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Abstract 
Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is associated with 

impaired vascular and alveolar growth. Antenatal factors contribute to the risk for developing 

BPD by unclear mechanisms. Endothelial progenitor cells (EPCs), such as angiogenic circulating 

progenitor cells (CPCs) and late-outgrowth endothelial colony-forming cells (ECFCs), may 

contribute to angiogenesis in the developing lung. We hypothesize that cord blood angiogenic 

CPCs and ECFCs are decreased in preterm infants with moderate and severe BPD. 

 

We quantified ECFCs and the CPC-to-nonangiogenic-CPC ratio (CPC:non-CPC) in cord blood 

samples from 62 preterm infants and assessed their relationships to maternal and perinatal risk 

factors as well as BPD severity. The CPC:non-CPC ratio and ECFC number were compared 

between preterm infants with mild or no BPD and those with moderate or severe BPD. 

 

ECFC number (p < 0.001) and CPC:non-CPC ratio (p < 0.05) were significantly decreased in 

cord blood samples of preterm infants who subsequently developed moderate or severe BPD. 

Gestational age and birth weight were not associated with either angiogenic marker. 

 

Circulating vascular progenitor cells are decreased in the cord blood of preterm infants who 

develop moderate and severe BPD. These findings suggest that prenatal factors contribute to late 

respiratory outcomes in preterm infants. 

 

Abstract Word Count: 200
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Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, was originally 

described as the result of postnatal lung injury from mechanical ventilation and oxygen 

supplementation [1]. While advances in the treatment of neonatal respiratory distress syndrome 

have improved the survival of extremely low birth weight infants, BPD remains the most 

common complication of preterm birth [2]. In the post-surfactant era, the “new BPD” is 

characterized by a developmental arrest of lung vascular and alveolar growth resulting in 

decreased surface area for gas exchange [2-4] .BPD is associated with increased mortality and 

morbidities such as respiratory insufficiency, chronic hypoxemia, pulmonary hypertension, 

exercise intolerance, wheezing, and poor neurodevelopmental outcomes [5]. 

 

The extent of chronic lung disease is highly variable among preterm infants. While gestational 

age (GA) and birth weight (BW) are the most predictive indicators of BPD severity, antenatal 

factors such as preeclampsia, chorioamnionitis, and intrauterine growth restriction (IUGR) 

contribute significantly to the pathogenesis of “new BPD” [2, 6]. The “Barker Hypothesis” 

suggests that intrauterine factors contribute to the risk for respiratory disease later in life [7]. 

However, little is known about underlying mechanisms by which antenatal events contribute to 

impaired lung development and function. Postnatal factors such as high levels of supplemental 

oxygen, patent ductus arteriosus, infection, prolonged mechanical ventilation, and malnutrition, 

are also associated with more severe respiratory outcomes [8]. A subset of infants develops BPD, 

but the presence or absence of postnatal factors alone may not be sufficient to determine the risk 

for chronic lung disease in preterm infants.   
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Both human and animal studies suggest that impaired vascular growth plays a central role in the 

pathogenesis of BPD [3, 9, 10]. Vascular endothelial growth factor (VEGF) is decreased in the 

lungs of human infants dying from severe BPD [9]. Anti-angiogenic mediators such as 

endostatin have been associated with the development of BPD [11]. In preeclampsia, a known 

contributor to BPD risk, soluble-Flt1 (another potent anti-angiogenic factor) is increased [12]. 

Vascular growth occurs by either angiogenesis (the direct extension of existing vessels) or 

vasculogenesis [13]. In vasculogenesis, new vessels are formed from primitive hemangioblasts 

located within a developing organ or from putative bone marrow-derived circulating endothelial 

progenitor cells (EPCs) that are thought to home to developing microcapillary beds in the lung 

and other organ systems [13, 14]. 

 

EPCs are decreased in the blood, lungs, and bone marrow of newborn mice with experimental 

BPD due to hyperoxia [15]. This suggests that postnatal events can disrupt vasculogenic 

mechanisms during development leading to impaired lung vascular and alveolar growth. 

Systemic and intra-tracheal administration of mesenchymal stromal cells (MSCs) or MSC-

conditioned media to neonatal rodents partially restores lung architecture during neonatal 

hyperoxia [16, 17]. In addition, intravenous administration of bone marrow-derived 

proangiogenic cells after exposure to neonatal hyperoxia normalizes lung structure in infant mice 

[18].  

 

Based on these data from preclinical models of BPD, we speculate that angiogenic progenitor 

levels in umbilical cord blood samples at birth may be inversely associated with the severity of 

BPD.  More specifically, we hypothesize that preterm infants who have decreased levels of 
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angiogenic progenitors in their cord blood will have an increased risk for developing severe 

BPD. In this prospective cohort study, we report that preterm infants who later develop moderate 

and severe BPD have decreased angiogenic progenitor cells in umbilical cord blood, as reflected 

by reduced late-outgrowth endothelial colony-forming cells (ECFCs) and by the ratio of pro-

angiogenic circulating progenitor cells (CPCs) to non-angiogenic CPCs (CPC:non-CPC). 

 

Methods 

 

Subject enrollment and data collection 

The Colorado Multiple Institutional Review Board approved all study protocols. Informed 

consent was obtained from pregnant mothers presenting in preterm labor. Subjects were enrolled 

from October 2009 until June 2011. Cord blood was collected and processed as previously 

described [19]. Eligible mothers were admitted to the University Hospital Anschutz Inpatient 

Pavilion, delivering a newborn of 24-36 weeks GA, and capable of providing consent. Exclusion 

criteria included known HIV/HBV/HCV infection. Maternal and infant clinical data were 

collected until hospital discharge. A clinical diagnosis of chorioamnionitis was made in the 

setting of uterine tenderness and maternal fever. IUGR was defined as BW less than the 10th 

percentile with an occipitofrontal circumference greater than the 10th percentile. Data were stored 

in a secure REDCap database [20]. 

 

Determination of BPD status 

The presence and severity of BPD were determined using NIH criteria with an adjustment for the 

local altitude of 1600m (Figure S1) [8]. An oxygen reduction test (see Supplemental Material) 
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was performed when indicated. Briefly, the diagnosis of BPD was made at 36 weeks post-

conception (or day of life 28 if the infant was born after 32 weeks). Infants who required 

supplemental oxygen for less than 28 days, had no BPD. Those infants with an FiO2 of less than 

0.26 had mild BPD. If the FiO2 was between 0.26 and 0.35, the infant had moderate BPD. 

Finally, severe BPD indicates that the child required an FiO2 of greater than 0.35 or positive 

pressure (mechanical ventilation, CPAP, high flow oxygen by nasal cannula). Subjects were 

separated into two study groups, those with mild or no BPD and those with moderate or severe 

BPD, based on the rationale that at sea level infants with mild or no BPD do not require 

supplemental oxygen at the time of diagnosis. 

 

Cord blood collection and ECFC isolation 

Samples were maintained at room temperature and analyzed within 24 hours. Mononuclear cells 

(MNCs) were isolated by gradient centrifugation for both the ECFC culture assay and 

polychromatic flow cytometry (PFC). MNCs were cultured on type 1 collagen in complete 

EGM-2 media (Lonza) with 10% fetal bovine serum. ECFC colonies (Figure S2A) were 

identified daily and enumerated on day 14. Low-passage (p2-3) ECFCs were characterized by 

immunohistochemistry, PFC, tube formation, and a single-cell assay to confirm self-renewal 

(Figure S2B-E). 

 

Polychromatic flow cytometry 

MNCs (Figure S3A) were analyzed by PFC as follows. 0.5-1.0 x 106 cells were stained with 

antibodies to CD31, CD34, CD45, AC133, Glycophorin-A (erythrocyte exclusion), CD14 

(macrophage exclusion), and a LIVE/DEAD viability marker. Compensation beads, fluorescence 



6 

minus-one controls, and bi-exponential gating were utilized to facilitate accurate compensation 

and gating [21]. Angiogenic (CD45dimCD34+CD31+AC133+) and non-angiogenic 

(CD45dimCD34+CD31+AC133-) CPCs were measured so that the CPC:non-CPC ratio could be 

determined using established methods (Figure S3B-C) [21, 22]. PFC analysis was performed 

using a CyAn 9-color flow cytometer (Beckman Coulter) and FlowJo software (v. 9.3.2). 

 

Statistical Analysis 

Non-parametric data were analyzed using Mann Whitney tests and are presented as medians with 

interquartile ranges (IQR). Normally distributed data were analyzed using unpaired t-tests and 

are presented as means with standard deviations (SD). Spearman’s correlation coefficients were 

utilized to compare ECFC number with GA and BW. Fisher’s exact test was used to analyze 

categorical data. Analysis was performed with the Prism software package (v. 5.0, GraphPad). 

Significance level was set at  = 0.05. The first author and biostatistician (MKS) analyzed all 

data. 

 

Results 

 

Patient characteristics 

As summarized in Table 1, 62 preterm infants (24-36 weeks) were enrolled. 13 (21.0%) 

developed moderate or severe BPD. The remaining 49 (79.0%) developed none or mild BPD. In 

comparison with infants who had mild or no BPD, GA, BW, length, and head circumference 

were significantly decreased in patients with moderate or severe BPD (Table 1). Ventilator days, 

CPAP days, CPAP plus ventilator days, and total days with supplemental oxygen were greater in 
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the more severe group. The incidence of preeclampsia, chorioamnionitis, maternal diabetes, and 

smoking were similar between groups. Apgar scores at one and five minutes were greater in the 

mild or no BPD group. 

 

Angiogenic circulating progenitor cells are decreased in moderate and severe BPD 

PFC was performed on the cord blood of 60 of the 62 subjects. 12 samples were excluded 

because fluorochrome oversaturation prevented CPC enumeration. Of the remaining 48, 37 had 

mild or no BPD and 11 had moderate or severe BPD. The CPC:non-CPC ratio was significantly 

lower in the cord blood of infants who developed moderate or severe BPD (1.5 [1.2, 1.8] vs. 2.5 

[1.5, 3.9]; p < 0.05; Fig 1A). When samples from all infants who later developed BPD (n=29) 

were compared to those who did not (n=19), the CPC:non-CPC ratio trended lower in those with 

BPD, but this failed to achieve statistical significance (1.8 [1.3, 3.0] vs. 2.8 [1.8, 4.9]; p = 0.07; 

Fig S4A). In the subset of infants born at or before 28 weeks (n=11), the trend towards a 

decreased CPC:non-CPC ratio was not statistically significant (Fig S4B). 

 

Cord blood ECFCs are decreased in moderate and severe BPD 

Cord blood ECFC number was markedly decreased in preterm infants who went on to develop 

moderate or severe BPD as compared to those who did not (0 [0, 0.8] vs. 3.6 [0.9, 8.0] colonies 

per 107 MNCs; p < 0.001; Fig 1B). ECFCs were also decreased among all subjects with BPD 

(n=36) as compared to those without BPD (n=26; 1.4 [0, 4.8] vs. 3.9 [1.3, 7.4]; p < 0.05; Fig 1C). 

Among infants born at or before 28 weeks, all of these infants developed BPD. However, none 

of the infants with moderate or severe BPD had detectable ECFCs in their cord blood. Infants 

with mild BPD had 4.9 [2.4, 9.0] ECFC colonies per 107 MNCs (p < 0.01; Fig 1D). 
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By univariate non-parametric comparison, neither GA (r = 0.23; p = 0.11) nor BW (r = 0.24; p = 

0.11) affected the CPC:non-CPC ratio. In contrast to previous studies, we found that GA did not 

correlate with cord blood ECFC number (r = 0.17; p = 0.18; Fig 2A).[23, 24] Although a 

nonparametric comparison of ECFC number with BW was statistically significant, the 

coefficient of determination shows that the correlation is small (r = 0.26; p = 0.04; Fig S4C). 

 

A small but significant correlation was found between the CPC:non-CPC ratio and ECFC 

number (r = 0.33; p = 0.02; Fig S4D). We then compared samples that contained ECFCs (n=32) 

to those that did not (n=16) and found that the CPC:non-CPC ratio was significantly higher in 

ECFC-containing cord blood (2.8 [1.8, 4.2] vs. 1.5 [1.1, 1.8]; p = 0.001; Fig 2B). 

 

Association of perinatal risk factors and cord blood ECFC number 

Although its incidence was no different between groups, we found that infants with clinical 

chorioamnionitis had increased cord blood ECFCs(n=10; 8.0 [3.9, 8.5] vs. 1.8 [0, 4.7]; p < 0.01; 

Fig 3A). In the present study, cord blood ECFCs tended to be lower in maternal preeclampsia 

(n=13), but the difference was not statistically significant (1.0 [0, 4.7] vs. 3.0 [0, 7.0]; p = 0.23; 

Fig S4E). Birth by Caesarean section (n=30) resulted in a significantly decreased cord blood 

ECFC number as compared to vaginal birth (1.1 [0, 3.5] vs. 5.0 [1.0, 8.0]; p < 0.01; Fig 3B). 

There was no difference between planned and emergent Caesarean delivery (not shown). 

Antenatal corticosteroid treatment did not alter ECFC number (Fig S4F). None of these antenatal 

factors significantly affected the CPC:non-CPC ratio. 
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Discussion 

We report that circulating angiogenic progenitor cells, including late outgrowth ECFCs and the 

CPC:non-CPC ratio, are decreased in the cord blood of preterm infants who develop moderate or 

severe BPD. In this population, neither the CPC:non-CPC ratio nor ECFC number are strongly 

associated with prematurity, as determined by GA or BW. Reduction in both angiogenic markers 

was associated with increased BPD. Preterm newborns with chorioamnionitis have increased 

cord blood ECFCs and infants delivered via Caesarean section have decreased ECFCs. While 

enrollment was not sufficient to demonstrate a significant difference, preterm infants born to 

mothers with preeclampsia tended to have decreased cord blood ECFCs. 

 

A recent epidemiologic study supported “Barker’s Hypothesis” by demonstrating links between 

antenatal events and late respiratory outcomes such as BPD [6]. However, Hansen and 

colleagues noted that only 54% of the odds variability for developing BPD could be described 

using the occurrence of preeclampsia, clinical chorioamnionitis, male sex, and maternal smoking 

as well as gestational age and birth weight z-score [6]. Our findings are interesting in that cord 

blood ECFC and CPC:non-CPC levels are low in preterm infants who subsequently develop 

moderate or severe BPD. These data directly support the concept that antenatal events affect late 

respiratory outcomes in preterm infants, and suggest that EPCs may serve as potential 

biomarkers to better identify at risk infants. However, whether altered EPC levels or function 

directly contribute to the pathobiology of BPD remains unknown. 

 

Although first isolated over ten years ago, much remains unknown about the role of EPCs in 

vascular growth during fetal development. EPCs have been isolated and quantified by both PFC 
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and primary culture assays [25, 26]. Cultured EPCs are increased in human disease states such as 

acute lung injury in which early-outgrowth EPCs correlate with survival [27]. Although early-

outgrowth EPCs augment angiogenesis, these cells do not have an endothelial morphology and 

function as angiogenic macrophages [28, 29]. In comparison, late-outgrowth ECFCs have an 

endothelial appearance, are stem-like (highly-proliferative and self-renewing), and form chimeric 

vessels in vivo [26, 29]. However, ECFCs may have fewer paracrine effects on angiogenesis 

[28]. Both early EPCs and ECFCs may be required for effective angiogenesis in the developing 

lung. 

 

EPCs were first described by PFC as CD34+AC133+KDR+ cells [14, 30]. However, we did not 

measure these cells as they are not different in the cord blood of full-term infants and preterm 

infants whether or not they later develop BPD [19, 31]. In contrast, CPCs express a different 

surface antigen profile (CD45dimCD34+CD31+AC133+), are proangiogenic, and promote tumor 

growth in vivo [22]. Therefore, we included a CD31 antibody in our staining protocol in lieu of 

identifying KDR-positive cells. Non-CPCs are AC133-negative (CD45dimCD34+CD31+AC133-) 

and are not angiogenic [22]. The CPC:non-CPC ratio is decreased in peripheral artery disease 

and gestational diabetes, but its significance in the cord blood of preterm infants with BPD has 

not been previously described [22, 32]. While the absolute number of circulating CPCs may be 

relevant, there was no difference in CPCs between study groups. The CPC:non-CPC ratio may 

more accurately reflect the balance between competing mechanisms the body uses to regulate 

vascular growth. 
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A previous study suggested that ECFCs may be decreased in a small subset of patients with 

BPD, but whether these findings simply reflect the association between the severity of BPD and 

degree of prematurity was unclear [23]. We did not observe ECFC number to be a function of 

GA or BW, as previously reported in two smaller studies, suggesting that the link between 

ECFCs and late outcomes are not simply due to an association with the degree of prematurity 

[23, 24]. Circulating progenitors may directly contribute to pulmonary angiogenesis [10, 15, 18] 

and we speculate that decreased ECFCs may contribute to abnormal vascular growth and more 

severe BPD. Further study is needed to better elucidate the role of CPCs and ECFCs during 

normal vascular development and how changes in EPC number or function contributes to BPD. 

 

Cord blood ECFCs are increased with chorioamnionitis and vaginal birth. We speculate that 

these processes result in significant perinatal stress that causes a release of angiogenic 

progenitors into the circulation. We note that the CPC:non-CPC ratio was not similarly increased 

in these infants.  Further study is needed to confirm these findings and to identify the angiogenic 

factors that mediate this response. 

 

The small number of patients enrolled in the study may result in type II errors and limits our 

ability to perform multivariate analysis in depth. These findings neither confirm nor refute the 

hypothesis that decreased circulating EPCs actually contribute to impaired vascular growth in 

BPD.  Nevertheless, the striking association between decreased EPCs and BPD severity leads us 

to speculate that disruption of pro-angiogenic precursor cells are involved in the pathogenesis of 

BPD. 
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We conclude that angiogenic CPCs and ECFCs, potential cellular biomarkers of angiogenic 

activity, are decreased in the cord blood of preterm infants who go on to develop moderate or 

severe BPD. Using the data presented, we determined that a CPC:non-CPC ratio of less than two 

and the absence of cord blood ECFCs convey relative risks of 5.2 (95% CI: 1.2, 21.9) and 8.1 

(95% CI: 2.5, 26.2), respectively. However, further large-scale trials including validation cohorts 

are needed to confirm if either of these assays provides biomarkers that predict which infants are 

at greatest risk for chronic lung disease. We speculate that antenatal factors, genetic 

predisposition, or both, decrease circulating EPCs in the fetal circulation, which may impair 

postnatal vasculogenesis and contribute to the severity of late respiratory outcomes after preterm 

birth. A better understanding of the function of both CPCs and ECFCs will lead to novel 

therapies to promote pulmonary vascular growth in the preterm newborn and improve outcomes 

in this high-risk neonatal population. 
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Figure Legends 
 

Figure 1.  Angiogenic progenitor levels in preterm newborns by BPD severity. (A) The ratio 

of angiogenic CPCs to non-angiogenic CPCs (CPC:non-CPC) is significantly greater in the cord 

blood of infants with mild or no BPD (n=37; solid circles) as compared to those with moderate 

or severe BPD (n=11; open circles; * p < 0.05). (B) Cord blood ECFC number, defined as the 

number of ECFC colonies on day 14 per 107 MNCs plated, is significantly greater in infants who 

later developed mild or no BPD (n=49; solid circles) as compared to those infants who 

developed moderate or severe BPD (n=13; open circles; *** p = 0.001). (C) Cord blood  ECFC 

number is greater in infants with no BPD (n=26; solid circles) as compared to those with BPD of 

any severity (n=36; open circles; * p < 0.05). Among infants born at  28 weeks, (D) Cord blood 

ECFC number was significantly decreased in infants with moderate or severe BPD (n=5; open 

circles) as compared to those with mild BPD (n=9; solid circles; ** p < 0.01). 

 

Figure 2. Cord blood  ECFC number (on day 14) plotted against gestational age and the 

CPC:non-CPC ratio.  (A) There is no correlation between cord blood ECFC number and 

gestational age (Spearman r = 0.17; p = 0.18). (B) In infants whose cord blood yielded no ECFC 

colonies (open circles), the CPC:non-CPC ratio was significantly decreased as compared to those 

with cord blood ECFCs (closed circles; *** p < 0.001). 

 

Figure 3. The influence of prenatal factors on cord blood ECFC number. (A) ECFCs are 

increased in the cord blood of infants born with clinical chorioamnionitis (n=10; open circles) as 

compared to those without chorioamnionitis (n=50; solid circles; ** p < 0.01). (B)  Infants born 
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via Caesarean section (n=30; open circles) had significantly fewer cord blood ECFCs than those 

born vaginally (n=32; closed circles; ** p < 0.01)  
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TABLES 

Table 1. Clinical characteristics of the newborn infants. 
 

Characteristic None-Mild BPD Mod-Severe BPD p-value 

Total Subjects 49 13  

Gender (male/female) 26/23 9/4 0.36 

Born before 28 weeks - %, n 18.4, 9 38.5, 5 0.50 

Gest Age - wks (mean, SD) 32.1, 3.1 29.7, 3.2 0.02 

Birth Weight - g (mean, SD) 1794, 556 1256, 488 0.002 

Length - cm (mean, SD) 42.4, 4.5 38.0, 6.1 0.005 

OFC - cm (mean, SD) 29.2, 3.0 27.0, 3.2 0.03 

Maternal Smoking - %, n 8.2, 4 15.4, 2 0.60 

Preeclampsia - %, n 20.4, 10 23.1, 3 1.00 

Diabetes - %, n 8.2, 4 15.4, 2 0.60 

Prenatal Corticosteroids - %, n 69.4, 34 90.9, 10 0.26 

Caesarian Section - %, n 44.9, 22 61.5, 8 0.36 

Maternal Antibiotics - %, n 87.8, 43 76.9, 10 0.38 

Chorioamnionitis - %, n 19.1, 9 7.7, 1 0.44 

Intrauterine Growth Restriction - %, n 6.1, 3 23.1, 3 0.10 

Apgar 1 min (median, IQR)  7, 5-8 5, 2-7 0.004 

Apgar 5 min (median, IQR) 9, 7-9 7, 4-8 0.003 

Vent days (median, IQR) 0, 0-2 4, 1-26 <0.001 

CPAP days (median, IQR) 1, 0-3 4, 2-19 0.02 

CPAP+Vent days (median, IQR) 2, 0-6 9, 7-37 <0.001 

Total O2 days (median, IQR) 11, 0-43 67, 60-93 <0.001 

Intraventricular Hemorrhage - %, n 2.0, 1 30.8, 4 0.006 

ROP (abnormal exam)- %, n 30.6, 15 69.2, 9 0.02 

ROP (laser treatment)- %, n 2.0, 1 0, 0 1.00 

Necrotizing Enterocolitis - %, n 4.1, 2 7.7, 1 0.51 

Patent Ductus Arteriosus - %, n 4.1, 2 53.8, 7   <0.001 

Postnatal Sepsis - %, n 8.2, 4 0, 0  0.57 
 
Patient characteristics.  Definitions of abbreviations: n = number of subjects within a study 
group with the given condition; BPD = bronchopulmonary dysplasia; OFC = occipitofrontal 
circumference; CPAP = continuous positive airway pressure; O2 = supplemental oxygen; ROP = 
retinopathy of prematurity; SD = standard deviation; IQR = interquartile range.  
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Fig 1B 
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Fig 1C 
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Fig 1D 
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Fig 2A 
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Fig 2B 
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Fig 3A 
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Fig 3B 
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