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ABSTRACT:  Since the pathogenesis and the pathological features of occupational
asthma are similar to those of nonoccupational asthma, the former represents a
very useful model for the investigation of the pathogenesis of asthma in general. 

More than one mechanism may be operative in occupational asthma.  Among the
mechanisms proposed, immunological mechanisms and airway inflammation
play an important role.  There is evidence to confirm that T-lymphocyte activation
and local accumulation in the bronchial wall of activated eosinophils occurs in
asthma of diverse aetiology, i.e. immunoglobulin E (IgE)-mediated, occupational
and intrinsic.  

Neurogenic pathways should be further investigated as a potential mechanism
of modulation and amplification of airway inflammation in occupational asthma.
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Background

Population studies have shown that the majority of
adults and children with well-documented asthma are
atopic (i.e. they produce an increased amount of immuno-
globulin E (IgE) antibodies against aeroallergens), and
that the prevalence of asthma is greater in subjects with
high serum IgE levels [1].  Inhaled allergens from mites
present in house dust are probably the most important
risk factor of asthma [2].  Asthma induced by mites is
a classical example of IgE-mediated asthma, and im-
munochemical measurements of dust antigen have been
performed.  Methods for the reduction of mite allergen
in the living environment have been developed, with the
hope of improving the clinical aspects of the disease.
Occupational asthma shares many characteristics with
IgE-mediated asthma: in both, the agent responsible is
known, and the clinical picture, the response to inhala-
tion challenge in the laboratory and the response to anti-
asthma drugs are all similar.

Whilst occupational asthma induced by high mole-
cular weight compounds is often mediated by an IgE
mechanism, in most subjects with occupational asthma
induced by low molecular weight compounds it is not
possible to demonstrate an IgE-mediated mechanism.
Nonatopic asthma has many features of chronic cell-
mediated disease which occurs independently of an IgE-
mediated immunological mechanism.

Since it has recently been shown that the pathological
features of occupational asthma are similar to those found
in nonoccupational asthma [3], the former represents a
very useful model for the investigation of the patho-

genesis of asthma in general (i.e. IgE-mediated, intrin-
sic, and occupational).  

Occupational asthma offers a unique opportunity to
study the natural history of the disease, since expo-
sure to the sensitizing agent can be abolished comp-
letely, something which is not feasible in mite-induced
asthma.

Mechanisms

Even if the precise causative mechanism of occupa-
tional asthma is unknown, several mechanisms have
been proposed, i.e. immunological, pharmacological
and genetic mechanisms, and airway and neurogenic
inflammation.  More than one mechanism may be oper-
ative in occupational asthma.  Whether various mecha-
nisms are involved in occupational asthma induced by
different agents is also unknown.

An agent which causes asthma may be considered as
"inducer" (i.e. causing reversible airway bronchocon-
striction associated with long-lasting airway hyperre-
sponsiveness to nonspecific and/or specific agents) or as
"inciter" (i.e. triggering asthma attacks) [4].

Among the mechanisms proposed in the pathogenesis
of occupational asthma, the immunological one plays a
key role.

Immunological mechanism

Immunological mechanism does not necessarily im-
ply an IgE-mediated immunity (fig. 1).  In fact, if
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occupational asthma caused by the exposure to high mol-
ecular weight compounds is, in many cases, IgE-medi-
ated, occupational asthma due to the exposure to low
molecular weight compounds is rarely so; but, it may be
considered immunologically-mediated on the basis
of recent studies showing that in the bronchial mucosa
of subjects with occupational asthma induced by low
molecular weight compounds, activated T-lympho-
cytes, metachromatic cells and activated eosinophils
are present [5].                        

Complex cellular and molecular interactions cause air-
way inflammation in asthma.  The type of inflammatory
infiltrate depends on specific events, including the na-
ture and activities of the specific adhesion molecules
expressed by the endothelium and by blood leucocytes,
as well as the release of chemotactic factors, which cause
migration of cells into tissue.

The immune system is divided into the antibody and
cellular branches.  B-cells produce and secrete specific
humoral antibodies, whilst T-lymphocytes modulate
B-cell function by helper and suppressor functions, parti-
cipate in delayed hypersensitivity responses, and medi-
ate several types of cellular toxicity.

In the generation of an immune response, the first
step is the activation of T-cells by the recognition of anti-
gen, which is presented on the surface of accessory
cells [6–16].  The accessory cells or antigen-presenting
cells (APCs) are macrophages, dendritic cells and B-
cells.  Dendritic cells are considered to be the major anti-

gen-presenting cells (APCs) in the lung and airway wall.
T-cells recognize soluble antigens which have been

processed by APCs.  Antigen recognition by T-cells
is mediated by the clonotypic T-cell receptor (TCR),
which recognizes a specific complex of an antigen-
derived peptide bound to a major histocompatibility
complex (MHC) molecule of class I or class II (res-
pectively, MHC-I and MHC-II).

The accessory cells, along with the ability to pro-
cess antigens, are also capable of facilitating the bind-
ing of the processed antigen to the intracytoplasmic
MHC molecules, which then migrate to and are ex-
pressed on their cell surface.  Finally, they elaborate and
secrete interleukin-1 (IL-1), a cytokine which stimu-
lates T-cells.  The airway dendritic cells bind inhaled
allergen in situ and then present it to T-cells.  It has
recently been demonstrated that, in the presence of an
inflammatory stimulus, dendritic cells exhibit a res-
ponse, by increasing in numbers in the epithelium and
upregulation of surface expression of integrins.

Whereas, so-called "helper CD4+" T-cells recognize
antigens bound to the class II MHC molecules, the sup-
pressor/cytotoxic CD8+ T-cells recognize antigens in the
context of class I MHC molecules.  After activation by
antigen, T-lymphocytes secrete a number of lympho-
kines, which attract, activate and promote the growth
and differentiation of other leucocytes.

Based on murine studies, T-helper (Th) clones may be
subdivided on the basis of their cytokine profile [17].
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The use of antigen-specific T-lymphocyte clones has
confirmed the results [18].  Th1 clones produce pre-
dominantly IL-2 and interferon-γ (IFN-γ), whereas Th2
clones produce mainly IL-4 and IL-5.  Both Th1 and
Th2  produce IL-3 and granulocyte/macrophage colony-
stimulating factor (GM-CSF).  In vivo studies in humans
have confirmed the existence of functionally distinct
subsets of T-lymphocytes [19].  There is now evidence
that a number of other cells produce IL-3, IL-4, IL-5,
GM-CSF and other cytokines [20–22].

In addition to their role as helper cells for the pro-
duction of humoral antibodies by B-cells, activated
CD4+ lymphocytes may be considered as inflammatory
cells.  Activated T-cells secrete interleukin-8 (IL-8),
which is a chemotactic cytokine for polymorphon-
uclear leucocytes.  They are also an important source of
GM-CSF and IL-5.  The first is important in eosinophil
development and activation [23, 24] and plays a signif-
icant role in the amplification of eosinophilic inflam-
mation.  IL-5 appears to be specific in promoting the
development, adhesion [25] and activation of eosino-
phils, and is the predominant eosinophil-active cytokine
present in bronchoalveolar lavage (BAL) fluids during
allergen-induced late phase inflammation [26].

Activated T-cells may, therefore, initiate and propa-
gate allergic inflammation in the airways and partici-
pate directly in the events responsible for asthma exac-
erbations [27–29].  There is now compelling evidence to
confirm that T-lymphocyte activation and local accu-
mulation in the bronchial wall of activated eosinophils
occur in asthma of diverse aetiology, i.e. IgE-mediated,
intrinsic and occupational [30–34].

Regarding CD8+ T-cells, different subsets partici-
pate directly in the B-cell suppressor function (CD8
11b), whereas the CD8 and the CD28 act as cytotoxic
cells for exogeneous and endogenous antigens [35].
Recently, it has been reported that soluble exogenous
antigens or haptens are able to mount an MHC class I
restricted response [36, 37].

Antibody-mediated immunity. Occupational agents, par-
ticularly high molecular weight compounds, act through
an IgE-mediated mechanism.  These compounds act as
complete antigens and are, therefore, capable of cross-
linking surface-bound IgE.  The specific reaction which
occurs between allergen and IgE produces a cascade
of events, that causes the activation of inflammatory
cells, and the synthesis and release of several inflam-
matory mediators, which mediate the inflammatory
reaction in the airways [38, 39].  Low molecular weight
compounds, to produce a complete allergen, must first
react with autologous or heterologous proteins.

In vivo and in vitro studies in humans may be per-
formed to confirm the role of sensitization to occupa-
tional agents in occupational asthma.  These studies
include skin tests, radioallergosorbent tests (RAST)
and enzyme-linked immunosorbent assay (ELISA) tests
[40].

In subjects with occupational asthma induced both
by high and low molecular weight compounds, speci-
fic immunoglobulins (IgE, IgG) may be found [41–

44].  However, positive skin tests and/or specific anti-
bodies against occupational allergens are often present
in subjects both with and without symptoms of asthma,
suggesting that their presence may reflect exposure rather
than disease [44, 45].  These subjects require monitor-
ing with the aim of confirming sensitization.  Skin tests
and specific antibodies may be helpful in the diagnosis
of occupational asthma due to high molecular weight
compounds.  Regarding occupational asthma due to low
molecular weight compounds, it has been reported that
in asthma induced by diisocyanates, such as hexamethy-
lene diisocyanate (HDI) and diphenylmethane-4'-4'-
diisocyanate (MDI) specific IgG antibodies are more
important than IgE antibodies [43].  These antibodies are
also present in some subjects with no history of asthma
and a negative inhalation challenge.  In anhydride-
induced asthma the role of the antibody-mediated immu-
nity has been more clearly confirmed. Chemicals, such
as tri-mellitic anhydride (TMA) or methyl tetrahydroph-
thalic anhydride (MTHPA) produce highly allergenic
epitopes after conjugation with proteins.  Specific anti-
bodies against these chemicals correlate well with the
presence of occupational asthma [46–49].  Studies of
RAST cross-inhibition have shown that the antibody
responses are heterogeneous, i.e. the response is against
either the ligand or against new antigenic determinants
with no evidence of hapten specificity.  For other agents,
such as platinum salts, an antibody-mediated response
has also been confirmed [50–54].  High levels of both
IgE and cutaneous reactivity may persist as long as 4 yrs
after the cessation of exposure, suggesting that platinum
salts may cause polyclonal (noncognate) stimulation of
IgE-producing B-cells.

As with isocyanate-induced asthma, specific anti-
bodies against plicatic acid and against morphine have
been found, respectively, in symptomatic and asympto-
matic workers exposed to red cedar or to morphine [44, 55].

Under certain circumstances, the presence of specific
IgE or IgG is useful in the diagnosis of occupational
asthma (exposure to high molecular weight compounds
and to certain low molecular weight compounds), where-
as in others, their presence is a biological marker of
exposure and must be associated with pulmonary func-
tion tests to detect the clinical onset of the disease.

Cell-mediated immunity. In addition to their role in
IgE-mediated responses through the induction and sup-
pression of IgE synthesis by B-lymphocytes, T-lymphocytes
release cytokines, which recruit and activate other inflam-
matory cells.  T-cells may be considered as effector cells
in allergic inflammation and asthma through path-
ways which are distinct from B-cell regulation and IgE
production.

Cell-mediated immunity has not been extensively
investigated in occupational asthma.  In isocyanate-
induced asthma, activated (CD25+) CD4 T-lympho-
cytes, activated eosinophils and mast cells have been
shown in bronchial mucosa [3, 34].  The number of CD25+
cells (IL-2-bearing cells), and of very late activation
antigen (VLA)-bearing cells increases and total (MPB+)
eosinophils and actively secreting EG2+ cells also
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increase [34].  These findings suggest that occupational
and nonoccupational asthma have a similar inflam-
matory cell infiltrate, and confirm that T-lymphocyte
activation and eosinophil recruitment are important in
asthma of diverse aetiology.

That a T-lymphocyte-eosinophil interaction occurs in
allergic inflammation and in asthma is supported by the
finding of IL-5 messenger ribonucleic acid (mRNA)
expression in bronchial biopsies of asthmatics [56].

In occupational asthma induced by isocyanates, we
have observed an increase of CD8+ cells and eosinophils
in the peripheral blood of subjects who developed a late
asthmatic reaction after exposure to toluene diisocynate
(TDI) in the laboratory, 48–72 h after the exposure to
the chemical [57].  Exposure to an occupational sensi-
tizer such as TDI, induces airway narrowing, recruitment
and activation of inflammatory cells.

In subjects with nickel-induced asthma, nickel-specific
T-lymphocyte clones have been isolated, suggesting
that T-cell-mediated immunity is present in occupational
asthma [58].  In subjects with hard metal-induced asthma,
cobalt-induced lymphocyte proliferation has been shown
[59].  Recently, bronchial biopsies in two subjects with
occupational asthma due to TDI were performed 48 h
after an asthmatic reaction induced by exposure to TDI
in the laboratory and after 3 months free from exposure
to the sensitizing agent.  After inhalation challenge with
TDI, the number of eosinophils and cells expressing IL-
2 receptor increased in the bronchial mucosa.  Fragments
of bronchial biopsies were cultured in the presence of
IL-2 in order to expand activated T-cells in the tissue,
and T-blasts were cloned [60, 61].  From the 48 h speci-
mens, the majority of clones exhibited the CD8 pheno-
type.  All CD8 clones produced IFN-γ, 44% produced
IL-5 but only 6% secreted IL-4.  In biopsies taken 3
months after the cessation of exposure, the number of
mucosal eosinophils and CD25+ was in the range of nor-
mality, and IL-2 stimulation did not promote growth
of T-cells.  These findings support a role for IL-5 pro-
ducing CD8+ T-cells in occupational asthma induced
by isocyanates.

Airway inflammation

Active asthma is characterized by the presence of air-
way inflammation [62].  Airway inflammation may be
assessed indirectly by using inhalation challenge studies
[63], by studies on the role of anti-inflammatory drugs,
mainly steroids, on asthma [64], and directly by using
fibreoptic bronchoscopy in order to perform broncho-
alveolar lavage (BAL) and to obtain bronchial biopsies.
These two techniques demonstrate the presence of in-
flammation in the airways of asthmatics and have im-
proved our knowledge of the inflammatory process.

Bronchoalveolar lavage

BAL fluid can be analysed for total and differential
cell counts, evaluation of cell activation, and measure-

ment of biochemical parameters in cell-free supernatant.
This technique has also been used in asthma [65–69],
and guidelines for a safe use of BAL in asthma have
recently been published [70–72].

In subjects with occupational asthma, BAL fluid ob-
tained between attacks and after cessation of exposure
shows a mild change or no change at all in the total
count or distribution of inflammatory cells [65]. With
this technique increased numbers of inflammatory cells
have been found in subjects who do not recover after the
cessation of exposure [66], and during asthma attacks
[67–69].

BAL obtained during late asthmatic reactions induced
by occupational sensitizers shows a significant increase
of inflammatory cells, i.e. neutrophils and eosinophils.
An increase in albumin concentration in BAL fluid is
also present in occupational asthma [73].  During early
asthmatic reactions induced by occupational agents,
histamine, leukotrienes and other mediators are measur-
able in BAL fluid [74].  After challenge with isocyanates,
leukotriene B4 levels are increased, which may be respon-
sible for leucocyte infiltration in the airways [75].  Ma-
crophages, epithelial cells or neutrophils may be the
source of this mediator.

In the supernatant of BAL fluid obtained during late
asthmatic reactions, the concentration of albumin is
increased compared to findings obtained from controls
or during an early asthmatic reaction [73].  It has been
suggested that this may reflect microvascular leakage
and mucosal oedema [76].  Macromolecules of albumin
leak between the gaps of endothelial cells in the post-
capillary venule.  They cross two membranes, the endo-
thelial and the epithelial basement membrane and
accumulate in the airway lumen.  The process of plas-
ma exudation is associated with movement of water,
which causes mucosal oedema and accumulation of
exudate in the airway lumen.  It has recently been pro-
posed that the plasma exudation process is not necessari-
ly associated with airway oedema, epithelial disruption,
or increased mucosal absorption [77].  The author sug-
gests that plasma exudates, by increasing the hydrostat-
ic pressure in the subepithelial space, create pathways
for their luminal entry.  If transient oedema is induced
by airway plasma exudation, it is unlikely to compro-
mise the airway functions.  When the exudative response
is massive and prolonged, it is possible that the physi-
cal alterations of the wall and the lumen are harmful to
the airways [78, 79].

In a sensitized subject who died suddenly after occupa-
tional re-exposure to isocyanates, we observed airway
oedema and exudate in the airway lumen [80].

Fibreoptic bronchoscopy has also been used to obtain
bronchial biopsies, and to clarify the pathological fea-
tures of occupational asthma.

Bronchial biopsies

Occupational asthma may be fatal.  In a sensitized
subject who died in the workplace after re-exposure to
isocyanates, histological examination of the airways
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showed denudation of airway epithelium and thick-
ening of the basement membrane, with infiltration of the
lamina propria by leucocytes, mainly eosinophils, and
diffuse mucous plugging of bronchioles.  Bronchial
smooth muscle appeared hyperplastic and disarrayed,
and lung parenchyma showed focal areas of alveolar
destruction adjacent to areas of intact alveolar walls.  It
is likely that a bronchial wall thickened by persistent
oedema or by an increased amount of subepithelial col-
lagen may increase the degree of bronchoconstriction in-
duced by a similar degree of smooth muscle shortening
[81].

In bronchial biopsies obtained in subjects with occu-
pational asthma induced by TDI, inflammatory cells are
present and they compartmentalize in the airway mu-
cosa.  Whereas, eosinophils are increased in the epithe-
lium, in the most superficial layer of the submucosa and
in the total submucosa, CD45+ cells (mononuclear cells
accounted for most of the CD45+ cells) are signifi-
cantly increased only in the epithelium and in the most
superficial layer of the submucosa, and mast cells are
increased only in the epithelium.  Epithelial integrity
constitutes a mean of 33 and 34% coverage of the base-
ment membrane in asthmatics and controls, respectively,
and the difference is not significant.  The intercellular
spaces between columnar cells are similar in the two
groups, but intercellular spaces between basal cells are
wider in asthmatics.

Destruction or denudation of airway epithelium is
considered to be a common morphological feature assoc-
iated with the pathogenesis of asthma.  Indeed, epitheli-
um is not only the primary barrier protecting  the underlying
tissues from inhaled irritants and noxious stimuli, but it
is also a metabolically active tissue [82].  It may gener-
ate mediators, such as 8,15-hydroxyeicosatetraenoic
acid (HETE), an epithelial cell-derived relaxant factor,
etc. Desquamation of the epithelium exposes afferent
nerve endings, that are stimulated to release tachykinins,
such as substance P, which is a potent constrictor agent.
The epithelial cell is an important source of cytokines

during airway inflammation, which could play different
roles in the pathogenesis of asthma.  The epithelial cell
may be activated by inflammatory mediators.  The result
is an enhanced production of mediators and cytokines,
which affect airway tone and may regulate the function
of both resident and influxing inflammatory cells.

Returning to our findings, if we remember that the
attachment of most of the columnar cells to basement
membrane is mediated through basal cells, the finding
of wider spaces between basal cells should induce an
impairment of the adhesion of columnar cells to the
basement membrane, contributing together with the in-
flux into epithelium of inflammatory cells, to the induc-
tion of epithelial fragility, as has been observed in
nonoccupational asthma [83].  Asthmatics exhibit a
thicker subepithelial reticular layer of the basement
membrane, whereas the true basement membrane is
similar in asthmatics and controls.  An increase in the
thickness of the reticular layer of the basement mem-
brane is considered to be a characteristic of asthma [84].
This finding is a histopathological feature of asthma,
since in subjects affected by chronic bronchitis, a dis-
ease which causes airway inflammation and activation
of T-lymphocytes, as does asthma, the thickness of the
basement membrane does not differ from controls [85].
Whereas collagen IV is one of the components of the
true basement membrane, collagens I, III and V pro-
duced by myofibroblasts are components of the reticu-
lar layer of the basement membrane.  Since a thickened
reticular layer of the basement membrane has also been
described in young asthmatics with mild asthma [86], it
is likely that this histological feature represents an
early change of the disease.

Cessation of exposure (6 months) to an occupational
sensitizer induces a change in the thickness of the base-
ment membrane [87].  In subjects sensitized to isocyan-
ates and removed from exposure, the thickness of the
reticular layer of the basement membrane is reduced
compared to that at diagnosis (fig. 2), but the inflam-
matory cell infiltrate is still present.  After a longer time

C.E. MAPP ET AL.

Fig. 2.  –  Bronchial mucosa biopsy from a subject with toluene diisocyanate-induced asthma: at diagnosis A), where a thickened reticular layer
of the basement membrane (BM) and an inflammatory cell infiltrate are evident: and 6 months after cessation of exposure to the occupational agent,
(B), where BM thickness is reduced, but the inflammatory cell infiltrate is still present.  Stain: Haemotoxylin-eosin, light microscopy.  Bars = 20
µm.
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without exposure to the sensitizing agent (6–21 months),
the subepithelial fibrosis, the number of mast cells and
fibroblasts, and the sensitivity to TDI are significantly
reduced, whilst eosinophils, mononuclear cells and air-
way responsiveness to methacholine do not change [88].
The association between the thickness of the base-
ment membrane (reticular layer) and the number of
mast cells and fibroblasts, suggests a role for resident
cells in the development of subepithelial fibrosis in
occupational asthma.

Subjects who develop occupational asthma after a short
period of exposure to TDI (2 yrs) have more mast cells
in airway mucosa than subjects who develop respiratory
symptoms after a long period of exposure to TDI (22
yrs) (fig. 3) [89].  This finding could be a "predisposing
factor" for a rapid onset of the disease, or the effect of
different levels of exposure to the sensitizing agent.

Airway inflammation assessed with bronchial biop-
sies performed at variable periods of time from the
occupational exposure has been reported in isocyanate-
induced asthma [66].

In subjects with occupational asthma induced by ex-
posure to Western red cedar antigen (WRCA), it has
recently been shown that the number of eosinophils is
increased in BAL fluid as in atopic asthma [90].  Biopsies
were obtained and in both asthmatic groups, as com-
pared to controls, T-cells were increased; an increase

due mainly to CD4+ cells.  Absolute numbers of CD25+
cells and activated eosinophils are increased in WRCA,
confirming that in occupational asthma, as in IgE-medi-
ated asthma, T-lymphocyte activation and eosinophil infil-
tration are common findings.

Genetic mechanism

In trying to resolve the genetic basis of various dis-
eases, including asthma, two basic approaches have been
used, namely "forward" and "reverse genetic mapping".
The former focuses on prospective candidate genes, and
in the case of asthma, genes encoding cytokines and
adhesion molecules might be targeted.  By using the
second approach, now termed "positional cloning",
the aim is to establish a linkage between the asthma
phenotype and a series of highly polymorphic genetic
markers.

Two studies have provided evidence for recessive in-
heritance of a single major gene determining high IgE
levels [91, 92].  However, few families are incom-
patible with simple recessive inheritance of high IgE
responsiveness, and further studies are needed.  Specific
immune responsiveness to human leucocyte antigen
(HLA) class II molecules encoded by well-defined major
histocompatibility complex (MHC) genes on human
chromosome 6p, are required for the presentation of an
antigen to a T-cell receptor (TCR) in order to initiate
the chain of events which leads to an antibody res-
ponse, including IgE.

Individual differences in HLA class II molecules may
alter the ability of the molecules to bind peptides and,
thereby, change the nature of T-cell recognition.  There
is now compelling evidence to suggest that antigens
derived from extracellular sources are recognized in the
context of HLA class II molecules by CD4+ T-cells.  It
is likely that the expression of genetic factors, regu-
lating both overall and specific responsiveness toward
specific allergenic epitopes, is affected by the intensity
and frequency of the allergenic exposure, as well as by
the ability of the allergen to enter the lung [93].

Recently, it has been proposed that specific HLA class
II alleles could be involved in susceptibility or resist-
ance to isocyanate-induced asthma [94], suggesting
that the basic molecular and cellular mechanisms of
occupational asthma induced by low molecular weight
compounds are immunological, as in IgE-mediated
asthma, in which the association with HLA class
II genes is well-documented [95–97].  Occupational
asthma induced by isocyanates and IgE-mediated as-
thma differ in terms of their association with particular
HLA class II alleles or haplotypes.  Whereas, in IgE-
mediated asthma, a strong positive association with
haplotype DR4 is found, in isocyanate-induced asthma
the frequency of haplotype DR4 is low and does not
differ from controls.  This finding confirms recent ob-
servations, showing a significant decrease of haplotype
DR4 frequency in subjects with sensitization to moun-
tain cedar [98].  It is interesting to note, that in both
cases, the causal agents are small molecular weight
compounds (isocyanate or plicatic acid).
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Fig. 3.  –  Mast cells (arrows) in epithelium and lamina propria of a
subject sensitized to toluene diissocyanate, who developed asthma
symptoms after a short period of exposure (2.5 yrs) after formalde-
hyde/ glutaraldehyde fixation.  EP: epithelium; LP: lamina propria;
BM: basement membrane. Stain: toluideine blue, pH 3, light microscopy.
Bar = 12 µm.



The exact nature of the antigen related to sensitization
to isocyanates is unknown.  Isocyanates themselves may
be involved in antibody binding or in the induction of
structural changes in an unidentified protein.  It has been
proposed that the mechanism of low responsiveness to
foreign antigens is linked to DQ alleles, whereas DR
haplotypes are implicated in the upregulation of the
immune response [95].  Low responsiveness could be
mediated by specific CD4+ T-cells, which in turn might
activate CD8+ suppressor cells.  BIGNON et al. [94] re-
ported that allelic variations at the same locus could be
associated either with resistance or with susceptibility
in isocyanate-induced asthma, as occurs in autoimmune
disorders where associations between the disease and
allelic variations in the HLA region have been described.

By using the positional cloning approach, it is pos-
sible to map other major genes which may play a role
in the expression of asthma.  Moreover, the significant
advances achieved in DNA technology represent an op-
portunity to clarify the genetics of asthma.

Pharmacologic mechanisms

Exposure to organophosphates, inhibitors of acetyl-
cholinesterease, causes immediate symptoms of asthma.
It has also been suggested that some agents, such  as iso-
cyanates and plicatic acid, act through a pharmacologi-
cal mechanism.  Isocyanates may act as beta2-adrenergic
blocking agents [99], and plicatic acid is able to activate
complement [100].  The clinical relevance of pharma-
cological mechanisms in occupational asthma is unclear,
since these mechanisms alone cannot explain why only
a minority of the exposed subjects develop asthma.  It
is likely that the pharmacological properties of some of
the agents in the work environment interact and potenti-
ate the immunological response.

Neurogenic inflammation

In addition to the cholinergic and adrenergic mecha-
nisms, nonadrenergic noncholinergic (NANC), neural
pathways involving the sensory nerves have been shown
in human airways [101].  This network of unmyelinated
sensory nerves contains potent peptides, including sub-
stance P, neurokinin A and a calcitonin gene-related
peptide.  These neuropeptides may play a role in the
development of airway inflammation.  Dusts, chemicals
and other irritants stimulate the sensory nerves to release
substance P and related neuropeptides.

A recent study has shown that asthmatic airways of
subjects with severe asthma do not contain vasoactive
intestinal peptide (VIP) in bronchial mucosa, unlike
controls [102].  The absence of this peptide, which is
known to relax airways, could amplify the effects of
constrictor agents.  A study by the same group [103]
showed that there is also an increase in both the num-
ber and the length of substance P immunoreactive
nerve fibres in airways of subjects with asthma, when
compared with airways of subjects without asthma.

Tachykinins (TK) have the ability to affect multiple cells
in the airways and to cause many responses, including
cough, mucus secretion, smooth muscle contraction,
plasma extravasation, and neutrophil adhesion.  These
effects are termed "neurogenic inflammation".  A neu-
rogenic tachykinin-mediated inflammatory exudation
occurs in rodent but not in human airways [104].

There is evidence that the nervous system is involved
in the regulation of immune responses [105].  Mast cells
and nerves may be found in close apposition, and this
association has important biological significance.  Both
mast cells and other effector cells in the airways may be
directly and indirectly regulated in their action by neu-
ropeptides.

Neutral endopeptidase (NEP) is an enzyme present on
the surface of all lung cells that contain receptors for
these neuropeptides [106].  This enzyme limits the con-
centration of neuropeptide reaching the receptor on the
cell surface by cleaving and, thus, inactivating the neu-
ropeptides.  Neurogenic inflammatory responses are
presumably protective in nature.  When NEP is inhibited
by NEP inhibitors or by exposure to cigarette smoke,
respiratory viral infections or inhalation of chemicals,
such as toluene diisocyanate, neurogenic inflammatory
responses are exaggerated.  In the epithelium, NEP is
concentrated in basal cells, which are in close associ-
ation with sensory nerves profiles, suggesting an im-
portant role of basal cells in modulating neurogenic
inflammatory responses by cleaving neuropeptides near
their site of release.  Since NEP inhibitors still potenti-
ate the bronchomotor effects of tachykinins after re-
moval of the airway epithelium, it is likely that NEP
modulates neurogenic inflammatory responses both at
the sites of neuropeptide release and at those of neuro-
peptide action.

TDI activates the efferent function of capsaicin-
sensitive primary afferents (CSPA) [107–109].  It also
inhibits neutral endopeptidase in experimental animals
and in vitro preparations [110, 111].  The activation of
sensory nerves is likely to be indirect, through the re-
lease of prostanoids [112, 113].  Mast cells play a role
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Table 1.  –  Agents which act on capsaicin-sensitive
primary afferents (CSPA)

Natural principles derived from plants
Capsaicin, resiniferatoxin, piperine, eugenol, 
curcumin, mustard oil

Mediators of inflammation and transmitters
Bradykinin, arachidonic acid metabolites, serotonin, 
histamine, acetylcholine, platelet-activating factor, 
neurotensin, cholecystokinin octapeptide, gamma-
aminobutyric acid (GABA)

Environmental agents
Vapour phase of smoke, toluene diisocyanate, toluene 
diamina, formalin, ether, xylene, chloroacetophenone,
acrylamide, allergens, bacterial chemotactic peptide

Others
Mechanical stimuli, antidromic electrical stimulation, 
ischaemia, H+, high potassium, prostacyclin, compound 
48/80.
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in the contraction induced by TDI in guinea-pig air-
ways.  Compound 48/80, an agent which degranulates
mast cells, inhibits TDI-induced contraction through
the release of mediators other than histamine and through
a direct effect on sensory nerves [114].

Occupational stimuli (table 1), which act on CSPA
and/or inhibit neutral endopeptidase, could trigger
neurogenic inflammation and precipitate asthma.  Neuro-
genic pathways should be further investigated as a poten-
tial mechanism of modulating and amplifying airway
inflammation in occupational asthma.
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