.80 120.68 21.51

NSHD

PM2.5 mg?m-3 751 9.52 0.99 8.17 8.72 9.48 10.18 13.49 1.45
PM2.5(abs) 10-5 m-1 751 1.05 0.24 0.83 0.88 0.98 1.14 3.20 0.26
PM10 mg?m-3 751 15.73 2.09 11.79 14.67 15.73 16.54 26.20 1.88
PMcoarse mg?m-3 751 6.37 0.92 5.57 5.78 6.04 6.56 9.71 0.77
NO2 mg?m-3 751 22.39 7.13 12.93 16.64 21.83 26.67 61.99 10.03
NOx mg?m-3 751 37.54 14.19 19.75 27.22 36.05 44.35 145.43 17.13
Traffic on nearest road# 751 1239 4091 500 500 500 500 76224 0.00
Traffic load" 751 0.27 0.91 0.00 0.00 0.00 0.00 10.00 0.00
Back-extrapolated PM10 to baseline+ mg?m-3 748 22.00 2.82 16.37 20.65 21.97 23.28 36.38 2.63
Back-extrapolated NO2 to baseline+ mg?m-3 748 26.38 8.40 14.64 20.13 25.74 31.55 70.18 11.42

SALIA

PM2.5 mg?m-3 580 17.76 1.33 15.90 16.87 17.26 18.53 21.90 1.70
PM2.5(abs) 10-5 m-1 580 1.43 0.41 0.97 1.18 1.30 1.58 3.39 0.40
PM10 mg?m-3 580 26.72 2.06 23.88 25.40 26.16 27.47 33.47 2.07
PMcoarse mg?m-3 580 9.37 1.57 2.85 8.50 8.84 10.08 14.79 1.58
NO2 mg?m-3 580 27.62 7.52 19.66 22.67 24.24 30.72 70.34 8.05
NOx mg?m-3 580 44.16 18.98 23.88 31.86 35.42 52.60 124.34 20.74
Traffic on nearest road# 580 1642 3637 500 500 500 500 27798 0.00
Traffic load" 580 0.72 2.01 0.00 0.00 0.00 0.32 15.8 0.32
Back-extrapolated PM10 to baseline+ mg?m-3 580 47.68 8.02 32.24 39.23 49.84 52.79 65.06 13.56
Back-extrapolated NO2 to baseline+ mg?m-3 580 35.97 11.52 20.26 27.56 33.32 41.60 84.14 14.04

SAPALDIA

PM2.5 mg?m-3 729 16.78 1.62 12.36 16.24 16.78 17.38 23.48 1.13
PM2.5(abs) 10-5 m-1 729 1.93 0.38 0.91 1.68 1.96 2.20 3.23 0.52
PM10 mg?m-3 729 23.16 2.56 17.60 22.32 23.29 24.61 31.69 2.29
PMcoarse mg?m-3 729 6.49 1.24 4.27 5.53 6.48 7.39 10.39 1.86
NO2 mg?m-3 729 26.17 7.65 6.87 22.66 26.64 30.59 56.30 7.93
NOx mg?m-3 729 42.02 14.71 4.03 36.55 42.64 49.40 112.16 12.85
Traffic on nearest road# 729 1541 2967 0 0 125 1584 22424 1584
Traffic load" 729 1.14 1.77 0.00 0.00 0.21 1.75 10.31. 1.75
Back-extrapolated PM10 to baseline+ mg?m-3 726 46.18 4.45 33.82 44.42 45.51 48.42 61.90 4.00
Back-extrapolated NO2 to baseline+ mg?m-3 727 45.84 12.28 11.46 39.65 44.82 51.57 96.40 11.93

PM2.5: particulate matter with a diameter of 2.5 mm or less; PM2.5(abs): absorbance of particulate matter with a diameter of 2.5 mm; PM10: particulate matter with a diameter of
10 mm or less; PMcoarse: coarse fraction of PM2.5 to PM10; NO2: nitrogen dioxide; NOx: nitrogen oxides. #: cars per day; ": traffic load on nearest major road within 100 m buffer
presented in millions; +: only back extrapolation to follow-up in 2001 was possible for ECRHS data; back extrapolation to baseline was possible for NSHD (1999), SALIA (1985–1994)
and SAPALDIA (1991).
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TABLE 4 Adjusted association between all ESCAPE exposures to air pollution (including traffic indicators) and both the
prevalence and incidence of chronic obstructive pulmonary disease (COPD) all stages using the lower limit of normal

Exposure#
Prevalence of COPD all stages Incidence of COPD all stages

aOR" (95% CI) I2 p-value (het.) aOR+ (95% CI) I2 p-value (het.)

NO2 1.07 (0.91–1.26) 24.1 p50.266 1.05 (0.89–1.23) 0.0 p50.789
NOx 1.07 (0.96–1.21) 0.0 p50.857 1.05 (0.89–1.23) 0.0 p50.602
PM10 1.04 (0.71–1.53) 0.0 p50.588 1.10 (0.70–1.73) 0.0 p50.855
PM2.5 0.95 (0.47–1.90) 46.6 p50.132 1.06 (0.73–1.53) 0.0 p50.645
PM2.5(abs) 1.02 (0.69–1.52) 0.0 p50.393 1.06 (0.67–1.67) 0.0 p50.703
PMcoarse 0.84 (0.33–2.10) 7.0 p50.358 0.18 (0.01–5.18) 95.2 p50.000
Traffic intensity on nearest road 1.19 (0.84–1.68) 0.0 p50.917 1.24 (0.78–1.96) 0.0 p50.902
Traffic intensity on major road in a

100 m buffer
1.13 (0.72–1.78) 44.3 p50.146 1.15 (0.77–1.73) 39.5 p50.175

Results from the random effect meta-analysis from single pollutant models (adjusted odds ratios and 95% confidence intervals), and I2 (with p-
value) test for heterogeneity of effect estimates between cohorts. PM10: particulate matter with a diameter of 10 mm or less; PM2.5: particulate
matter with a diameter of 2.5 mm or less; PM2.5(abs): absorbance of particulate matter with a diameter of 2.5 mm; PMcoarse: coarse fraction of PM2.5

to PM10. #: associations are presented for the following increments in exposure: 10 mg?m-3 for NO2, 20 mg?m-3 for NOx, 1610-5 m-1 for PM2.5

absorbance, 5 mg?m-3 for PM2.5, 10 mg?m-3 for PM10, 5 mg?m-3 for PMcoarse, 5000 vehicle?day-1?m for traffic intensity on the nearest street; and
4 000 000 vehicle?day-1?m for traffic load on major roads within a 100 m buffer. ": adjusted for sex at baseline, smoking at follow-up, maximum
educational level, age at follow-up, height at baseline, body mass index (BMI) at follow-up of all participants; associations with traffic intensity and
traffic load were additionally adjusted for background NO2 concentrations. +: adjusted for sex at baseline, smoking at baseline, smoking cessation,
maximum educational level, age at baseline, height at baseline, BMI at baseline, change in BMI of all participants; associations with traffic intensity
and traffic load were additionally adjusted for background NO2 concentrations.

Traffic intensity on nearest road
SAPALDIA
ECRHS
NSHD
SALIA
I-V subtotal (I-squared=0.0%, p=0.774)
D+L subtotal

Traffic load on major roads within 100 m
SAPALDIA
ECRHS
NSHD
SALIA
I-V subtotal (I-squared=0.0%, p=0.688)
D+L subtotal

1.40 (0.92–2.11)
0.86 (0.36–2.03)
1.16 (0.24–5.50)
1.48 (0.57–3.83)
1.29 (0.92–1.18)
1.29 (0.92–1.81)

1.20 (0.84–1.71)
1.42 (0.66–3.04)
0.70 (0.20–2.50)
1.58 (0.84–2.96)
1.26 (0.96–1.67)
1.26 (0.96–1.67)

67.24
15.38

4.71
12.68

100.00

62.18
13.34

4.80
19.69

100.00

1406
1863

730
467

1388
1750

730
467

ES (95% CI)Study
Weight %

(I-V) N

Odds ratio

COPD incidence GOLD stage 1+

Decreased risk Increased risk
0.182 1 5.5

FIGURE 1 Meta-analysis results summarising the centre-specific adjusted random-effect logistic regression model
estimates of the effect of traffic variables on incidence of chronic obstructive pulmonary disease (COPD) (Global
Initiative for Chronic Obstructive Lung Disease criteria all stages), in all participants, for increments in traffic intensity on
the nearest road of 5000 vehicle?day-1 and in traffic load on major roads within a 100 m buffer of 500 000 vehicle?day-1?m
in two categories. I-squared is the variation in estimate effect attributable to heterogeneity, and D+L the pooled random
effects estimate of all studies. The logistic regression models were adjusted for sex at baseline, smoking at follow-up,
maximal educational level, age at follow-up, age at follow-up squared, height at baseline, body mass index (BMI) at
follow-up and BMI squared. ES: estimate.
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correlated in the other studies. This highlights the fact that different metrics of pollution may capture different

characteristics of the air pollution mixture and that those may vary across regions.

With the exception of PMcoarse all associations between air pollutant exposure and COPD prevalence and

incidence were positive but not statistically significant. The question arises to what extent uncertainties in

the model based assignments of air pollution concentrations may explain the inconclusive findings. A

limitation is the time of the ESCAPE exposure measurement. The study used data from measurements

performed in 2008–2010 to build the exposure models for each study area. Models were applied to the

participants’ address of the baseline and the follow-up investigation. However, in some cases the baseline

investigation was more than 20 years earlier. To overcome the problem of time discrepancy between

exposure measure and examination, we additionally applied a back extrapolation procedure. Findings were,

though, weaker when using the back-extrapolated estimates. However, back-extrapolated values have some

inherent additional uncertainties. In some centres, routine monitoring stations were not active at the time

of baseline investigation. Back extrapolation also relies on the assumption that the spatial pattern was the

same in the past as the one observed 2008–2010. A recent publication showed that spatial variation in NO2

exposure can be reliably estimated retrospectively up to 8 years, also when mean concentrations of air

pollutants change over time [24]. Whether this applies also across two decades and to all our sites is less

certain. Most importantly, while markers such as NO2 may well show similar spatial distributions across

years and decades, the marker itself may not indicate the same type of pollution mixtures all across these

time periods and different geographical areas due to substantial changes in fuel and engine technologies

implemented over recent decades.

One should also be aware of inherent limitations in the LUR modelling, adding at least non-systematic

uncertainties to the assigned concentrations. The ESCAPE LUR models showed different validity across

cities. That could explain some of the between-study heterogeneity. The NO2 LUR models used in our study

sites explained 31 to 88% of the spatial variance with validation R2 ranging from 55% to 92%. Moreover, it

has been shown that the model performance depends on the number of measurement sites used to inform

Traffic intensity on nearest road
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NSHD
SALIA
I-V subtotal (I-squared=13.9%, p=0.323)
D+L subtotal

Traffic load on major roads within 100 m
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I-V subtotal (I-squared=0.0%, p=0.909)
D+L subtotal

3.29 (1.74–6.22)
1.57 (0.30–8.21)
3.08 (0.24–39.53)
0.90 (0.25–3.24)
2.44 (1.44–4.14)
2.25 (1.19–4.26)

1.71 (0.90–3.25)
1.37 (0.30–6.25)
0.82 (0.09–7.87)
1.37 (0.84–2.25)
1.46 (1.00–2.12)
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68.59
10.17
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16.96
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2.73

57.33
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ES (95% CI)Study
Weight %
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COPD incidence GOLD stage 1+ never-smoker
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FIGURE 2 Meta-analysis results summarising the centre-specific adjusted random-effect logistic regression model
estimates of the effect of traffic variables on incidence of chronic obstructive pulmonary disease (COPD) (Global
Initiative for Chronic Obstructive Lung Disease criteria all stages), in never-smokers, for increments in traffic intensity on
the nearest road of 5000 vehicle?day-1 and in traffic load on major roads within a 100 m buffer of 500 000 vehicle?day-1?m
in two categories. I-squared is the variation in estimate effect attributable to heterogeneity, and D+L the pooled random
effects estimate of all studies. The logistic regression models were adjusted for sex at baseline, smoking at follow-up,
maximal educational level, age at follow-up, age at follow-up squared, height at baseline, body mass index (BMI) at
follow-up and BMI squared. ES: estimate.
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the model, with a tendency to be inflated in models based on the 20–40 default sites of the ESCAPE protocol

[25]. Thus, uncertainty in the exposure estimates may be substantial, resulting at least in the need for larger

sample sizes to observe more conclusive, statistically significant associations.

SALIA is the only study that previously published on air pollution as well as traffic proximity and COPD

prevalence [17]. The published results from the baseline of SALIA around 20 years ago demonstrate that the

5-year mean of PM10 showed significant associations not only with forced vital capacity and forced

expiratory volume in 1 s but also with the odds of having GOLD defined COPD (stage 1–4): OR 1.68, 95%

CI 1.01–2.78, per 10 mg?m-3 PM10. However, our ESCAPE analysis showed a nonsignificant association of

COPD with PM10 in SALIA. A stepwise analysis revealed that restricting to surviving females and using the

most recent lung function measurements were most influential in reducing the odds ratio towards null

findings. In contrast to the baseline times when particle pollution was much higher, no association between

particle pollution and prevalence of COPD was detected in SALIA in 2008. Thus, the previously published

results could not be replicated in the smaller subpopulation of SALIA contributing to ESCAPE.

Our findings on the association between prevalence of COPD and traffic-related air pollution in females are

partly consistent with those from other studies [26–30]. KAN et al. [31] reported that lung function was

inversely related to traffic exposure in females. However, it is unclear whether females are more susceptible

to the effects of air pollution compared to males. One may also argue that outdoor air quality at home may

better reflect exposure in females, as they spend more time near home, on average [32]. Only a few studies

have reported sex-specific analyses of air pollution-induced respiratory health effects and the pattern is not

conclusive [18, 31, 33]. It is unclear whether the observed modifications of sex are a result of sex-linked

biological differences or sex differences in activity pattern [32]. Moreover, we cannot fully separate the

possible modification by sex from possible impact of study design differences given that results in females

are dominated by SALIA where all were older females.
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SAPALDIA
ECRHS
NSHD
SALIA
I-V subtotal (I-squared=0.0%, p=0.644)
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1.79 (1.21–2.66)
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FIGURE 3 Meta-analysis results summarising the centre-specific adjusted random-effect logistic regression model
estimates of the effect of traffic variables on incidence of chronic obstructive pulmonary disease (COPD) (Global
Initiative for Chronic Obstructive Lung Disease criteria all stages), in females, for increments in traffic intensity on the
nearest road of 5000 vehicle?day-1 and in traffic load on major roads within a 100 m buffer of 500 000 vehicle?day-1?m in
two categories. I-squared is the variation in estimate effect attributable to heterogeneity, and D+L the pooled random
effects estimate of all studies. The logistic regression models were adjusted for sex at baseline, smoking at follow-up,
maximal educational level, age at follow-up, age at follow-up squared, height at baseline, body mass index (BMI) at
follow-up and BMI squared. ES: estimate.
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The findings of more consistent and partly significant results for traffic intensity near the residence are

interesting. One may argue that exhaust pollutants such as primary ultrafine particles (such as diesel soot)

might be captured particularly with those near-road markers of traffic-related pollution. This is in

accordance with postulated biological mechanisms that chronic inhalation of such pollutants may damage

the lung tissue and hence lead to the development of COPD [27, 34]. However, the heterogeneous findings

for PM2.5 and in particular for PM reflectance, which is considered to be a good marker for near-road

traffic-related pollutants, remain unexplained and inconsistent with our hypotheses, experimental studies

and a few epidemiological studies.

Our study has major strength, including the objective definition of COPD, the relatively large number of

observations, and the multicentre design across different European regions, which cover different types of

environment and climates. We additionally harmonised the exposure assessment methods, and developed a

common study protocol for exposure and outcome definition as well as the analytic approach. The

limitations discussed above may, however, be rather influential and explain the inconsistencies and

uncertainties. Moreover, the use of existing studies instead of prospectively designed very large cohorts

comes with the inevitable disadvantage of not fully standardised health outcome and covariate assessment,

which adds at least statistical noise to the data. Whether and to what extent this may be a source of

systematic differences between studies is not known.

Conclusion
The mostly nonsignificant though positive associations cannot conclusively answer the question of whether

traffic-related ambient air pollution may contribute to the development of COPD. Large-scale standardised

cohort studies with longer follow-ups are needed to clarify the role of different sources of air pollution on

COPD inception and to explain the inconsistent findings of this meta-analysis, especially for PM fractions.
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